

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	PROBABILITY AND STATISTICS
Course Code	:	AHSB12
Program	:	B.Tech
Semester	:	III
Branch	:	Mechanical Engineering
Section	:	A & B
Academic Year	:	2019 - 2020
Course Faculty	:	Dr. S. Jagadha

COURSE OBJECTIVES:

The	The course should enable the students to:						
Ι	Enrich the knowledge of probability on single random variables and probability distributions.						
Π	Apply the concept of correlation and regression to find covariance.						
III	Determine mean and variance of given data by sampling distribution.						
IV	Analyze the given data for appropriate test of hypothesis.						

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code		
	MODULE-I							
1	Explain probability distribution.	If X is a random variable then P(X=x) is called probability distribution or probability function	Understand	CO 1	CLO 3	AHSB12.03		
2	Define predictable experiment?	if the result is unique	Remember	CO 1	CLO 1	AHSB12.01		
3	What is Non Predictable experiment?	if the result not unique	Remember	CO 1	CLO 1	AHSB12.01		
4	What is outcome?	Result of the experiment	Remember	CO 1	CLO 1	AHSB12.01		
5	What is sample space?	The collection of all possible outcomes in any random experiment	Remember	CO 1	CLO 1	AHSB12.01		
6	What is continuous random variable?	A random variable is said to be continuous if the range of the random variable is interval of two real numbers	Remember	CO 1	CLO 3	AHSB12.03		
7	What is exhaustive event?	The total number of events in any random experiment	Remember	CO 1	CLO 1	AHSB12.01		

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
8	What is mutually	It two or more events cannot	Remember	CO 1	CLO 1	AHSB12.01
	exclusive event?	obtain simultaneously in the				
	****	same random experiment		a c <i>i</i>	ar a f	
9	What is equally	Two events are said to be	Remember	CO 1	CLO 1	AHSB12.01
	likely event?	equally likely events if they have equal chance of				
		happening.				
10	Define	If one event is effected by the	Remember	CO 1	CLO 1	AHSB12.01
	independent	another event the n the two				
	event.	events are called independent				
	TT 74	events		<u> </u>	CT O O	4.116.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
11	What is discrete random variable?	A random variable is said to be	Remember	CO 1	CLO 3	AHSB12.03
	random variable?	discrete if the range of the random variable is finite		-		
12	What is favorable	The events which are favorable	Remember	CO 1	CLO 1	AHSB12.01
	event?	to one particular event in any		001		
		random experiment				
13	Define	Consider any random	Understand	CO 1	CLO 1	AHSB12.01
	Probability.	experiment the total number of				
		events are n out of them m events are favorable to a				
		particular event E then				
		P(E)=Favorable events/ total				
		number of events				
14	What is	Two events are said to be	Remember	CO 1	CLO 2	AHSB12.02
	conditional	conditional events if they				
	event?	happen simultaneously. If A and B are any two events happening				
		simultaneously then A/B, B/A				
		are called conditional events.				
15	Define random	In any random experiment the	Remember	CO 1	CLO 3	AHSB12.03
	variable.	sample space associated with a	-			
	100	real number				-
		MODULE-	п			
1	What is the	The variance of the binomial	Remember	CO 2	CLO 5	AHSB12.05
	variance of the	distribution is <i>npq</i>		r .		
	binomial				100	
2	distribution Define binomial	Consider a random experiment	Remember	CO 2	CLO 5	AHSB12.05
~	distribution	having n trials. Let it succeed x	Remember	002		7115012.05
		times then the probability of	1.0	1		
		getting x success is p ^x , and the		2		
		probability of n-x failures are q ⁿ⁻	1			
		Therefore the probability of				
		getting x success out of n trials				
		are				
		b(x,n,p) = P(X=X) =				
		$n_{c_x} p^x q^{n-x}$, x=0,1,2n				
3	Define Poisson	A random variable X is said to	Understand	CO 2	CLO 7	AHSB12.07
	distribution	follow a Poisson distribution if it assumes only non-negative				
		values and its probability mass				
		function is given by				
		$f(x,\lambda) = P(X=x) = \frac{e^{-\lambda} \lambda^x}{x!}, x$	=0,1∞			
		X:				
1		I	1		1	

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
4	Define Normal	If X is a continuous random	Understand	CO 2	CLO 9	AHSB12.09
	distribution	variable μ, σ^2 are any two				
		parameters then the normal				
		distribution is denoted by $1(r_{\rm ex})^2$				
		$N(\mu, \sigma^{2}) = P(X_{1} \le X \le X_{2}) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^{2}}$				
5	What is Normal	Normal curve is bell shape. It is	Understand	CO 2	CLO 9	AHSB12.09
	curve	symmetric about $x = \mu$ and $z = 0$.				
		0. The total area in a normal distribution is unity.				
6	What is Bernuolli	It is a random experiment	Remember	CO 2	CLO 5	AHSB12.05
	trial	having only two possible outcomes. Which are denoted by				
		success and failure				
7	What is the	The mean of the binomial	Remember	CO 2	CLO 5	AHSB12.05
	mean of the binomial	distribution is <i>np</i>				
	distribution					
8	What is the	The variance of the Poisson	Remember	CO 2	CLO 7	AHSB12.07
	variance of the Poisson	distribution is λ				
	distribution					
9	What is the	The mode of the binomial	Remember	CO 2	CLO 5	AHSB12.05
	mode of the binomial	distribution is $(n+1)p$	_			
	distribution					
10	What is the mean of the	The mean of the Poisson	Remember	CO 2	CLO 7	AHSB12.07
	Poisson	distribution is λ				
	distribution					
11	What is the median of the	The median of the normal distribution is μ	Remember	CO 2	CLO 9	AHSB12.09
	normal				C)
10	distribution		D 1	00.0	01.0.7	AUGD 12 07
12	What is the mode of the	The mode of the Poisson distribution is λ	Remember	CO 2	CLO 7	AHSB12.07
	Poisson				100	
12	distribution What is the	The mean of the normal	Remember	CO 2	CLO 9	AHSB12.09
13	mean of the	The mean of the normal distribution is μ	Kenteniber	002	CLU 9	AUSD12.09
	normal	0.		5		
14	distribution What is the	The variance of the normal	Remember	CO 2	CLO 9	AHSB12.09
	variance of the	distribution is σ^2		202		
	normal					
15	distribution What is the	The mode of the normal	Remember	CO 2	CLO 9	AHSB12.09
	mode of the	distribution is μ			-	
	normal distribution					
		MODULE-1	11		I	
1	What is Karle	It is a method to find strength	Understand	CO 3	CLO 13	AHSB12.013
	Pearson's	relationship between two				
	Coefficient of correlation?	variables. It is denoted by r				
	contenduon:				1	

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
2	Define simple	The relationship between only	Remember	CO 3	CLO 13	AHSB12.013
	correlation?	two variables is known as simple correlation				
3	Define multiple regression coefficient.	Instead of one independent variable, two or more independent variables are used	Remember	CO 3	CLO 11	AHSB12.011
	coefficient.	to estimated the values of dependent variable				
4	Define Correlation?	The relation between the variables is known as correlation	Remember	CO 3	CLO 13	AHSB12.013
5	What is multiple correlations.	The relationship between more than two variables is known as multiple correlation	Remember	CO 3	CLO 11	AHSB12.011
6	What is Rank correlation?	It is also used to find strength of relation between two variables by ranks. It is denoted by ρ .	Understand	CO 3	CLO 13	AHSB12.013
7	State regression line of Y on X?	Regression line of Y on X is Y=a+bX	Remember	CO 3	CLO 15	AHSB12.015
8	Explain Repeated Ranks of Rank correlation.	If there are more items with same value then common ranks are given to repeated items this common rank is average of ranks which items would have assumed.	Understand	CO 3	CLO 13	AHSB12.013
9	What is regression line?	Regression line is a straight line which gives the relation between two variables.	Remember	CO 3	CLO 15	AHSB12.015
10	What are the properties for correlation?	The correlation coefficient is lies between -1 and 1	Remember	CO 3	CLO 13	
11	What are the properties for rank correlation?	The rank correlation coefficient is lies between -1 and 1	Remember	CO 3	CLO 13	AHSB12.013
12	What is lines of regression of X on Y?	The lines of regression of X on Y is $(x - \bar{x}) = b_{xy}(y - \bar{y})$	Remember	CO 3	CLO 15	AHSB12.015
13	State regression line of X on Y?	Regression line of X on Y is $X=a+bY$	Remember	CO 3	CLO 15	AHSB12.015
14	What is lines of regression of Y on X?	The lines of regression of Y on X is $(y - \overline{y}) = b_{yx}(x - \overline{x})$	Remember	CO 3	CLO 15	AHSB12.015
15	Discuss multiple coefficients of correlation.	Multiple correlation coefficients is non-negative. Its value is lies between 0 and 1.	Remember	CO 3	CLO 11	AHSB12.011
		MODULE-I	IV			
1	Define population?	The collection of objects is known as population	Remember	CO 4	CLO 16	AHSB12.016
2	Explain finite population	If the collection of objects are finite	Remember	CO 4	CLO 16	AHSB12.016
3	Explain finite population	If the collection of objects are infinite	Remember	CO 4	CLO 16	AHSB12.016
4	What is sample?	The subset of the population	Remember	CO 4	CLO 16	AHSB12.016
5	Define small sample.	If the sample size is less than 30 then it is called as small sample	Remember	CO 4	CLO 16	AHSB12.016
6	Explain sampling?	The process of choosing samples from the population	Remember	CO 4	CLO 16	AHSB12.016

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
7	Define large	If the sample size is greater than	Remember	CO 4	CLO 16	AHSB12.016
	Sample?	or equal to 30				
8	Define sampling distribution?	The set all possible samples	Remember	CO 4	CLO 16	AHSB12.016
9	Explain level of significance?	The level of significance is defined as the probability of rejecting a null hypothesis by the test when it is really true, which is denoted by α .	Remember	CO 4	CLO 16	
10	Define hypothesis?	The statement about the parameter	Remember	CO 4	CLO 17	AHSB12.017
11	Define testing of hypothesis?	The decision making procedure to accept or reject a hypothesis	Remember	CO 4	CLO 17	AHSB12.017
12	What is null	It is the hypothesis which is	Remember	CO 4	CLO 17	AHSB12.017
	hypothesis?	tested for possible rejection under the assumption that it is true	U	0		
13	What is alternative hypothesis?	It is the hypothesis differ from the given hypothesis	Remember	CO 4	CLO 17	AHSB12.017
14	Define type-I error?	Reject null hypothesis when it is true	Remember	CO 4	CLO 17	AHSB12.017
15	What is one sided test	If you are using a significance level of .05, a one-tailed test allots all of your alpha to testing the statistical significance in the one direction of interest. This means that .05 is in one tail of the distribution of your test statistic.	Remember	CO 4	CLO 17	AHSB12.017
		MODULE-	v			
1	Define small Sample?	If the sample size is less than 30 then it is called as small sample.	Remember	CO 5	CLO 21	AHSB12.021
2	What is degree of freedom for Student's t- distribution for single mean?	The degree of freedom for Student's t-distribution for single mean is n-1	Remember	CO 5	CLO 21	AHSB12.021
3	Define degrees of freedom?	The number of degrees of freedom is the number of values in the final calculation of a statistic that are free to vary	Remember	CO 5	CLO 21	AHSB12.021
4	Discuss about the conclusion in testing of hypothesis	If Calculated value < Tabulated value then accept null hypothesis. If Calculated value > Tabulated value then accept null hypothesis	Remember	CO 5	CLO 23	AHSB12.023
5	Define student t- distribution for single mean?	Consider a small sample of size n with mean \overline{x} and variance S^2 is taken from the population having mean μ and variance σ^2 .	Understand	CO 5	CLO 21	AHSB12.021
6	Define student t- distribution for difference of	Consider a population with mean μ and variance σ^2 . If we choose two small samples from	Understand	CO 5	CLO 21	AHSB12.021

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	means?	the population of size n_1 and				
		n_2 with the mean \overline{x}_1 and \overline{x}_2 ,				
		variances S_1^2 and S_2^2				
7	Define F- distribution?	To test whether there is any significance difference between two sample variances S_1^2 and	Understand	CO 5	CLO 22	AHSB12.022
		S_2^2				
8	Define Chi- square distribution?	To test whether there is any significance difference between observed and expected frequencies	Understand	CO 5	CLO 23	AHSB12.023
9	What is Chi- square distribution for goodness of fit?	Whether there is significance difference between observed and expected frequencies to use Chi-square test	Understand	CO 5	CLO 23	AHSB12.023
10	What is Chi- square distribution for goodness of fit?	Whether there is significance difference between observed and expected frequencies to use Chi-square test	Understand	CO 5	CLO 23	AHSB12.023
11	What is degree of freedom for Student's t- distribution for difference of means?	The degree of freedom for Student's t-distribution for difference of means is $n_1 + n_2 - 2$	Remember	CO 5	CLO 21	AHSB12.021
12	What is degree of freedom for Student's F- distribution?	The degree of freedom for Student's F-distribution is $(n_1 - 1, n_2 - 1)$	Remember	CO 5	CLO 22	AHSB12.022
13	What is degree of freedom for Chi-square distribution?	The degree of freedom for Chi- square distribution is n-1	Remember	CO 5	CLO 23	AHSB12.023
14	What is the significance for small samples	The study of test of significance is the deviation between the observed sample statistic and the hypothetical parameter value is significant and the deviations between two sample statistics are significant.	Remember	CO 5	CLO 21	AHSB12.021
15	What is degree of freedom for Chi-square distribution of Attributes?	The degree of freedom for Chi- square distribution of Attributes is $(row - 1, column - 1)$	Remember	CO 5	CLO 23	AHSB12.023

Signature of the Faculty

HOD, ME