ENGINEERING CHEMISTRY

Course Code	Category	Category Hours / '		Veek Credits		Maximum Marks		
AHS005	Core	L	Т	Р	С	CIA	SEE	Total
		3	-	2	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	I	Practical Classes: 2			Total Classes: 45		
OBJECTIVES:								
The course should enaI. Apply the electronII. Understand the free corrosion controIII. Analysis of waterIV. Improve the function	ble the students to: ochemical principles in undamentals of corrosid l. er for its various parame damental science and e	batterie on and eters an ngineer	es. develo d its si	pment gnifica	of different ance in ind s relevant	nt techn ustrial, to mate:	iques in applicat rials.	ı tions.
COURSE LEARNING	G OUTCOMES (CLOs)	:						
1. Extrapolate the kir reference electrod	nowledge of electrolytic les.	c cell, e	electroc	chemic	al cell, ele	ctrode p	ootential	l and
2. Use of primary ar	d secondary batteries in	n vario	us fielc	ls such	as automo	obiles, r	ailways	,
medical devices,	aircrafts and day to day	life.					2	
3. Explain the characteristic corrosion.	cteristic factors of a me	etal and	enviro	onment	influencir	ng the ra	ate of	
4. Use appropriate n corrosion in meta	nethods such as protects ls.	ive, me	tallic a	nd org	anic coatii	ngs to c	ontrol	
5. Evaluate the qual applications.	ity and utility of suitabl	e water	for in	dustria	l as well a	s domes	stic	
6. Use innovative m purpose at cheape	ethods to improve the c	quality	of soft	water	for Potable	e and in	dustrial	
7. Understand the coapplication.	oncepts of polymers for	[•] viscoe	lastic r	nature	of polymer	r materi	als in re	al-time
8. Demonstrate the a domains.	ability to use polymeric	materi	als for	engine	eering prob	olems in	differe	nt
9. Justify the immen engineering work	se importance of basic s.	constru	ictiona	l mate	rial, Portla	nd cem	ent in ci	vil
10. Describe various industries.	instruments used for mo	easurin	g vario	ous pro	perties of I	lubrican	nts in	
11. Understand refrac	tory use in metallurgica	al furna	aces, ki	lns and	d other equ	uipment	s.	
12. Demonstrate com performance.	prehensive knowledge	of conv	vention	al fuel	properties	on eng	ine	
13. Understand the in	portance of cracking, l	knockir	ng in IC	C engir	nes and op	erations	involve	ed in

petroleum refining for real-time application.

- 14. Describe the physical and chemical properties of alternate fuels like natural gas, LPG and CNG.
- 15. Determine efficiency of the fuel in terms of calorific value and combustion reactions of the fuel.
- 16. Understand the concepts of electro chemistry in solar cell, Fuel cells and batteries for realtime application.
- 17. Understand the concepts of corrosion control methods in pipeline leaks and ruptures as realtime application.
- 18. Understand the concepts of water technology in applications of image recognition for realtime water level and surface velocity.
- Unit-I

ELECTROCHEMISTRY AND BATTERIES

Electrochemistry: Basic concepts of electrochemistry; Conductance: Specific, equivalent and molar conductance and effect of dilution on conductance; Electrochemical cells: Galvanic cell (daniel cell); Electrode potential; Electrochemical series and its applications; Nernst equation; Types of electrodes: Calomel electrode, quinhydrone electrode; Batteries: Classification of batteries, primary cells (dry cells) and secondary cells (lead-acid battery, Ni-Cd cell), applications of batteries, numerical problems.

Unit-II

CORROSION AND ITS CONTROL

Corrosion: Introduction, causes and effects of corrosion; Theories of corrosion: Chemical and electrochemical corrosion with mechanism; Factors affecting the rate of corrosion: Nature of the metal and nature of the environment; Types of corrosion: Waterline and crevice corrosion; Corrosion control methods: Cathodic protection- sacrificial anodic protection and impressed current cathodic protection; Surface coatings: Metallic coatings, methods of application of metallic coatings-hot dipping(galvanizing, tinning), electroplating(copper plating); Organic coatings: Paints, its constituents and their functions.

Unit-III WATER TECHNOLOGY

Water: Sources and impurities of water, hardness of water, expression of hardness-units; Types of hardness: Temporary hardness, permanent hardness and numerical problems; Estimation of temporary and permanent hardness of water by EDTA method; Determination of dissolved oxygen by Winkler's method; Boiler troubles: Priming, foaming, scales, sludges and caustic embrittlement.

Treatment of water: Internal treatment of boiler feed water- carbonate, calgon and phosphate conditioning, softening of water by Zeolite process and Ion exchange process; Potable water-its specifications, steps involved in the treatment of potable water, sterilization of potable water by chlorination and ozonization, purification of water by reverse osmosis process.

Unit-IV MATERIALS CHEMISTRY

Hours: 15

Hours: 15

Hours: 12

Hours: 09

Materials chemistry: Polymers-classification with examples, polymerization-addition, condensation and co-polymerization; Plastics: Thermoplastics and thermosetting plastics; Compounding of plastics; Preparation, properties and applications of polyvinyl chloride, Teflon, Bakelite and Nylon-6, 6; Rubbers: Natural rubber its process and vulcanization; Elastomers: Buna-s and Thiokol rubber; Fibers: Characteristics of fibers, preparation properties and applications of Dacron; Characteristics of fiber

reinforced plastics; Cement: Composition of Portland cement, setting and hardening of Portland cement; Lubricants: Classification with examples; Properties: Viscosity, flash, fire, cloud and pour point; Refractories: Characteristics and classification with examples.

Unit-V FUELS AND COMBUSTION

Hours: 09

Fuel: Definition, classification of fuels and characteristics of a good fuels; Solid fuels: Coal; Analysis of coal: Proximate and ultimate analysis; Liquid fuels: Petroleum and its refining; Cracking: Fixed bed catalytic cracking; Knocking: Octane and cetane numbers; Gaseous fuels: Composition, characteristics and applications of natural gas, LPG and CNG; Combustion: Calorific value: Gross Calorific Value(GCV) and Net Calorific Value(NCV), calculation of air quantity required for complete combustion of fuel, numerical problems.

Text Books:

- P. C. Jain and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company, 15th Edition, 2015.
- 2. Shashi Chawla, "Text Book of Engineering Chemistry" Dhanat Rai and Company, 1st Edition 2011

Reference Books:

- 1.B. Siva Shankar, "Engineering Chemistry", Tata McGraw Hill Publishing Limited, 3rd Edition, 2015.
- 2. S. S. Dara, Mukkanti, "Text of Engineering Chemistry", S. Chand & Co, New Delhi, 12th Edition, 2006.
- 3. C. V. Agarwal, C. P. Murthy, A. Naidu, "Chemistry of Engineering Materials", Wiley India, 5thEdition, 2013.
- 4.R. P. Mani, K. N. Mishra, "Chemistry of Engineering Materials", Cengage Learning, 3rd Edition, 2015.

Web References:

- 1. www.tndte.com
- 2. nptel.ac.in/downloads
- 3. www.scribd.com
- 4. cuiet.info
- 5. www.sbtebihar.gov.in
- 6. www.ritchennai.org

E-Text Books:

- 1. Corrosion.ksc.nasa.gov/electrochem_cells.htm
- 2. www.science.uwaterloo.ca/~cchieh/cact/applychem/watertreatment.html
- 3. www.acs.org/content/acs/en/careers/college-to-career/areas-of-chemistry/polymer-chemistry.html
- 4. www.darvill.clara.net/altenerg/fossil.htm
- 5. Library.njit.edu/research helpdesk/subject guides/chemistry.php