INSTITUTE OF AERONAUTICAL ENGINEERING (AUTONOMOUS)

Code No: BCC002

> MODEL QUESTION PAPER-II

I M.Tech I Semester Regular Examinations, February 2017
 NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
 (CAD/CAM)

Time: 3 hours
Max. Marks: 70
Answer ONE Question from each unit
All Questions Carry Equal Marks

UNIT-I

1 (a) Summarize the advantages and disadvantages of finite difference and finite element method.
(b) Solve by Crank Nicolson method the partial differential equation
$\frac{\partial u}{\partial t}=x \frac{\partial^{2} u}{\partial^{2} x} ; 0<x<1, t>0$ Subject to the conditions $u=0 ; x=0, t>0$,
$\frac{\partial u}{\partial x}=\frac{-1}{2} u ; x=1, t>0$,
$u=x(1-x) ; t=0 \& 0 \leq x \leq 1$ by taking $\mathrm{h}=0 .$.
2. (a) Distinguish between the explicit finite difference approximations to one dimensional equation to implicit finite difference method.
(b) Solve the parabolic partial differential equation by numerical method

$$
\frac{\partial u}{\partial y}-\frac{\partial^{2} u}{\partial^{2} x}=0 ; 0<x<4,0<t
$$

Subject to the conditions $u(0, y)=10, u(x, 0)=0, u(4, y)=y$ taking $\mathrm{h}=\mathrm{k}=1$.

UNIT-II

3. (a) Explain alternate direction implicit method and also stability analysis by matrix method.
(b) Summarize about Von Newmann fully implicit stability analysis partial differential equation.
4. (a) Explain the meanings of the concepts of consistency, stability, and convergence of numerical methods.
(b) Explain Stability analysis of implicit methods and describe the types of errors.

UNIT-III

5. (a) Solve $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} ; 0 \leq x \leq 1, t \geq 0$ using implicit method given that

$$
u(0, t)=0 ; u(1, t)=0 ; u(x, 0)=\sin \pi x ; \frac{\partial u(x, 0)}{\partial t}=0 \quad h=0.2, k=0.1
$$

(b) Summarize explicit method for solving hyperbolic partial differential equation.
6. (a) Prove there are no explicit, unconditionally stable, consistent finite difference schemes for hyperbolic systems of partial differential equations.
(b) Solve $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}} ; 0 \leq x \leq 1, t \geq 0$ subject to the following conditions $u=x^{2}+x t^{2}$, along the initial line $\mathrm{t}=0$ by using the method of characteristics find the solution between the grid points $x=0.1$ and $x=0.2$

UNIT-IV

7. (a) Solve the elliptic equation at the nodal points of the following square grid using the boundary values indicated

(b) Solve $u_{x x}+u_{y y}=-81 x y, 0<x<1,0<y<1$ given that

$$
u(0, y)=0, u(x, 0)=0, u(1, y)=100, u(x, 1)=0 \text { and } \boldsymbol{h}=\frac{\mathbf{1}}{3} .
$$

8. (a) Solve the Laplace equation $\boldsymbol{u}_{x x}+\boldsymbol{u}_{y y}=\mathbf{0}$.
for the following square region having the boundary conditions

(b) Solve $u_{x x}+u_{y y}=8 x^{2} y^{2}$ for the square mesh with $u(x, y)=0$ on the boundary and mesh length $=1$.

UNIT-V

9. (a) Discuss different steps involved in finite difference approach.
(b) Solve the boundary value problem $y^{\prime \prime}+2=0,0<x<1, y(0)=y(1)=0$ by stones implicit method.

10 (a) Explain weighted residual method with an example.
(b) Solve the boundary value problem $y^{\prime \prime}-y+x=0,0<x<1, y(0)=0, y(1)=1$ by Galerkin method.

