

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

DEFINITIONS AND TERMINOLOGY

Course Name	:	MACHINE LEARNING
Course Code	:	ACS014
Program	:	B. Tech
Semester	:	VIII
Branch	:	Information Technology
Section	:	A, B
Academic Year	:	2019 - 2020
Course Faculty	:	Mrs. G Sulakshana, Assistant professor, CSE Mr. A Praveen, Assistant Professor, IT
		Mrs. B Anupama, Assistant professor, CSE

OBJECTIVES:

Ι	Apply knowledge of computing and mathematics appropriate to the discipline.
Π	Illustrate the concepts of machine learning and related algorithms.
III	Understand the dimensionality problems using linear discriminants.
IV	Study various statistical models for analyzing the data.
V	Learn clustering algorithms for unlabeled data.

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.NO	QUESTION	ANSWER	Blooms Taxonomy Level	со	CLO	CLO Code
		UNIT-I		•	•	
1	Define cloud Machine learning	Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.	Remember	CO 1	CLO 01	ACS014.01
2	Define machine	The advanced mathematics and complex programming at the heart of AI systems is challenging.	Remember	CO 1	CLO 01	ACS014.01
3	Define learning algor ithm	A learning algorithm is an algorithm used in machine learning to help the technology to imitate the human.	Remember	CO 1	CLO 01	ACS014.01
4	What is version space?	A version space is a hierarchical representation of knowledge that enables you to keep track of all the useful information supplied by a sequence of learning	Remember	CO 1	CLO 02	ACS014.01
5	What is Version space learning?	Version space learning is a logical approach to machine learning, specifically binary classification. Version space learning algorithms search a predefined space of hypotheses, viewed as	Remember	CO 1	CLO02	ACS014.02

6	What is Elimination Algorithm?	Elimination Algorithm will converge toward the hypothesis that correctly describes the target concept provided	Remember	CO 1	CLO02	ACS014.02
	What is	The candidate elimination	Remember	CO 1	CLO 02	ACS014.02
7	candidate elimination algorithm?	algorithm incrementally builds the version space given a hypothesis space H and a set E of examples.				
8	Define candidate- Elimination algorithm	The candidate-Elimination algorithm computes the version space containing all (and only those) hypotheses from H that are consistent with an observed sequence of training examples.	Remember	CO 1	CLO 02	ACS014.02
9	Define decision tree	Where the data is continuously split according to a certain parameter. The tree can be explained by two entities, namely decision nodes and leaves	Remember	CO 1	CLO 02	ACS014.02
10	What is tree in machine learning?	A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification	Remember	CO 1	CLO 02	ACS014.02
11	What is Decision Trees?	Decision Trees are a type of Supervised Machine Learning where the data is continuously split according to a certain parameter.	Remember	CO 1	CLO03	ACS014.04
12	What is classification ?	classification is a supervised learning approach in which the computer program learns from the data input given to it and then uses this learning to classify new observation	Remember	CO 1	CLO04	ACS014.04
13	Define Classification	Classification is a supervised learning approach in which the computer program learns from the data input given to it and then uses this learning to classify new observation	Remember	CO 1	CLO04	ACS014.04
14	What is machine learning classifier?	Classification is the process of predicting the class of given data points. Classes are sometimes called as targets/ labels or categories	Remember	CO 1	CLO04	ACS014.04
		UNIT-II				
1	What is Perceptron?	A Perceptron is a simple model of a biological neuron in an artificial neural network. Perceptron is also the name of an early algorithm for supervised learning of binary classifiers.	Remember	CO 2	CLO 05	ACS014.05
2	What is Perceptron in machine learning?	Perceptron is the fundamental unit of a neural network which is linear in nature capable of doing binary classifications.	Remember	CO 2	CLO 05	ACS014.05
3	Define Perceptron	Perceptron is a machine learning algorithm that helps provide classified outcomes for computing.	Remember	CO 2	CLO 05	ACS014.05
4	What is feed forward neura l network?	The feed forward neural network was the first and simplest type of artificial neural network devised. In this network, the information moves in only one direction, forward, from the input nodes, through the hidden nodes (if any) and to the output nodes	Remember	CO 2	CLO 06	ACS014.05

5	What is Deep Learning:	Deep Learning: Feed forward Neural Nets and Convolutional. Neural Nets Composed	Remember	CO 2	CLO 06	ACS014.06
	Feed forward Neural Nets?	of several Perceptron-like units arranged in multiple layers. Consists of an input, Back				
6	What is the	propagation.	Domomhor	CO 2		ACS014.06
0	main job of	the dot product of an input feature vector	Remember	CO 2		AC5014.00
	Perceptron?	and weight vector and passing that number				
		into a step function, which will return 1 for				
		numbers greater than 0				
7	What is	It is a type of supervised learning, a	Remember	CO 2	CLO 07	ACS014.06
	binary	method of machine learning where the				
	classifier?	categories are predefined, and is used to				
		into said categories				
8	What is	When there are only two categories the	Remember	CO 2	CLO 07	ACS014.07
0	statistical	problem is known as statistical binary	Remember	002	CLO 07	110014.07
	Binary	classification.				
	classification					
	?					
9	What SVM ?	Support Vector Machine" (SVM) is a	Remember	CO 2	CLO 07	ACS014.08
		supervised machine learning algorithm				
		regression challenges				
10	What is	The optimum separation hyper plane	Remember	CO 2	CLO 07	ACS014.08
	optimum	(OSH) is the linear classifier with the				
	separation hy	maximum margin for a given finite set				
	per plane?	of learning patterns				
11	What is	In machine learning, kernel methods are a	Remember	CO 2	CLO 07	ACS014.08
	kernel in	class of algorithms for pattern analysis,				
	learning?	vector machine (SVM)				
12	What is	Kernel is a way of computing the dot	Remember	CO 2	CLO 08	ACS014.08
	kernel?	product of two vectors x and y in some		001	020 00	110201.000
		(possibly very high dimensional) feature				
		space.				
13	Define kernel	A kernel is a shortcut that helps us do	Remember	CO 2	CLO 08	ACS014.08
		certain calculation faster which otherwise				
		would involve computations in higher				
14	What is	The Kernel Trick is a technique in machine	Remember	CO 2	CLO 08	ACS014.08
	kernel trick?	learning to avoid some intensive				
		computation in some algorithms.				
		UNIT-III	T .			
1	What is	Variance refers to the spread of a data set	Remember	CO 3	CLO09	ACS014.09
2	What is	around its mean value.	Domomhor	CO 3		AC\$014.00
2	Covariance?	directional relationship between two	Kennennber	05	CLO 09	AC3014.09
	Covariance.	random variables.				
3	What is the	Variance and covariance are mathematical	Remember	CO 3	CLO 09	ACS014.09
	Variance and	terms frequently used in statistics and				
	covariance ?	probability theory.				
4	What is	A machine-learning algorithm that involves	Remember	CO 3	CLO 10	ACS014.09
	Gaussian?	a Gaussian process uses lazy learning and a				
		(the learned function) to predict the value				
		for an unseen point from training data				
5	What is	Gaussian processes are a powerful	Remember	CO 3	CLO 10	ACS014.10
_	Gaussian	algorithm for both regression and				
	processes?	classification.				

6	What Gaussian distribution ?	Gaussian distribution model, often identified with its iconic bell shaped curve, also referred as Normal distribution.	Remember	CO 3	CLO 10	ACS014.10
7	What is a Gaussian model?	In probability theory and statistics, a Gaussian process is a stochastic process such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed.	Remember	CO 3	CLO 10	ACS014.10
8	What Gaussian signal?	In mathematics, a Gaussian function, often simply referred to as a Gaussian, is a function of the form: for arbitrary real constants a , b and non zero c	Remember	CO 3	CLO10	ACS014.10
9	What is the purpose of Bayes theorem in machine learning?	Essentially, the theorem allows a hypothesis to be updated each time new evidence is introduced	Remember	CO 3	CLO 11	ACS014.10
10	What is the benefit of naïve Bayes?	The Naive Bayes algorithm affords fast, highly scalable model building and scoring. It scales linearly with the number of predictors and rows.	Remember	CO 3	CLO 11	ACS014.11
11	How does Bayes classifier work	Naive Bayes is a kind of classifier which uses the Bayes Theorem. It predicts membership probabilities for each class such as the probability that given record or data point belongs to a particular class	Remember	CO 3	CLO 12	ACS014.12
12	What is the difference between hypervisor and virtual machine?	It is a classification technique based on Bayes' Theorem with an assumption of independence among predictors. In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature.	Remember	CO 3	CLO12	ACS014.12
		UNIT-IV				
1	What is genetic algorithm ?	A genetic algorithm is a search heuristic that is inspired by Charles Darwin's theory of natural evolution. This algorithm reflects the process of natural selection where the fittest individuals are selected for reproduction in order to produce offspring of the next generation	Remember	CO 4	CLO13	ACS014.13
2	What is genetic algorithm in neural network?	Genetic Algorithms (GAs) are search- based algorithms based on the concepts of natural selection and genetics. Gases are a subset of a much larger branch of computation known as Evolutionary Computation.	Remember	CO 4	CLO 13	ACS014.13
3	Why does genetic algorithm work?	A genetic algorithm solves optimization problems by creating a population or group of possible solutions to the problem. The genetic algorithm similarly occasionally causes mutations in its populations by randomly changing the value of a variable	Remember	CO 4	CLO 13	ACS014.14
4	What is genetic algorithm in optimization ?	A genetic algorithm (GA) is a method for solving both constrained and unconstrained optimization problems based on a natural selection process that mimics biological evolution.	Remember	CO 4	CLO 13	ACS014.14

5	Why mutation is important in genetic	Mutation (genetic algorithm) Mutation is a genetic operator used to maintain genetic diversity from one generation of a population of genetic algorithm	Remember	CO 4	CLO 13	ACS014.14
6	What is fitness in genetic algorithm?	Chromosomes to the next. The fitness function simply defined is a function which takes a candidate solution to the problem as input and produces as output how "fit" our how "good" the solution is with respect to the problem in consideration.	Remember	CO 4	CLO14	ACS014.15
7	What is simple genetic algorithm?	A genetic algorithm is an algorithm that imitates the process of natural selection. They help solve optimization and search problems. Genetic algorithms imitate natural biological processes, such as inheritance, mutation, selection and crossover.	Remember	CO 4	CLO 14	ACS014.15
8	Define Elitism	Elitism refers to a method for improving the GA performance; the basic idea is to transfer the best individuals of the current generation to the next generation.	Remember	CO 4	CLO 15	ACS014.15
9	What is convergence in genetic algorithm?	Convergence is a phenomenon in evolutionary computation. It causes evolution to halt because precisely every individual in the population is identical. Full convergence might be seen in genetic algorithms using only crossover	Remember	CO 4	CLO 13	ACS014.16
10	What is search space in genetic algorithm?	In this search space, lies a point or a set of points which gives the optimal solution. The aim of optimization is to find that point or set of points in the search space.	Remember	CO 4	CLO 15	ACS014.16
11	What is crossover and mutation in genetic algorithm?	The change of parts of one solution randomly, which increases the diversity of the population and provides a mechanism for escaping from a local optimum.	Remember	CO 4	CLO 16	ACS014.16
12	What is hybrid genetic algorithm?	Genetic algorithms (GAs) are iterative optimization procedures that repeatedly apply GA operators (such as selection, crossover, and mutation) to a group of solutions until some criterion of convergence has been satisfied	Remember	CO 4	CLO 16	ACS014.16
		UNIT-V			•	
1	Define clustering	Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters).	Remember	CO 5	CLO 17	ACS014.17
2	What are clustering and its use?	Clustering is the task of dividing the population or data points into a number of groups such that data points in the same groups are more similar to other data points in the same group than those in other groups	Remember	CO 5	CLO 17	ACS014.17
3	What is good clustering?	The quality of a clustering method is also measured by its ability to discover some or all of the hidden patterns	Remember	CO 5	CLO 17	ACS014.17
4	Why is clustering unsupervised	Clustering" is the process of grouping similar entities together. The goal of this unsupervised machine learning technique is	Remember	CO 5	CLO 18	ACS014.17

r	1				r	
		to find similarities in the data point and group similar data points together. Grouping similar entities together help				
		profile the attributes of different groups.				
5	What are clustering techniques?	Clustering methods are used to identify groups of similar objects in a multivariate data sets collected from fields such as marketing, bio-medical and geo-spatial	Remember	CO 5	CLO 18	ACS014.17
6	What is clustering in data analysis?	A cluster of data objects can be treated as one group. While doing cluster analysis, we first partition the set of data into groups based on data similarity and then assign the labels to the groups.	Remember	CO 5	CLO18	ACS014.17
7	Why K means clustering is used?	K-means clustering is a type of unsupervised learning, which is used when you have unlabeled data (i.e., data without defined categories or groups). The goal of this algorithm is to find groups in the data, with the number of groups represented by the variable K	Remember	CO 5	CLO 19	ACS014.17
8	What is difference between clustering and classification ?	The prior difference between classification and clustering is that classification is used in supervised learning technique where predefined labels are assigned to instances by properties, on the contrary, clustering is used in unsupervised learning where similar instances are grouped, based on their features	Remember	CO 5	CLO 19	ACS014.17
9	What is the purpose of cluster analysis?	Cluster Analysis has been used in marketing for various purposes. Segmentation of consumers in cluster analysis is used on the basis of benefits sought from the purchase of the product. It can be used to identify homogeneous groups of buyers	Remember	CO 5	CLO 19	ACS014.18
10	What is clustering in ML?	Clustering is the task of dividing the population or data points into a number of groups such that data points in the same groups are more similar to other data points in the same group and dissimilar to the data points in other groups	Remember	CO 5	CLO 19	ACS014.19
11	How does cluster analysis work?	Cluster analysis is also called segmentation analysis or taxonomy analysis. More specifically, it tries to identify homogenous groups of cases if the grouping is not previously known.	Remember	CO 5	CLO 20	ACS014.20
12	Why do we use clustering?	Clustering is the task of dividing the population or data points into a number of groups such that data points in the same groups are more similar to other data points in the same group than those in other groups.	Remember	CO 5	CLO20	ACS014.20

13	What is	Clustering is a process of partitioning a set	Remember	CO 5	CLO 20	ACS014.20
	clustering in	of data (or objects) into a set of meaningful				
	data	sub-classes, called clusters. Help users				
	structure?	understand the natural grouping				
		or structure in a data set. Used either as a				
		stand-alone tool to get insight into data				
		distribution or as a preprocessing step for				
		other algorithms issues.				

