INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS)

Code No:BST005

MODEL QUESTION PAPER - II

M.Tech II Semester Regular Examinations, APRIL 2017

FINITE ELEMENT METHOD
(STRUCTURAL ENGINEERING)
Time: 3 hours

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the question must be answered in one place only
1.(a) Explaintheterms 'Plane stress'and'Planestrain'problems.Giveconstitutivelawsforthesecases. Specify stress and strain tensors for plane stress case. Give suitable examples for plane stress problems.
(b) What is meant by 'discretization'?List and describe the general steps of the finite element method.
(or)
2.(a) Write the potential energy for beam of span 'L' simply supported at ends, subjected to a concentrated ' P ' at midspan. Assume EI constant.
(b) For a simply supported Beam of uniformly distributed load of Intensity Po per unit length
and a concentrated load P at center, Find the Transverse deflection using Raleigh-Ritz
method of Functional Evaluation and compare the result with exact Analytical solution.
and a concentrated load P at center, Find the Transverse deflection using Raleigh-Ritz
method of Functional Evaluation and compare the result with exact Analytical solution.
3.(a) Determine nodal displacement, element stresses and support reactions of the axially loaded bar as shown in fig

(or)
4.(a) Evaluate the shape functions N1, N2 and N3 at the interior point P for the triangular element shown in the figure below.

(b) Explain what you understand by convergence requirements; and conditions to be satisfied by the assumed displacement function. What are compatibility requirements and geometric isotropy?
5.(a) Write a note on isoparametric formulations and how the geometric as well as field variables are taken into account?
(b) Using the Lagrange interpolation formula construct the shape function in natural coordinate for one dimensional axial element with 4 nodes. Sketch the shape function
(or)
6.(a) For the isoparametric quadrilateral element shown in fig, determine
a) Cartesian coordinate of the point P which has local coordinate $\zeta=0.57335$ and $\eta=0.57735$.
b) Local coordinate of the point Q which has Cartesian coordinate $(7,4)$

(b) Explain finite element formulation for 8-noded isoperimetric solid element. Explain step by step procedure and elaborate all the steps.
7.(a) What are the assumptions made in thin plates with small deflections? Give the relation between forces and stresses action on a thin plate
(b) Figure show the simply supported skew plate and it is subjected to uniformly distributed load of $4 \mathrm{KN} / \mathrm{m}^{2}$. Analyze the plate and compare the result with theoretical solution, $\mathrm{h}=200$ $\mathrm{mm}, \mathrm{E}=2 \times 10^{4} \mathrm{n} / \mathrm{mm}^{2}, \mu=0.3, \theta=30^{\circ}$.

8.(a) i)Discuss Love-Kirchhoff's and Mindlin's plate bending theories in detail ii)Explain the different classification of shells with neat sketches
(b) Explain finite elements for plate analysis. Write notes on numerical integration and stress smoothening in the case of four noded quadrilateral plateelement.
9.(a) What are the types of non-linearity in structural analysis? Give two examples of geometric nonlinear problems?
(b) Discuss about Material and Geometric nonlinearity.Explain incremental procedure to handle material non - linear problems.
10.(a) Explain iterative procedure and modified iterative procedure for the analysis of material Non-linearity problems.
(b) How is geometry nonlinearity taken care in finite element analysis?Explain the solution methods for nonlinear algebraic equations.

