

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

DEFINITIONS AND TERMINOLOGY

Course Name	:	MACHINE LEARNING
Course Code	:	ACS014
Program	:	B.Tech
Semester	:	VIII
Branch	:	Computer Science and Engineering
Section	:	A, B
Academic Year	:	2019 – 2020
Course Faculty	:	Mrs. G Sulakshana, Assistant professor, CSE Mr. A Praveen, Assistant Professor, IT Mrs. B Anupama, Assistant professor, CSE

OBJECTIVES:

I	Apply knowledge of computing and mathematics appropriate to the discipline.
II	Illustrate the concepts of machine learning and related algorithms.
III	Understand the dimensionality problems using linear discriminants.
IV	Study various statistical models for analyzing the data.
V	Learn clustering algorithms for unlabeled data.

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.NO	QUESTION	ANSWER	Blooms Taxonomy Level	CO	CLO	CLO Code
		UNIT-I				
1	Define cloud Machine learning	Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.	Remember	CO 1	CLO 01	ACS014.01
2	Define machine	The advanced mathematics and complex programming at the heart of AI systems is challenging.	Remember	CO 1	CLO 01	ACS014.01
3	Define learning algor ithm	A learning algorithm is an algorithm used in machine learning to help the technology to imitate the human.	Remember	CO 1	CLO 01	ACS014.01
4	What is version space?	A version space is a hierarchical representation of knowledge that enables you to keep track of all the useful information supplied by a sequence of learning	Remember	CO 1	CLO 02	ACS014.01
5	What is Version space learning?	Version space learning is a logical approach to machine learning, specifically binary classification. Version space learning algorithms search a predefined space of hypotheses, viewed as	Remember	CO 1	CLO02	ACS014.02

6	What is Elimination Algorithm?	Elimination Algorithm will converge toward the hypothesis that correctly describes the target concept provided	Remember	CO 1	CLO02	ACS014.02
	What is	The candidate elimination	Remember	CO 1	CLO 02	ACS014.02
7	elimination algorithm?	algorithm incrementally builds the version space given a hypothesis space H and a set E of examples.				
8	Define candidate- Elimination algorithm	The candidate-Elimination algorithm computes the version space containing all (and only those) hypotheses from H that are consistent with an observed sequence of training examples.	Remember	CO 1	CLO 02	ACS014.02
9	Define decision tree	Where the data is continuously split according to a certain parameter. The tree can be explained by two entities, namely decision nodes and leaves	Remember	CO 1	CLO 02	ACS014.02
10	What is tree in machine learning?	A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification	Remember	CO 1	CLO 02	ACS014.02
11	What is Decision Trees?	Decision Trees are a type of Supervised Machine Learning where the data is continuously split according to a certain parameter.	Remember	CO 1	CLO03	ACS014.04
12	What is classification ?	classification is a supervised learning approach in which the computer program learns from the data input given to it and then uses this learning to classify new observation	Remember	CO 1	CLO04	ACS014.04
13	Define Classification	Classification is a supervised learning approach in which the computer program learns from the data input given to it and then uses this learning to classify new observation	Remember	CO 1	CLO04	ACS014.04
14	What is machine learning classifier?	Classification is the process of predicting the class of given data points. Classes are sometimes called as targets/ labels or categories	Remember	CO 1	CLO04	ACS014.04
		UNIT-II				
1	What is Perceptron?	A Perceptron is a simple model of a biological neuron in an artificial neural network. Perceptron is also the name of an early algorithm for supervised learning of binary classifiers.	Remember	CO 2	CLO 05	ACS014.05
2	What is Perceptron in machine learning?	Perceptron is the fundamental unit of a neural network which is linear in nature capable of doing binary classifications.	Remember	CO 2	CLO 05	ACS014.05
3	Define Perceptron	Perceptron is a machine learning algorithm that helps provide classified outcomes for computing.	Remember	CO 2	CLO 05	ACS014.05
4	What is feed forward neura l network?	The feed forward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes	Remember	CO 2	CLO 06	ACS014.05

5	What is Deep Learning: Feed forward Neural Nets?	Deep Learning: Feed forward Neural Nets and Convolutional. Neural Nets Composed of several Perceptron-like units arranged in multiple layers. Consists of an input, Back propagation.	Remember	CO 2	CLO 06	ACS014.06
6	What is the main job of Perceptron?	The Perceptron classifies inputs by finding the dot product of an input feature vector and weight vector and passing that number into a step function, which will return 1 for numbers greater than 0	Remember		CLO 07	ACS014.06
7	What is binary classifier?	It is a type of supervised learning, a method of machine learning where the categories are predefined, and is used to categorize new probabilistic observations into said categories.	Remember		CLO 07	ACS014.06
8	What is statistical Binary classification ?	When there are only two categories the problem is known as statistical binary classification.	Remember	CO 2	CLO 07	ACS014.07
9	What SVM ?	Support Vector Machine" (SVM) is a supervised machine learning algorithm which can be used for both classification or regression challenges	Remember	CO 2	CLO 07	ACS014.08
10	What is optimum separation hy per plane?	The optimum separation hyper plane (OSH) is the linear classifier with the maximum margin for a given finite set of learning patterns	Remember	CO 2	CLO 07	ACS014.08
11	What is kernel in machine learning?	In machine learning, kernel methods are a class of algorithms for pattern analysis, whose best known member is the support vector machine (SVM).	Remember	CO 2	CLO 07	ACS014.08
12	What is kernel?	Kernel is a way of computing the dot product of two vectors x and y in some (possibly very high dimensional) feature space.	Remember	CO 2	CLO 08	ACS014.08
13	Define kernel	A kernel is a shortcut that helps us do certain calculation faster which otherwise would involve computations in higher	Remember	CO 2	CLO 08	ACS014.08
14	What is kernel trick?	The Kernel Trick is a technique in machine learning to avoid some intensive computation in some algorithms.	Remember	CO 2	CLO 08	ACS014.08
		UNIT-III			T	
1	What is Variance? What is	Variance refers to the spread of a data set around its mean value. Covariance refers to the measure of the	Remember Remember		CLO09 CLO 09	ACS014.09 ACS014.09
2	Covariance?	directional relationship between two random variables.				
3	What is the Variance and covariance ?	Variance and covariance are mathematical terms frequently used in statistics and probability theory.	Remember		CLO 09	ACS014.09
4	What is Gaussian?	A machine-learning algorithm that involves a Gaussian process uses lazy learning and a measure of the similarity between points (the kernel function) to predict the value for an unseen point from training data	Remember		CLO 10	ACS014.09
5	What is Gaussian processes?	Gaussian processes are a powerful algorithm for both regression and classification.	Remember	CO 3	CLO 10	ACS014.10

6	What Gaussian distribution ?	Gaussian distribution model, often identified with its iconic bell shaped curve, also referred as Normal distribution.	Remember	CO 3	CLO 10	ACS014.10
7	What is a Gaussian model?	In probability theory and statistics, a Gaussian process is a stochastic process such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed.	Remember	CO 3	CLO 10	ACS014.10
8	What Gaussian signal?	In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the form: for arbitrary real constants a, b and non zero c	Remember	CO 3	CLO10	ACS014.10
9	What is the purpose of Bayes theorem in machine learning?	Essentially, the theorem allows a hypothesis to be updated each time new evidence is introduced	Remember	CO 3	CLO 11	ACS014.10
10	What is the benefit of naïve Bayes?	The Naive Bayes algorithm affords fast, highly scalable model building and scoring. It scales linearly with the number of predictors and rows.	Remember	CO 3	CLO 11	ACS014.11
11	How does Bayes classifier work	Naive Bayes is a kind of classifier which uses the Bayes Theorem. It predicts membership probabilities for each class such as the probability that given record or data point belongs to a particular class	Remember	CO 3	CLO 12	ACS014.12
12	What is the difference between hypervisor and virtual machine?	It is a classification technique based on Bayes' Theorem with an assumption of independence among predictors. In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.	Remember	CO 3	CLO12	ACS014.12
		UNIT-IV				
1	What is genetic algorithm?	A genetic algorithm is a search heuristic that is inspired by Charles Darwin's theory of natural evolution. This algorithm reflects the process of natural selection where the fittest individuals are selected for reproduction in order to produce offspring of the next generation	Remember	CO 4	CLO13	ACS014.13
2	What is genetic algorithm in neural network?	Genetic Algorithms (GAs) are search- based algorithms based on the concepts of natural selection and genetics. Gases are a subset of a much larger branch of computation known as Evolutionary Computation.	Remember	CO 4	CLO 13	ACS014.13
3	Why does genetic algorithm work?	A genetic algorithm solves optimization problems by creating a population or group of possible solutions to the problem. The genetic algorithm similarly occasionally causes mutations in its populations by randomly changing the value of a variable	Remember	CO 4	CLO 13	ACS014.14
4	What is genetic algorithm in optimization?	A genetic algorithm (GA) is a method for solving both constrained and unconstrained optimization problems based on a natural selection process that mimics biological evolution.	Remember	CO 4	CLO 13	ACS014.14

	1171		D 1	CO 1	CI O 12	A CC014 14
5	Why mutation is	Mutation (genetic algorithm) Mutation is	Remember	CO 4	CLO 13	ACS014.14
	important in	a genetic operator used to maintain genetic diversity from one generation of a				
	genetic	population of genetic algorithm				
	algorithm?	chromosomes to the next.				
6	What is	The fitness function simply defined is a	Remember	CO 4	CLO14	ACS014.15
	fitness in	function which takes a candidate solution	Remember	00 1	CLOTT	710507 1.15
	genetic	to the problem as input and produces as				
	algorithm?	output how "fit" our how "good" the				
		solution is with respect to the problem in				
		consideration.				
7	What is	A genetic algorithm is an algorithm that	Remember	CO 4	CLO 14	ACS014.15
	simple	imitates the process of natural selection.				
	genetic	They help solve optimization and search				
	algorithm?	problems. Genetic algorithms imitate				
		natural biological processes, such as				
		inheritance, mutation, selection and				
8	Define	crossover.	Remember	CO 4	CI O 15	A CC014 15
8	Elitism	Elitism refers to a method for improving the GA performance; the basic idea is to	Remember	CO 4	CLO 15	ACS014.15
	Liitisiii	transfer the best individuals of the current				
		generation to the next generation.				
9	What is	Convergence is a phenomenon	Remember	CO 4	CLO 13	ACS014.16
	convergence	in evolutionary computation. It causes				
	in genetic	evolution to halt because precisely every				
	algorithm?	individual in the population is identical.				
		Full convergence might be seen in genetic				
		algorithms using only crossover				
10	What is	In this search space, lies a point or a set of	Remember	CO 4	CLO 15	ACS014.16
	search space	points which gives the optimal solution.				
	in genetic	The aim of optimization is to find that				
11	algorithm?	point or set of points in the search space.	D 1	CO 4	OI O 16	A CC014 16
11	What is crossover and	The change of parts of one solution randomly, which increases the diversity of	Remember	CO 4	CLO 16	ACS014.16
	mutation in	the population and provides a mechanism				
	genetic	for escaping from a local optimum.				
	algorithm?	Tor escaping from a rocar optimum.				
12	What is	Genetic algorithms (GAs) are iterative	Remember	CO 4	CLO 16	ACS014.16
	hybrid	optimization procedures that repeatedly				
	genetic	apply GA operators (such as selection,				
	algorithm?	crossover, and mutation) to a group of				
		solutions until some criterion of				
		convergence has been satisfied				
	D (UNIT-V		GC -	GY 6 15	1.0001115
1	Define	Cluster analysis or clustering is the task of	Remember	CO 5	CLO 17	ACS014.17
	clustering	grouping a set of objects in such a way that				
		objects in the same group (called a cluster)				
		are more similar (in some sense) to each other than to those in other groups				
		(clusters).				
2	What are	Clustering is the task of	Remember	CO 5	CLO 17	ACS014.17
	clustering	dividing the population or data points into				-100011111
	and its use?	a number of groups such that data points				
		in the same groups are more similar to				
		other data points in the same group than				
		those in other groups				
3	What is good	The quality of a clustering method is also	Remember	CO 5	CLO 17	ACS014.17
	clustering?	measured by its ability to discover some or				
		all of the hidden patterns	_	~ -		
4	Why is	Clustering" is the process of grouping	Remember	CO 5	CLO 18	ACS014.17
	clustering	similar entities together. The goal of this				
	unsupervised	unsupervised machine learning technique is				

			ı	ı	1	
		to find similarities in the data point and group similar data points together. Grouping similar entities together help profile the attributes of different groups.				
5	What are clustering techniques?	Clustering methods are used to identify groups of similar objects in a multivariate data sets collected from fields such as marketing, bio-medical and geo-spatial	Remember	CO 5	CLO 18	ACS014.17
6	What is clustering in data analysis?	A cluster of data objects can be treated as one group. While doing cluster analysis, we first partition the set of data into groups based on data similarity and then assign the labels to the groups.	Remember	CO 5	CLO18	ACS014.17
7	Why K means clustering is used?	K-means clustering is a type of unsupervised learning, which is used when you have unlabeled data (i.e., data without defined categories or groups). The goal of this algorithm is to find groups in the data, with the number of groups represented by the variable K	Remember	CO 5	CLO 19	ACS014.17
8	What is difference between clustering and classification ?	The prior difference between classification and clustering is that classification is used in supervised learning technique where predefined labels are assigned to instances by properties, on the contrary, clustering is used in unsupervised learning where similar instances are grouped, based on their features	Remember	CO 5	CLO 19	ACS014.17
9	What is the purpose of cluster analysis?	Cluster Analysis has been used in marketing for various purposes. Segmentation of consumers in cluster analysis is used on the basis of benefits sought from the purchase of the product. It can be used to identify homogeneous groups of buyers	Remember	CO 5	CLO 19	ACS014.18
10	What is clustering in ML?	Clustering is the task of dividing the population or data points into a number of groups such that data points in the same groups are more similar to other data points in the same group and dissimilar to the data points in other groups	Remember	CO 5	CLO 19	ACS014.19
11	How does cluster analysis work?	Cluster analysis is also called segmentation analysis or taxonomy analysis. More specifically, it tries to identify homogenous groups of cases if the grouping is not previously known.	Remember	CO 5	CLO 20	ACS014.20
12	Why do we use clustering?	Clustering is the task of dividing the population or data points into a number of groups such that data points in the same groups are more similar to other data points in the same group than those in other groups.	Remember	CO 5	CLO20	ACS014.20
						· · · · · · · · · · · · · · · · · · ·

13	What is	Clustering is a process of partitioning a set	Remember	CO 5	CLO 20	ACS014.20
	clustering in	of data (or objects) into a set of meaningful				
	data	sub-classes, called clusters. Help users				
	structure?	understand the natural grouping				
		or structure in a data set. Used either as a				
		stand-alone tool to get insight into data				
		distribution or as a preprocessing step for				
		other algorithms issues.				

