

TUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	NETWORK ANALYSIS
Course Code	:	AEEB09
Program	:	B.Tech
Semester	:	III
Branch	:	EEE
Section	:	A & B
Academic Year	:	2019 - 2020
Course Faculty	:	Dr. D Shobharani, Professor Ms.S Swathi, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:						
Ι	Apply network theorems to obtain the equivalent circuit of electrical networks.						
Π	Analyze the transient response of series and parallel RL, RC, RLC circuits for DC and AC excitations.						
III	Understand the concept of locus diagram for series and parallel circuits and also network functions for one port and two port networks.						
IV	Evaluate the two port network parameters and Discuss their interrelation and interconnection of networks.						
V	Design different types of filters and study their characteristics.						

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code		
	MODULE-I							
1	State Superposition Theorem?	It states that for a linear system the response(voltage or current) in any branch of a bilateral linear circuit having more than one independent source equals the algebraic sum of the responses caused by each independent source acting alone, where all the other independent sources are replaced by their internal impedances.	Remember	CO1	CLO1	AEEB09.01		
2	State Tellegen's theorem?	In any electrical network which satisfies Kirchhoff's laws, the summation of instantaneous power in all the branches is equal to zero.	Remember	CO1	CLO1	AEEB09.01		

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
3	What Are The	It is applicable to a wide range	Remember	C01	CL01	AEEB09.01
	Applications Of Tellegen's Theorem?	of electrical networks, The only requirement for the validation of the Tellegen's theorem in any circuit is that it satisfies the Kirchhoff's Current				
		Law and Kirchhoff's Voltage Law.				
4	State reciprocity Theorem?	In any branch of a network or circuit, the current due to a single source of voltage (V) in the network is equal to the current through that branch in which the source was originally	Understand	CO1	CLO1	AEEB09.01
		placed when the source is again put in the branch in which the current was originally obtained.		O		
5	What are the applications of reciprocity theorem?	This theorem is used in the bilateral linear network which consists bilateral components.	Remember	CO1	CLO1	AEEB09.01
6	State maximum power transfer Theorem?	In order to obtain maximum external power from a source with a finite internal resistance, the resistance of the load must equal the resistance of the source as viewed from its output terminals.	Understand	CO1	CLO1	AEEB09.01
7	State Thevenin's Theorem?	"Any linear circuit containing several voltages and resistances can be replaced by just one single voltage in series with a	Remember	CO1	CLO2	AEEB09.02
		single resistance connected across the load".	-) -	-17		~
8	What are the applications of Thevenin's theorem?	Useful in the circuit analysis of power or battery systems and other interconnected resistive circuits where it will have an effect on the adjoining part of the circuit.	Understand	CO1	CLO2	AEEB09.02
9	State Norton's Theorem?	it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single current source and parallel resistance connected to a load	Remember	CO1	CLO2	AEEB09.02
10	State Milliman's Theorem?	when a number of voltage sources $(V_1, V_2, V_3, \dots, V_n)$ are in parallel having internal resistance $(R_1, R_2, R_3, \dots, R_n)$ respectively, the arrangement can replace by a single equivalent voltage source V in series with an equivalent series resistance R.	Understand	CO1	CLO2	AEEB09.02
11	State compensation Theorem?	in a linear time invariant network when the resistance (R) of an uncoupled branch, carrying a current (I), is changed by (ΔR). The currents	Remember	CO1	CLO2	AEEB09.02

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		in all the branches would change and can be obtained by assuming that an ideal voltage source of (V_C) has been connected such that $V_C=I(\Delta R)$ in series with $(R + \Delta R)$ when all other sources in the network are replaced by their internal resistances.				
12	What are the applications of superposition theorem?	Application of superposition theorem is, we can employ only for linear circuits as well as the circuit which has more supplies.	Remember	CO1	CLO1	AEEB09.01
13	what are the reciprocity theorem applications of theorem?	Used in many electromagnetic applications, such as analyzing electrical networks and antenna systems.	Understand	CO 1	CLO1	AEEB09.01
14	What are the theorem limitations of Norton's theorem?	 a)Norton's theorem is not applicable to the circuits consists of unilateral elements or non linear elements b) not applicable to the circuits consists of load in series or parallel with controlled or dependent sources. 	Remember	CO1	CLO2	AEEB09.02
15	what are the theorem applications of Norton's theorem?	Norton's theorem is valid only for linear elements.	Remember	CO1	CLO2	AEEB09.02
		MODULE	-II			
1	Define Transient State?	Transient response can be referred as the the system's instant behavior against input change or disturbance	Understand	CO2	CLO3	AEEB09.03
2	Define Steady State?	A state or condition of a system or process (such as one of the energy states of an atom) that does not change in time	Understand	CO2	CLO3	AEEB09.03
3	What are initial conditions?	Initial Conditions Before we can solve transient problems involving inductors and capacitors we must understand the initial conditions that apply to the differential equations	Understand	CO2	CLO5	AEEB09.05
4	What are initial conditions of inductor?	For an inductor $i(0-)=i(0+)$ where it is assumed that a switch has been opened or closed in the network at t=0.	Remember	CO2	CLO5	AEEB09.05

S.No QUESTION ANSWER Blooms Level CO CLA 5 What are initial conditions of inductor? For a capacitor v(0-)=v(0+) where it is assumed that a switch has been opened or closed in the network at t=0. Remember CO2 CLC 6 Define time constant? The interval required for a system or circuit to change a specified fraction from one state or condition to another. Remember CO2 CLC 7 What is the formula for time constant? In a series RC circuit, the time constant is equal to the total resistance in ohms multiplied by the total capacitance in farads. For a series RL circuit L/R Understand CO2 CLC 8 What is transient response of RL circuit? The response of a circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient response CO2 CLC 9 What is first order differential equation? First order differential equation is an equation. (1) in which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dx Understand cocillate about the steady-state value but takes longer to reach CO2 CLC	5 AEEB09.05 5 AEEB09.05 5 AEEB09.05 5 AEEB09.05 5 AEEB09.05 5 AEEB09.05 5 AEEB09.05
inductor?switch has been opened or closed in the network at t=0.RememberCO2CLC6Define time constant?The interval required for a system or circuit to change a specified fraction from one state or condition to another.RememberCO2CLC7What is the formula for time constant?In a series RC circuit, the time constant is equal to the total resistance in ohms multiplied by the total capacitance in farads .For a series RL circuit L/RUnderstandCO2CLC8What is transient response of RL circuit?The response of a circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient responseRememberCO2CLC9What is steady- state response circuit?It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.Understand co2CO2CLC10What is first order differential equation?First order differential equation is an equation. (1) in which $f(x, y)$ is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxUnderstand CO2CO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand cO2CO2CLC	5 AEEB09.05 5 AEEB09.05 5 AEEB09.05 5 AEEB09.05
closed in the network at t=0. closed in the network at t=0. 6 Define time constant? The interval required for a system or circuit to change a specified fraction from one state or condition to another. Remember CO2 CLC 7 What is the formula for time constant? In a series RC circuit, the time constant is equal to the total resistance in ohms multiplied by the total capacitance in farads .For a series RL circuit L/R Understand CO2 CLC 8 What is transient response of RL circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient response Remember CO2 CLC 9 What is steady-state response circuit after a long time when steady conditions have been reached after an external excitation. Understand CO2 CLC 10 What is first order differential equation is an equation .(1) in which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dx Remember CO2 CLC 11 What is over damped The response that does not oscillate about the steady-state Understand CO2 CLC	5 AEEB09.05 5 AEEB09.05 5 AEEB09.05 5 AEEB09.05
6 Define time constant? The interval required for a system or circuit to change a specified fraction from one state or condition to another. Remember CO2 CLC 7 What is the formula for time constant? In a series RC circuit, the time constant is equal to the total resistance in ohms multiplied by the total capacitance in farads .For a series RL circuit L/R Understand CO2 CLC 8 What is transient response of RL circuit? The response of a circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient response Remember CO2 CLC 9 What is steady- state response circuit? It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation. Understand CO2 CLC 10 What is first order differential equation? First order differential equation is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dx Numerstand coscillate about the steady-state CO2 CLC	5 AEEB09.05 5 AEEB09.05 5 AEEB09.05 5 AEEB09.05
constant?system or circuit to change a specified fraction from one state or condition to another.UnderstandCO2CLC7What is the formula for time constant?In a series RC circuit, the time constant is equal to the total resistance in ohms multiplied by the total capacitance in farads .For a series RL circuit L/RUnderstandCO2CLC8What is transient response of RL circuit?The response of a circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient responseRememberCO2CLC9What is steady- state response circuit?It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.Understand cO2CO2CLC10What is first order differential equation?First order differential equation is an equation. (1) in which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxUnderstand cO2CO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand cO2CO2CLC	5 AEEB09.05 5 AEEB09.05 5 AEEB09.05 5 AEEB09.05
specified fraction from one state or condition to another.UnderstandCO2CLC7What is the formula for time constant?In a series RC circuit, the time constant is equal to the total resistance in ohms multiplied by the total capacitance in farads .For a series RL circuit L/RUnderstandCO2CLC8What is transient response of RL circuit?The response of a circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient responseRememberCO2CLC9What is steady- state response circuit?It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.Understand cO2CO2CLC10What is first order differential equation?First order differential equation is an equation. (1) in which $f(x, y)$ is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxUnderstand cO2CO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand cO2CO2CLC	5 AEEB09.05 5 AEEB09.05
state or condition to another.7What is the formula for time constant?In a series RC circuit, the time constant is equal to the total 	5 AEEB09.05 5 AEEB09.05
7 What is the formula for time constant is equal to the total resistance in ohms multiplied by the total capacitance in farads .For a series RL circuit L/R Understand CO2 CLC 8 What is transient response of RL circuit? The response of a circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient response Remember CO2 CLC 9 What is steady-state response circuit? It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation. Understand CO2 CLC 10 What is first order differential equation? First order differential equation is an equation. (1) in which f(x, y) is a function of two variables defined on a region in the xy-plane. The equation is of first order because it involves only the first derivative dy dx Remember CO2 CLC 11 What is over damped The response that does not oscillate about the steady-state The response that does not oscillate about the steady-state Understand CO2 CLC	5 AEEB09.05 5 AEEB09.05
formula for time constant?constant is equal to the total resistance in ohms multiplied by the total capacitance in farads .For a series RL circuit L/RRememberCO2CLC8What is transient response of RL 	5 AEEB09.05 5 AEEB09.05
by the total capacitance in farads .For a series RL circuit L/RRememberCO2CLC8What is transient response of RL 	5 AEEB09.05
Image: series of a series RL circuit L/RRememberCO2CLC8What is transient response of RL circuit?The response of a circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient responseRememberCO2CLC9What is steady-state response circuit?It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.UnderstandCO2CLC10What is first order differential equation?First order differential equation is on first order because it involves only the first derivative dy dxRememberCO2CLC11What is over dampedThe response that does not dampedThe response that does not oscillate about the steady-stateCO2CLC	5 AEEB09.05
8What is transient response of RL circuit?The response of a circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient responseRememberCO2CLC9What is steady- state response circuit?It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.UnderstandCO2CLC10What is first order differential equation?First order differential equation is an equation. (1) in which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxRememberCO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand cO2CO2CLC	5 AEEB09.05
8What is transient response of RL circuit?The response of a circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient responseRememberCO2CLC9What is steady- state response circuit?It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.UnderstandCO2CLC10What is first order differential equation?First order differential equation is an equation. (1) in which $f(x, y)$ is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxUnderstand CO2CO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand CO2CO2CLC	5 AEEB09.05
response of RL circuit?a circuit (containing resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient responseUnderstandCO2CLC9What is steady- state response circuit?It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.UnderstandCO2CLC10What is first order differential equation?First order differential which $f(x, y)$ is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxCO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand CO2CO2CLC	5 AEEB09.05
circuit?resistances, inductances, capacitors and switches) due to sudden application of voltage or current is called transient responseUnderstandCO2CLC9What is steady- state response circuit?It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.UnderstandCO2CLC10What is first order differential equation?First order differential equation is an equation. (1) in which $f(x, y)$ is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxCO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand CO2CO2CLC	
9What is steady- state responseIt is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.UnderstandCO2CLC10What is first order differential equation?First order differential which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxRememberCO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand cCO2CO2CLC	
9What is steady- state responseIt is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.UnderstandCO2CLC10What is first order differential equation?First order differential equation is an equation. (1) in which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxRemember CO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand CO2CLC	
9What is steady- state response circuit?It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.UnderstandCO2CLC10What is first order differential equation?First order differential equation is an equation. (1) in which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxRemember CO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand CO2CO2	
9What is steady- state response circuit?It is the behavior of a circuit after a long time when steady conditions have been reached after an external excitation.UnderstandCO2CLC10What is first order differential equation?First order differential equation is an equation. (1) in which $f(x, y)$ is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxRememberCO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstandCO2CLC	
state response circuit?a circuit after a long time when steady conditions have been reached after an external excitation.a circuit after a long time when steady conditions have been reached after an external excitation.10What is first order differential equation?First order differential equation is an equation. (1) in which $f(x, y)$ is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxRememberCO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand CO2CLC	
circuit?when steady conditions have been reached after an external excitation.RememberCO2CLC10What is first order differential equation?First order differential equation is an equation. (1) in which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxRemember CO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand CO2CLC	5 AEEB09.05
Image: line with the second	5 AEEB09.05
Image: 10excitation.Image: 10excitation.10What is first order differential equation?First order differential equation is an equation. (1) in which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxRemember CO2CLC CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstand CO2CLC	5 AEEB09.05
10What is first order differential equation?First order differential equation is an equation. (1) in which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxRememberCO2CLC11What is over dampedThe response that does not oscillate about the steady-stateUnderstandCO2CLC	5 AEEB09.05
equation? which f(x, y) is a function of two variables defined on a region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dx 11 What is over damped	
1 What is over damped The response that does not oscillate about the steady-state Understand CO2 CLC	
region in the xy-plane. The. equation is of first order because it involves only the first derivative dy dxImage: Constraint of the second s	
The. equation is of first order because it involves only the first derivative dy dxImage: Constant the first derivative dy dx11What is over dampedThe response that does not oscillate about the steady-stateUnderstand the constantCO2CLC CLC	
because it involves only the first derivative dy dxImage: Constraint of the second se	
the first derivative dy dxthe first derivative dy dx11What is over dampedThe response that does not oscillate about the steady-stateUnderstandCO2CLC	
11What is over dampedThe response that does not oscillate about the steady-stateUnderstandCO2CLC	
	5 AEEB09.05
response? value but takes longer to reach	
steady-state than the critically	2
damped case. Here damping	
ratio is greater than one. ratio is greater than one. 12 What is under An under damped response is Remember CO2 CLC	5 AEEB09.05
damped one that oscillates within a	
response? decaying envelope.	
13 define the term The damping ratio is Remember CO2 CLC	5 AEEB09.05
damping ratio? a dimensionless measure	
describing how oscillations in a	
system decay after a disturbance	
14 What are The damping ratio is a system Understand CO2 CLC	5 AEEB09.05
different parameter, denoted by ζ (zeta),	
responses that can vary	
depending on from undamped ($\zeta = 0$),	
depend ratio? underdamped ($\zeta < 1$)	
criticallydamped ($\zeta = 1$)	
15 What is un When damping ratio $\zeta = 0$ is the Remember CO2 CLC	5 AEED00.05
$damped$ when damping ratio $\zeta = 0$ istne Remember CO2 CLC undamped response consisting	
response? more oscillations	5 AEEB09.05
	5 AEEB09.05
	5 AEEB09.05

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE	-111			
1	What is locus diagram?	The locus traced out by tip of current/voltage phasor or complex impedance/admittance vector when subjected to variation in circuit parameters R/L/C and source frequency.	Understand	CO3	CLO7	AEEB09.07
2	What are types of locus diagrams?	current locus diagram (V phasor as refrence), voltage locus diagram (I phasor as reference), impedance locus diagram (R-X plane), admittance locus diagram (G-B plane).	Remember	CO3	CLO7	AEEB09.07
3	Define complex frequency?	type of frequency that depends on two parameters ; one is the " σ " which controls the magnitude of the signal and the other is "w", which controls the rotation of the signal	Understand	CO3	CLO7	AEEB09.07
4	Define One port network?	It is a two terminal electrical network in which, current enters through one terminal and leaves through another terminal	Understand	CO3	CLO8	AEEB09.08
5	Define two port network?	two port network is a pair of two terminal electrical network in which, current enters through one terminal and leaves through	Remember	CO3	CLO8	AEEB09.08
6	Define pole of a system?	another terminal of each port Poles of a transfer function are the frequencies for which the value of the denominator becomes zero	Understand	CO3	CLO9	AEEB09.09
7	Define zero of a system?	Zeros of a transfer function are the frequencies for which the value of numerator of transfer function becomes zero	Remember	CO3	CLO9	AEEB09.09
8	What is the need of finding poles and zeros?	The values of the poles and the zeros of a system determine whether the system is stable, and how well the system performs.	Understand	CO3	CLO9	AEEB09.09
9	What is transfer function?	The transfer function of a control system is defined as the ratio of the Laplace transform of the output variable to Laplace transform of the input variable assuming all initial conditions to be zero.	Remember	CO3	CLO8	AEEB09.08
10	What is the transfer function?	advantage of transfer functions is that they allow engineers to use simple algebraic equations instead of complex differential equations for analyzing ,designing systems.	Remember	CO3	CLO8	AEEB09.08

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
11	Define network	A network function is the	Remember	CO3	CLO8	AEEB09.08
	function?	Laplace transform of an				
		impulse response. Its format is				
		a ratio of two polynomials of				
		the complex frequencies		<i></i>	~ ~ ~ ~	
12	What is driving	The driving point functions	Remember	CO3	CLO8	AEEB09.08
	point function?	relate the voltage at a port to				
		the current at the same port these functions are a property				
		of a single port				
13	What is driving	The driving point admittance	Remember	CO3	CLO8	AEEB09.08
_	point admittance	function YIN(s) is the				
	function?	reciprocal of the impedance				
		function.	\sim	-		
14	What is voltage	The voltage transfer function,	Understand	CO3	CLO8	AEEB09.08
	transfer	which is a ratio of one voltage				
1.5	function?	to another voltage.	D I	002	CL OU	4 EE D00 00
15	What is current transfer	The current transfer function, which is a ratio of one current	Remember	CO3	CLO8	AEEB09.08
	function?	to another current				
		MODULE	-IV			
1	What are Z	Z parameters are called	Remember	CO4	CLO11	AEEB09.11
	parameters?	as impedance				
		parameters because these are				
		simply the ratios of voltages				
		and currents. Units of Z				
2	Whee 7	parameters are Ohm (Ω).	Damanhan	CO4	CLO11	AEEB09.11
2	Why Z parameters	We can calculate two Z parameters, Z_{11} and Z_{21} , by	Remember	CO4	CLOII	AEEB09.11
	called as open	doing open circuit of port2.				
	circuit	Similarly, we can calculate the				100
	parameters?	other two Z parameters, Z_{12} and				
	0	Z ₂₂ by doing open circuit of			- C	
		port1. Hence, the Z parameters				
		are also called as open-circuit			1	
		impedance parameters		do t	CT 0.11	
3	What are Y	Y parameters are called	Remember	CO4	CLO11	AEEB09.11
	parameters?	as admittance parameters because these are				
		simply, the ratios of currents				
		and voltages. Units of Y		1		
		parameters are mho.				
4	Why Y	We can calculate two Y	Remember	CO4	CLO11	AEEB09.11
	parameters	parameters, Y_{11} and Y_{21} by	· · · ·			
	called as open	doing short circuit of port2.				
	circuit	Similarly, we can calculate the				
	parameters?	other two Y parameters,				
		Y_{12} and Y_{22} by doing short				
		circuit of port1. Hence, the Y				
		parameters are also called as short-circuit admittance				
		parameters.				
5	What are	The ABCD parameters are	Remember	CO4	CLO11	AEEB09.11
	transmission	transmission Parameters .A and		201		
	parameters?	D do not have any units, since				
		those are dimension less. the				
		units of parameters, B and C				
		are ohm and mho respectively.				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code		
6	how to calculate	we can calculate two	Remember	CO4	CLO11	AEEB09.11		
	h parameters?	parameters, h_{11} and h_{21} by						
		doing short circuit of port2.						
		Similarly, we can calculate the						
		other two parameters, h_{12} and						
		h_{22} by doing open circuit of port1.						
7	how to calculate	We can calculate two	Remember	CO4	CLO11	AEEB09.11		
	ABCD	parameters, A and C by doing						
	parameters?	open circuit of port2. Similarly,						
		we can calculate the other two parameters, B and D by doing						
		short circuit of port2.						
8	What are inverse	g parameters are called	Understand	CO4	CLO11	AEEB09.11		
	hybrid	as inverse hybrid parameters.						
	parameters?	The parameters, g_{12} and g_{21} do	-		1.			
		not have any units, since those						
		are dimension less. The units of parameters, g_{11} and g_{22} are mho						
		and ohm respectively.						
9	how to calculate	We can calculate two	Remember	CO4	CLO11	AEEB09.11		
	g parameters?	parameters, g_{11} and g_{21} by						
		doing open circuit of port2.						
		Similarly, we can calculate the other two parameters, g_{12} and						
		g_{22} by doing short circuit of						
		port1.						
10	Condition for	$y_{11} = y_{22}$	Understand	CO4	CLO12	AEEB09.12		
	symmetry in y-							
11	paramers? Condition for		Understand	CO4	CLO12	AEEB09.12		
11	reciprocity in y-	$y_{12} = y_{21}$	Understallu	004	CLU12	AEED07.12		
	paramers?					1000		
12	Condition for	$z_{12} = z_{21}$	Remember	CO4	CLO12	AEEB09.12		
	symmetry in z-				C	>		
	paramers?							
12	Condition for		Doment	CO4	CLO12	AEEDOO 12		
13	Condition for reciprocity in z-	$z_{11} = z_{22}$	Remember	CO4	CLO12	AEEB09.12		
	paramers							
14	Condition for	$(h_{11}h_{22} - h_{12}h_{21}) = 1$	Remember	CO4	CLO12	AEEB09.12		
	symmetry in h-	10		5				
1.7	paramers?		D. I	ac t	CT C 1 C			
15	Condition for reciprocity in y-	$h_{12} = -h_{21}$	Remember	CO4	CLO12	AEEB09.12		
	paramers?	O H						
					I			
	MODULE-V							
1	What Are Types	• Low Pass Filter	Remember	CO5	CLO15	AEEB09.15		
	Of Filters?							
		• High Pass Filter						
		• Band Pass Filter						
		• Band Stop Filter						
2	What Is Low	It Allows (Passes) Only Low	Remember	CO5	CLO15	AEEB09.15		
	pass Filter?	Frequency Components.						

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
3	What is Band	Band pass filter as the name	Remember	CO5	CLO15	AEEB09.15
	pass filter?	suggests, it allows (passes)				
		only one band of frequencies.				
		In general, this frequency band				
		lies in between low frequency				
		range and high frequency				
		range. That means, this filter				
		rejects (blocks) both low and				
4	What Is II ab	high frequency components. High pass filter as the name	Remember	CO5	CLO15	AEEB09.15
4	What Is High Pass Filter?	suggests, it allows	Remember	COS	CLUIS	AEED09.13
	rass riner?	(passes) only high frequency				
		components. That means, it				
		rejects (blocks) all low	-			
		frequency components.	1.1			
5	What is band	Band stop filter as the name	Understand	CO5	CLO15	AEEB09.15
	stop filter?	suggests, it rejects (blocks) only				
	r	one band of frequencies. In				
		general, this frequency band				
		lies in between low frequency				
		range and high frequency				
		range. That means, this filter				
		allows (passes) both low and				
	Deferences	high frequency components.	Description	005		A EED00 15
6	Define pass band?	Pass band is the range of frequencies or wavelengths t	Remember	CO5	CLO15	AEEB09.15
	Dallu?	hat can pass through a filter.				
		For example, a radio				
		receiver contains a band pass				
		filter to select the frequency of				
		the desired radio signal out of				
		all the radio waves picked up				
		by its antenna. The pass band of				100
		a receiver is the range of				
	0	frequencies it can receive.			C	
7	Define stop	A stop band is a band of	Understand	CO5	CLO15	AEEB09.15
	band?	frequencies, between specified			4	
		limits, through which a circuit,				
		a filter or telephone circuit, does not allow signals to pass,			100	
		or the attenuation is above the				
		required stop band attenuation				
		level.		~		
8	What is band	Bandwidth is the difference	Remember	CO5	CLO15	AEEB09.15
	width?	between the upper and lower				
		frequencies in a continuous	· · · ·			
		band of frequencies. It is				
		typically measured in hertz.				
9	What is low	It is the frequency either above	Understand	CO5	CLO15	AEEB09.15
	cutoff	or below which the power				
	frequency?	output of a circuit, such as a line, amplifier, or electronic				
		line, amplifier, or electronic filter has fallen to a given				
		proportion of the power in the				
		proportion of the power in the pass band.				
10	How do you	The cutoff frequency is	Understand	CO5	CLO15	AEEB09.15
	calculate cutoff	defined as the frequency where				
	frequency?	the amplitude of $H(j\omega)$ is $1\sqrt{2}$				
	1 -	times the DC amplitude				
		(approximately -3dB)				
·		· - • • /	•		÷	

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code		
11	What are half	The frequency f_2 lies in high	Remember	CO5	CLO15	AEEB09.15		
	power	frequency region while						
	frequencies?	frequency f_1 lies in low						
	1	frequency region. These two						
		frequencies are also called as						
		half-power frequencies since						
		gain or output voltage drops to						
		70.7% of maximum value and						
		this represents a power level of						
		one half the powers at the						
		reference frequency in mid-						
		frequency region.						
12	Define	Attenuation is a general term	Remember	CO5	CLO15	AEEB09.15		
	attenuation?	that refers to any reduction in						
		the strength of a signal.						
		Attenuation occurs with any	· · · · ·					
		type of signal,						
		whether digital or analog.						
13	What are	Used as volume controls	Remember	CO5	CLO15	AEEB09.15		
	applications of	in broadcasting stations						
	attenuators?	and Variable attenuators						
		are used in laboratories,						
		when it is necessary to						
		obtain small value of						
		voltage or current for						
		testing purposes.						
14	What are	Used in audio amplifiers,	Remember	CO5	CLO15	AEEB09.15		
	applications of	equalizers or speaker systems						
	Active Low Pass	to direct the lower						
	Filters?	frequency bass signals to the						
		larger bass speakers or to						
		reduce any						
		high frequency noise or "hiss"						
15	What are	type distortion. Used in audio amplifiers,	Remember	CO5	CLO15	AEEB09.15		
15	applications of	equalizers or speaker systems	Remember	COS	CLOIS	AEED09.13		
	Active High	to direct the high						
	Pass Filters are	frequency signals to the smaller			A.			
	1 455 1 11015 410	tweeter speakers or to reduce						
		any low frequency noise.			100			
	- 7			0				
				1				
~								
Signa	ture of the Faculty	N E CC				HOD, EEE		