IARE TO LEGIT

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	PRECISION ENGINEERING
Course Code	:	AME512
Program	:	B.Tech
Semester	:	V
Branch	:	Mechanical Engineering
Section	:	A & B
Academic Year	:	2019 - 2020
Course Faculty	:	Mr. G.Sarat Raju, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:							
I	Understand the BIS code fits and tolerances for geometrical dimensioning and tolerance (GD&T).							
II	Understand the principal application of different measuring instruments.							
III	Summarize the application of latest manufacturing techniques (Nano).							

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		UNIT-I				
1	what is static stiffness?	Static stiffness is the ratio between a static force. and the resulting static deflection	Understand	CO 1	CLO 1	AME512.01
2	What does it compliance mean?	Compliance is either a state of being in accordance with established guidelines or specifications, or the process of becoming so. The definition of compliance can also encompass efforts to ensure that organizations are abiding by both industry regulations and government legislation.	Remember	CO I	CLO 1	AME512.01
3	How is stiffness calculated?	the displacement produced by the force along the same degree of freedom (for instance, the change in length of a stretched spring) In the International System of Units, stiffness is typically measured in newtons per meter. In Imperial units, stiffness is typically measured in pounds(lbs) per inch.	Remember	CO 1	CLO 1	AME512.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
4	What are thermal effects?	Thermal effects are those caused by a redistribution of internal energy in a system, and they may be grouped in natural and artificial (see Introduction to	Remember	CO 1	CLO 1	AME512.01
		Thermodynamics).				
5	what is accuracy in thermal effect ?	Thermal effects on the accuracy of numerically controlled machine tool are specially important in the context of unmanned manufacture or under conditions of precision metal cutting	Remember	CO 1	CLO 1	AME512.01
6	What is called vibration?	vibration can be considered to be the oscillation or repetitive motion of an object around an equilibrium position. This type of vibration is called" whole body motion", meaning that all parts of the body are moving together in the same direction at any point in time.	Remember	CO 1	CLO 2	AME512.02
7	What causes vibration?	Most common causes of machine vibration. Keep in mind that vibration problems might be caused by auxiliary equipment, not just the primary equipment. Imbalance - A "heavy spot" in a rotating component will cause vibration when the unbalanced weight rotates around the machine's axis, creating a	Remember	CO1	CLO 2	AME512.02
		centrifugal force				
8	What is the difference between wave and vibration?	In other words, it's how energy is propagated. Vibrations on the other hand, are physical evidence of waves, such as a loud stereo shaking a table, sound waves cause vibrations. Vibration is the change over a period of time and the wave is a length traveled during the vibration period.	Remember	CO 1	CLO 2	AME512.02
9	what is nominal differential expansion?	The Uncertainty of Nominal Differential Expansion (UNDE) is, however, significant. It is the sum of the two Uncertainty of Nominal Expansion (UNE) values.	Remember	CO 1	CLO 3	AME512.03
10	what is thermal bending ?	An analysis with a shear deformation capability for the thermal bending of thick rectangular plates is presented. Formulation of the problem, with appropriate thermal terms incorporated and applicable to the bending of moderately thick plates, has been carried out by using Reissner's	Remember	CO 1	CLO 3	AME512.03

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		plate bending theory.				
11	what is	Surface finish, also known as	Remember	CO 1	CLO 3	AME512.03
	machining	surface texture or				
	surface?	surfacetopography, is the nature				
		of a surface as defined by the				
		three characteristics of lay,				
		surface roughness, and				
		waviness. Each manufacturing				
		process (such as the many kinds				
		of machining) produces a surface texture.				
12	what is free	Free vibrations are oscillations	Remember	CO 1	CLO 4	AME512.04
12	vibration?	where the total energy stays the	Remember	COT	CLO 4	AME312.04
	vioration:	same over time. This means that		_		
		the amplitude of the vibration	1			
		stays the same. Forced		$\overline{}$		
		vibrations occur when the object				
		is forced to vibrate at particular				
		frequency by a periodic input of				
		force.				
13	What is wear of	Tool wear describes the gradual	Understand	CO 1	CLO 3	AME512.03
	cutting tools ?	failure of cutting tools due to				
		regular operation. It is a term				
		often associated with tipped				
		tools, tool bits, or drill bits that				
		are used with machine tools.				
		Types of wear include: flank				
		wear in which the portion of the				
		tool in contact with the finished				
14	What are forced	part erodes. Forced vibration is a type	Remember	CO 1	CLO 4	AME512.04
17	vibrations?	of vibration in which a force is	Remember	COT	CLO 4	AWILS12.04
	VIOI MUI OII DI	repeatedly applied to a				-
		mechanical system.Forced	- 11 -	-0		
	0	vibration is when an alternating				1
		force or motion is applied to a		7		
		mechanical system, for example				
		when a washing machine shakes			-	
	5.7	due to an imbalance.				
15	What is	Temperature	Remember	CO 1	CLO 4	AME512.04
	stabilization of	stabilization criteria were				
	temperature?	expressed in a similar manner		V.		
		across all documents		1		
		whereby temperature stabilization is achieved when a	C 1/3			
		unit having the largest thermal		TE .		
		time constant is within a				
		specified of its steady-state				
		value and the rate of change is				
		less than a specified.				
		UNIT-II				
1	What is	Two planes, two straight lines or	Remember	CO 2	CLO 5	AME512.05
	squareness in	a straight line and a plane are				
	metrology?	said to be perpendicular.				
2	What is	The property of a plane	Remember	CO 2	CLO 5	AME512.05
	straightness and	is flatness, i.e. the state of being				
	flatness?	flat without having pits and				
		mounds or being even -i.e. not				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		being uneven. Whereas. Straightness is about a practically one-dimensional straight line which is supposed to have only length, i.e. only one dimension				
3	How is flatness measured?	Flatness is can be measured using a height gauge run across the surface of the part if only the reference feature is held parallel. This would be measuring parallelism instead as you are fixing the bottom of the part as a datum.	Understand	CO 2	CLO 5	AME512.05
	***		***	GO 2	GT O 4	115512.05
4	What is the purpose of GD&T?	Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances. It uses a symbolic language on engineering drawings and computer-generated three-dimensional solid models that explicitly describe nominal geometry and its allowable variation.	Understand	CO 2	CLO 6	AME512.06
5	How do you	To spot potential parallelism pitf	Understand	CO 2	CLO 6	AME512.06
	identify parallelism?	alls, first look for the coordinating conjunctions in a sentence - those are for, and, nor, but, or, yet, and so - and then look to either side of the conjunction to see if it's parallel.				
6	What is squareness in metrology?	Two planes, two straight lines or a straight line and a plane are said to be perpendicular.	Remember	CO 2	CLO 6	AME512.06
7	What is	The property of a plane	Remember	CO 2	CLO 6	AME512.06
	straightness and flatness?	is flatness, i.e. the state of being flat without having pits and mounds or being even -i.e. not being uneven. Whereas. Straightness is about a practically one-dimensional straight line which is supposed to have only length, i.e. only one dimension	LIF	68	10	
8	How is flatness measured?	Flatness is can be measured using a height gauge run across the surface of the part if only the reference feature is held parallel. This would be measuring parallelism instead as you are fixing the bottom of the part as a datum.	Remember	CO 2	CLO 7	AME512.07
9	What is the purpose of GD&T?	Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances. It uses a symbolic language on	Remember	CO 2	CLO 7	AME512.07

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		engineering drawings and computer-generated three-dimensional solid models that explicitly describe nominal geometry and its allowable variation.				
10	How do you identify parallelism?	To spot potential parallelism pitf alls, first look for the coordinating conjunctions in a sentence - those are for, and, nor, but, or, yet, and so - and then look to either side of the conjunction to see if it's parallel.	Remember	CO 2	CLO 7	AME512.07
11	How is Cylindricity calculated?	Cylindricity is measured by constraining a part on its axis, and rotating it around while a height gauge records the variation of the surface in several locations along the length. The height gauge must have total variation less than the tolerance amount.	Remember	CO 2	CLO 7	AME512.07
12	What is difference between NC and CNC?	NC stands for Numerical Control whereas CNC stands for Computer Numerical Control. In NC Machine the programs are fed into the punch cards. But in CNC machine the programs are fed directly into the computer with the help of a small keyboard similar to our traditional keyboard.	Remember	CO 2	CLO 8	AME512.08
13	Is tolerance the same as accuracy?	Accuracy is usually specified as a tolerance on a measurement where the tolerance is the amount of uncertainty in the stated value. Accuracy must be defined over a given range. ERROR (General) - Error is the KNOWN difference between a	Remember	CO 2	CLO 8	AME512.08
14	What is displacement measurement?	measurement and the true value. A displacement sensor (displacement gauge) is primarily used to measure the range of where an object has to travel and in relation to a reference position. Displacement sensors have multiple uses. Its primary use is for dimension measurement to figure out an object's width, height, and thickness	Remember	CO 2	CLO 8	AME512.08
15	What is accuracy in calibration?	Precision means that you can hit the same point time and again within certain error limits. Precision, accuracy, calibration; similar terms but with very dissimilar meanings. Accuracy is difficult without	Remember	CO 2	CLO 8	AME512.08

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		good precision. Precision,				
		however, does not				
		ensure accuracy. Precision with				
		calibration results in accuracy				
		UNIT-III				
1	What is Micro	Micro turning is one type of	Understand	CO 3	CLO 9	AME512.09
	turning?	micromachining process which				
		uses a solid tool and its material				
		removal process is almost				
		similar to conventional turning operation.				
2	What is nano	Nano-structure consists of	Remember	CO 3	CLO 9	AME512.09
	machining?	physical features whose.	101110111001		020)	111/12012/09
	C	Dimensions are in the range 1 to				
		100 nm. Page 9. Nano-				
		technology has applications in				
		many fields including				
		automotive, aerospace, Micro- Nano- Machining.				
3	What is meant by	The removing (as in drilling,	Remember	CO 3	CLO 9	AME512.09
	micromachining?	planing, or shaping) of small	remember		CLO	111112312.09
		amounts of material (such as				
		metal) by action other than that				
		of a sharp-edged				
		tool micromachining done with an electron beam.				
4	How do you	Free nanoparticles are formed	Remember	CO 3	CLO 9	AME512.09
	manufacture	through either the breaking	Remember	CO 3	CLO	AIVIL 312.07
	nanoparticles?	down of larger particles or by				
		controlled assembly processes.				
		Natural phenomena and many				
		human industrial and domestic activities, such as				
		cooking, manufacturing or road				
		and air transport				
		release nanoparticles into the			1	
	0	atmosphere.				
5	What is bulk and	Bulk micromachining is a	Remember	CO 3	CLO 10	AME512.10
	surface	process used to produce micro			h	
	micromachining?	machinery or micro electro mechanical systems(MEMS.)				
		Whereas surface		1		
		micromachining creates				
		structures on top of a				
		substrate, bulk				
		micromachining produces				
6	What is top down	structures inside a substrate. A top-down approach can thus	Understand	CO 3	CLO 10	AME512.10
U	approach in	be viewed as an approach where	Onderställd	CO 3	CLO 10	AIVIEJ12.1U
	nanotechnology?	the building blocks are removed				
		from the substrate to form the				
		nanostructure. Very briefly:				
		bottom up is chemistry				
		(synthesis), while top down is				
7	What is the	nano-fabrication ("milling"). Bottom-up vs. Top-	Remember	CO 3	CLO 10	AME512.10
'	difference	down Processing. There are two	Kemember	CO 3	CLO 10	AIVIEJ12.10
	between bottom	general processes involved in				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	up and top down?	sensation and perception. Bottom-up refers to the way it is built up from the smallest pieces of sensory information. Top down processing, on the other hand, refers to perception that is driven by cognition.				
8	What exactly is nanotechnology?	Nanotechnology is manipulation of matter on an atomic, molecular, and supramolecular scale. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of	Understand	CO 3	CLO 10	AME512.10
9	What is diamond turning?	research and applications whose common trait is size Diamond turning is turning with diamond as the cutting tool. It is a process of mechanical machining of precision elements using lathes or derivative machine tools (e.g., turn-mills, rotary transfers) equipped with natural or synthetic diamond-tipped tool bits	Remember	CO 3	CLO 11	AME512.11
10	What is micro cracking.?	The term micro cracking refers to very small cracks that form in concrete but are not visible to the nakedeye. Some microcracking o ccurs as a natural part of the cement hydration process, but it also occurs as compressive loads are applied. Bond cracks form where the coarse aggregate and the cement meet.	Remember	CO 3	CLO 11	AME512.11
11	what is micro fracturing?	Micro fracture is a surgical technique used to repair damaged articular cartilage by making multiple small holes in the surface of the joint to stimulate a healing response. The technique is frequently used in athletes after they injure their joints	Remember	CO 3	CLO 11	AME512.11
12	what is mirror grinding?	The first milestone is putting a curve into the mirror face. The curve's depth dictates the mirror's focal length Creating the curve can be done by several methods: The curve is ground into the mirror face using a grinding tool.	Remember	CO 3	CLO 12	AME512.012
13	what is grinding ceramics?	The successful grinding of a brittle material like an advanced ceramic has traditionally consisted of using a	Remember	CO 3	CLO 12	AME512.012

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		resin bond wheel that allows lower tool pressure and provides a finer surface finish.				
14	What is micromachining process?	The technique for fabrication of 3D and 2D structures on the micrometer scale. Superfinishing, a metalworking process for producing very fine surface finishes. Various microelectromechanical systems	Remember	CO 3	CLO 12	AME512.012
15	What is stereo lithography?	Stereolithography (SLA or SL; also known as stereolithography apparatus, optical fabrication, photo-solidification, or resin printing) is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a layer by layer fashion using photochemical processes.	Remember	CO 3	CLO 12	AME512.012
		UNIT-IV				
1	What is pattern recognition system?	Pattern recognition is the ability to detect arrangements of characteristics or data that yield information about a given system or data set. In the context of AI, pattern	Remember	CO 4	CLO 13	AME512.013
		recognition is a sub-category of machine learning (ML).				2
2	What are the applications of pattern recognition?	Pattern recognition is used to give human recognition intelligen ce to machine which is required in image processing. Pattern recognition is used to extract meaningful features from given image/video samples and is used in computer vision for various applications like biological and biomedical imaging.	Remember	CO 4	CLO 13	AME512.013
3	What is electron beam lithography used for?.	Electron beam lithography, also known as e-beam lithography, is the process of tracing out a pattern in a suitable recording medium using a focused e-beam. The underlying physical mechanism relies on the fact that the recording medium, typically a thin organic polymer film, is altered by the passage of fast electrons.	Remember	CO 4	CLO 13	AME512.013

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
4	What is	The science of measurement is	Remember	CO 4	CLO 13	AME512.013
	mechanical	known as metrology.				
	measurement?	Measurement is done to know				
		whether the component which				
		has been manufactured is as per the requirements or				
		not. Measurements will be of				
		mainly length, mass, time,				
		angle, temperature, squareness,				
		roundness, roughness,				
		parallelism etc.				
5	What is principle	A few aspects of the	Remember	CO 4	CLO 14	AME512.014
	of laser	heterodyne interferometer make				
	interferometer?	it superior to the homodyne	4			
		interferometer. Since the displacement information is				
		carried on an ac signal rather				
		than a dc signal, it is less				
		sensitive to laser power				
		fluctuations, ambient light, and				
		various other noise affecting dc				
	***	measurements.		G 2 :	GT C	12.555555
6	What is	The production process is	Remember	CO 4	CLO 14	AME512.014
	production	concerned with transforming a				
	process?	range of inputs into those outputs that are required by the				
		market. This involves two main				
		sets of resources - the				
		transforming resources, and the				
		transformed resources				
		Any production				
		process involves a series of				
7	7771 . ·	links in a production chain.	D 1	CO 1	CI O 14	A ME 512 014
7	What is scanning electron	A scanning electron microscope (SEM) scans a focused electron	Remember	CO 4	CLO 14	AME512.014
	microscope used	beam over a surface to create an				2
	for?	image. The electrons in the			. *	
		beam interact with the sample,			^	
		producing various signals that				
		can be used to obtain			V-	
		information about the surface				
0	W/h at i	topography and composition.	Day:1	CO 4	CI O 14	AME 512 01 4
8	What is transmission	The transmission electron microscope is used to view thin	Remember	CO 4	CLO 14	AME512.014
	electron	specimens (tissue sections,				
	microscope used	molecules, etc) through which				
	for?	electrons can pass generating a				
		projection image. The TEM is				
		analogous in many ways to				
		the conventional (compound) li				
	Whatia Nama	ght microscope.	Damareler	CO 4	CI O 14	AME512.014
9	What is Nano positioning and	Nano Positioning and Nano Measuring Machine - NMM1	Remember	CO 4	CLO 14	AME512.014
	Nano measuring	The Nano Positioning and Nano				
	Machine ?	Measuring Machine is used for				
	•	three-dimensional				
		coordinate measurement in a				
		range of 25 mm x 25 mm x 5				
		mm, with a resolution of 0.1				
		nm. Its unique sensor				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		arrangement provides Abbe error-free measurements on all three coordinate axes.				
10	What is the purpose of image processing?	Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. It is a type of signal processing in which input is an image and output may be image or characteristics/features associated with that image.	Remember	CO 4	CLO 15	AME512.015
11	What is Touch Probe?	Touch Probes. Marposs touch probes are based on the core technology of micro switches, which can be likened to mechanical interrupters. The design and realization of the micro switch determine the probe performance and application.	Remember	CO 4	CLO 15	AME512.015
12	What is wafer inspection systems?	Wafer defect inspection system. Wafer defect inspection system detects physical defects (foreign substances called particles) and pattern defects on wafers and obtains the position coordinates (X, Y) of the defects Inspection can be performed on a patterned	Remember	CO 4	CLO 15	AME512.015
	600	process wafer or on a bare wafer.	-) -			~
13	What is atom holography?	Holography is a technique to manipulate the wavefront of a wave. The present experimental status of atom holography is rather primitive. However, it is a promising technique for atom manipulation because it handles atoms in mass, the patterning is completely general, and it controls the pattern from a distance.	Remember	CO 4	CLO 16	AME512.016
14	What is horizontal resolution of profile instrument?	A profilometer is a measuring instrument used to measure a surface's profile the patterning is completely general, and it controls the pattern from a distance.	Remember	CO 4	CLO 16	AME512.016
15	What is vertical resolution of profile instrument?	Absorptivity is defined as the ratio between radiation absorbed and incident radiation. Symbol is α.	Remember	CO 4	CLO 16	AME512.016
		UNIT-V				
1	What is electron beam lithography	Electron beam lithography, also known as e-beam lithography,	Remember	CO 5	CLO 17	AME512.017

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	used for?	is the process of tracing out a pattern in a suitable recording medium using a focused e-				
		beam. The underlying physical mechanism relies on the fact				
		that the recording medium,				
		typically a thin organic polymer				
		film, is altered by the passage of fast electrons.				
2	Define dip pen	Dip pen nanolithography (DPN)	Remember	CO 5	CLO 17	AME512.017
	lithography	is a scanning probelithography technique				
		where an atomic force				
		microscope (AFM) tip is used to create patterns directly on a				
		range of substances with a				
		variety of inks. A common example of this technique is				
		exemplified by the use of				
		alkane thiolates to imprint onto				
3	Define photo	a gold surface. Photolithography, also called	Remember	CO 5	CLO 17	AME512.017
	lithographic	optical lithography or UV lithog				
	process	raphy, is a process used in microfabrication to pattern parts				
		of a thin film or the bulk of a				
		substrate (also called a wafer). Subsequent stages in				
		the process have more in				
		common with etching than				
4	Define ion beam	with lithographic printing. Ion-beam lithography is the	Remember	CO 5	CLO 17	AME512.017
	lithography	practice of scanning a		_)7		>
	0	focused beam of ions in a patterned fashion across a	4 .		-	
		surface in order to create very				·
		small structures such as integrated circuits or other		7	4	
	0	nanostructures.	-	·	-	
5	What is V may	V Day lithograpy is a variation	Understand	CO 5	CLO 18	AME512.018
3	What is X-ray lithography?	X-Ray lithograpy is a variation of light lithography tecniques	Understand	CO 3	CLO 18	AMES12.016
	***	using short wavelength X-Rays.	** 1	go #	GL 0.10	43 FF 712 010
6	What is nano lithography?	Nanolithography is a growing field of techniques within	Understand	CO 5	CLO 18	AME512.018
	narography .	nanotechnology dealing with				
		the engineering (etching, writing, printing) of nanometer-				
		scale structures With				
		evolution of the semiconductor				
		industry, demand for techniques capable of producing micro-				
		and nano-scale structures				
7	What is deep	skyrocketed. The deep UV lasers are ideal	Understand	CO 5	CLO 18	AME512.018
	UV?	for applications such as Raman	Chacibana		220 10	12.010
		spectroscopy where the narrow line width is a requirement.				
		The deep UV LEDs are useful				
		for compact fluorescence based				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		instrumentation where the				
		smaller size and lower cost are key benefits.				
8	What is depth of	Depth of focus is a lens optics	Understand	CO 5	CLO 18	AME512.018
	focus?	concept that measures the	Charle		020 10	111111111111111111111111111111111111111
		tolerance of placement of the				
		image plane (the film plane in a				
		camera) in relation to the lens.				
		In a camera, depth of				
		focus indicates the tolerance of the film's displacement within				
		the camera and is therefore				
		sometimes referred to as "lens-				
		to-film tolerance".				
9	What is EUV	Extreme	Understand	CO 5	CLO 19	AME512.019
	lithography used	ultraviolet lithography (also	Name of Street			
	for?	known as EUV or EUVL) is a next-generation				
		lithography technology using an				
		extreme ultraviolet (EUV)				
		wavelength, currently expected				
		to be 13.5 nm. EUV is currently				
		being developed for high				
10	What is focus	volume use by2020.	TI. J J.	CO 5	CI O 10	AME 512 010
10	exposure matrix?	Focus exposure matrices (FEMs) are a critical	Understand	CO 5	CLO 19	AME512.019
	exposure manax.	tool for evaluating the				
		performance of lithographic				
		processes. Any change in any				
		process component, including				
		critical dimension (CD) targets,				
		chemistry, optics, or processing times requires that an FEM be				-
		run to verify process	- 11 -			
	0	performance.				-
11	What is the	LIGA is a German acronym	Remember	CO 5	CLO 19	AME512.019
	meaning of liga	for Lithographie, Galvanoformu			4	
	in lithography?	ng, Abformung (Lithography, E lectroplating, and Molding) that				
		describes a fabrication			100	
		technology used to create high-				
		aspect-ratio microstructures.		6		
12	What is optical	Optical Lithography refers to	Remember	CO 5	CLO 20	AME512.020
	lithography?	a lithographic process that uses				
		visible or ultraviolet light to form patterns on the photoresist				
		through printing. Printing is the				
		process of projecting the image				
		of the patterns onto the wafer				
		surface using a light source and				
13	What is DPN in	a photo mask. Dip pen nanolithography (DPN)	Remember	CO 5	CLO 20	AME512.020
13	lithography?	is a scanning	Kennember	CO 3	CLO 20	AMES12.020
		probe lithography technique				
		where an atomic force				
		microscope (AFM) tip is used				
		to create patterns directly on a				
		range of substances with a variety of inks. A common				
		example of this technique is				
		pro or and teemingue is	1		l	I

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		exemplified by the use of				
		alkane thiolates to imprint onto				
		a gold surface.				
14	What is anti	An antireflective or anti-	Remember	CO 5	CLO 20	AME512.020
	reflective coating	reflection (AR) coating is a type				
	in lithiography?	of optical coating applied to the				
		surface of lenses and other				
		optical elements to				
		reduce reflection. In typical				
		imaging systems, this improves				
		the efficiency since less light is				
		lost due to reflection.				
15	What is	Lithography technology is a	Remember	CO 5	CLO 20	AME512.020
	lithography	patterning transfer process				
	technology?	which transfers the graphics				
		from a designed mask or reticle	Name of Street			
		to the photoresist on a prepared				
		substrate.				

Signature of the Faculty

HOD, ME