INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)

Code No: BST301

MODEL QUESTION PAPER - I

M.Tech I Semester Regular Examinations, February 2017

MATERIAL SCIENCE

Structural Engineering

Time: 3 hours

Max. Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks

All parts of the question must be answered in one place only

UNIT - I

1	(a)	Explain mechanical properties with the help of bonding force and bonding	
		energy curves.	(4M)
	(b)	How do you find the number of vacancies in a crystal with the help of	
		arrehinius relationshipin a step by step process.	
			(10M)
2	(a)	Give the relationship of elastic deformation to the stretching of atomic	
		bonds.	(5M)
	(b)	Give a short note on the six categories of engineering materials.	(9M)

UNIT – II

(a)	Explain the high stress and low stress alternatives for plastic deformation of	
	a crystal explain each alternative in detail.	(8M)
(b)	Find out the modulus of elasticity of a steel rod with the help of a stress	
	strain curve.	(6M)
(a)	Write a short note on the big 4 properties which could be analyzed with the	
	help of a graph produced from tensile test.	(10M)
(b)	Write a detail note on toughness .	(4M)
	(a) (b) (a) (b)	 (a) Explain the high stress and low stress alternatives for plastic deformation of a crystal explain each alternative in detail. (b) Find out the modulus of elasticity of a steel rod with the help of a stress strain curve. (a) Write a short note on the big 4 properties which could be analyzed with the help of a graph produced from tensile test. (b) Write a detail note on toughness .

UNIT - III

5	(a)	Write in detail on the theoy of activation energy.	(7M)
	(b)	What are the applications of fcc and hcp alloys.	(7M)
6	(a)	How arrihenus relationship contribution to creep explain it with the help of	
		arrihenius plot.	(8M)
	(b)	What is a charpy tester why it is used andho its used for testing of a	
		engineering material.	(6M)

UNIT - IV

7	(a)	Explain Griffith crack in detail with the help of a design plot and give a detail	
		idea on the relationships in design plot.	(10M)
	(b)	Define fatigue in detail.	(4M)
8	(a)	What is the difference b/w a good fracture and bad fracture in fractured	
		toughness with their practical application.	(6M)
	(b)	write a short note on fatigue test and draw a typical fatigue curve and	
		explain its relationship with strength.	(8M)

UNIT - V

9	(a)	Explain the tin-bismuth experiment with the help of a phase diagram.	(5M)
	(b)	Draw A TTT relation diagram for a eutectoid steel.	(9M)
10	(a)	Write a detail note on diffusional and diffusionless transformation.	(8M)
	(b)	Write a very detail note on intrinsic semi-conductur.	(6M)

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)

Code No: BST301

MODEL QUESTION PAPER - II

M.Tech I Semester Regular Examinations, February 2017

MATERIAL SCIENCE

Structural Engineering

Time: 3 hours

6

Max. Marks: 70

Answer ONE Question from each Unit

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

UNIT - I

1	(a)	How	the	defects	in	interstitial	spaces	be	used	to	advantage	in	the
		manu	ıfactu	iring of st	eel	explain in d	etail.						

(8M)

(b) How point defects facilitate solid state diffusion and also state the fick's law.

(6M)

(6M)

(OR)

- 2 (a) Explain arrihenious relationship and the equation with the help of a graph. (7M)
 - (b) Define what do you mean by "structure leads to properties" explain in detail. (7M)

UNIT – II

3	(a)	Explain the implementation of a high stress process for the creation of a plastic deformation of a perfect crystal?	(10M)
	(b)	Explain the stress strain curve with the help of a tensile test. (OR)	(4M)
4	(a) (b)	 Write a short note on edge dislocation of crystal Have a brief note on with the help of graph i) Toughness [4m] ii) Ductility [4m] Determine the expression for the vertical deflection curve. 	(6M)
_	()	UNIT - III	
5	(a) (b)	explain what do you understand by the term creep curve. Why have liberty ships failed catastrophically what is the mechanism which	(4M)

was neglected and explain it in detail. (10M)

OR

- (a) Explain dislocation climb in detail.
 - (b) Explain the phenomenon of variation in ductile-brittle transition temperature with alloy composition. (8M)

UNIT - IV

7	(a)	Explain the stress vs flaw size relationship in a structural material with the	
		help of a design plot.	(7M)
	(b)	Compare the tensile strength curve with fatigue strength curve and list out	
		the major differences with reasons for it.	(7M)

		U N	
8	(a)	Explain the mechanism by which crack growth can occur and lead to catastrophic failure.	(7M)
	(b)	What is a critical flaw explain it in detail.	(7M)
		UNIT - V	
9	(a)	What is an eutectic and eutectoid reaction and the eutectic point explain it in	
		detail and their application in steel industry.	(8M)
	(b)	Write a detail note on extrinsic semi-conductor.	(6M)
		OR	
10	(a)	Explain the lead tin phase diagram	(6M)
	(b)	Write a detail note on the combined intrinsic and extrinsic semi- conductorial	
		behaviour	(8M)

OR