IARE NO.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	STRUCTURAL ANALYSIS
Course Code	:	ACE008
Program	:	B. Tech
Semester	:	V
Branch	:	Civil Engineering
Section	:	A & B
Academic Year	:	2019 - 2020
Course Faculty	:	Mr. Suraj Baraik, Assistant Professor Mr. S Ashok Kumar, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:						
T	Describe the process of analysis of various structures such as beams, trusses, arches and						
1	frames.						
II	Analyze statically determinate structures using force and displacement methods.						
III	Draw the shear force, bending moment and influence diagrams for various structures.						
IV	Examine the various structures to calculate critical stresses and deformation.						

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code			
	MODULE-I								
1	Define trusses	A Truss is a structure composed of slender members (two-force members) joined together at their end points. Joints are modeled by smooth pin connections.	Understand	CO 1	CLO 1	ACE008.01			
2	What are the different types of roof trusses?	Different types of roof trusses are • King Post Truss. • Pratt Truss. • Queen Post Truss. • Howe Truss. • Fan Truss. • Quadrangular Roof Trusses. • Parallel Chord Roof Trusses.	Remember	CO 1	CLO 1	ACE008.01			
3	What is the purpose of a truss?	The purpose of a truss is to distribute the load through all the members.	Remember	CO 1	CLO 2	ACE008.02			
4	What is a truss chord?	Chords The outer members of a truss that define the envelope or shape.	Remember	CO 1	CLO 1	ACE008.01			

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
5	What is a truss element?	The truss transmits axial force only and, in general, is a three degree-of-freedom (DOF) element	Remember	CO 1	CLO 1	ACE008.01
6	What is a simple truss?	A Truss is a structure composed of slender members (two-force members) joined together at their end points. Joints are modeled by smooth pin connections.	Remember	CO 1	CLO 1	ACE008.01
7	What is flat truss?	A flat truss is the wood structure that forms a triangular roof: cross beams, collar beams, ceiling posts, posts, etc. Trusses and flat trusses connected by purlins form the roof structure.	Remember	CO 1	CLO 1	ACE008.01
8	What is the difference between a truss and a beam?	Trusses are used only when it is intended to transfer the loads through axially loaded elements (No bending takes place)	Remember	CO 1	CLO 1	ACE008.01
9	What is the bottom chord of a truss?	The bottom chord is the bottom horizontal or inclined member of a truss.	Remember	CO 1	CLO 1	ACE008.01
10	Define scissors truss	The bottom chord is also called a scissors truss. The bottom chord establishes the lower edge of a truss.	Remember	CO 1	CLO 1	ACE008.01
11	What is section method?	The method of sections consists of passing an imaginary line through the truss, cutting it into sections.	Remember	CO 1	CLO 4	ACE008.04
12	What is method of joint?	The method of joints is a way to find unknown forces in a truss structure. The principle behind this method is that all forces acting on a joint must add to zero.	Remember	CO 1	CLO 4	ACE008.04
13	Define is complex truss.	Compound trusses are commonly used to support loads over long spans as in bridges. Complex Truss: A complex truss uses a general layout of members different from that used in simple and compound trusses.	Understand	CO 1	CLO 1	ACE008.01
14	What is a clear span truss?	Clear span metal buildings don't require a truss and cord system, and boast an "A" frame design.	Remember	CO 1	CLO 2	ACE008.02
15	What is a parallel chord truss?	In a parallel chord truss, the top and bottom chords of the truss follow the same slope.	Remember	CO 1	CLO 1	ACE008.01
		MODULE-	II			
1	Define Arch.	An arch is a vertical curved structure that spans an elevated space and may or may not support the weight above it	Remember	CO 2	CLO 7	ACE008.07

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
2	What is a hinged arch?	A Hinged arch can be defined as a humped or curved beam subjected to transverse and other loads as well as the horizontal thrust at the supports.	Remember	CO 2	CLO 7	ACE008.07
3	What is the degree of indeterminacy of a two hinged arch?	The degree of indeterminate to 2 degrees. It consists of two pin supports at both of its ends.	Understand	CO 2	CLO 9	ACE008.09
4	What is normal thrust?	Normal thrust and radial shear in an arch. Total force acting along the normal is called normal thrust and total force acting, along the radial direction is called radial shear.	Understand	CO 2	CLO 9	ACE008.09
5	Define radial Shear	Total force acting along the normal in case of arch is called normal thrust and total force acting, along the radial direction is called radial shear.	Understand	CO 2	CLO 9	ACE008.09
6	What is three hinged arches?	Three-hinged arches are statically determinate; hence, horizontal displacement of the abutments does not produce any additional stresses on the structural system.	Remember	CO 2	CLO 9	ACE008.09
7	What is two hinged arch?	Two-hinged arch is the statically indeterminate structure to degree one.	Remember	CO 2	CLO 7	ACE008.07
8	What is fixed Arch?	Fixed arches restrict the horizontal, vertical or rotational movement at its two ends, so a fixed arch is an indeterminate structure.	Remember	CO 2	CLO 7	ACE008.07
9	Where the fixed arches can be used?	Fixed arches are used as bridge arches or as tunnel roofs, where the span is short.	Remember	CO 2	CLO 7	ACE008.07
10	What is the purpose of Arches?	Its purpose is to support or strengthen a building. Most arches consist of wedge-shaped blocks. The top center stone, called the keystone, is the last block to be inserted.	Remember	CO 2	CLO 7	ACE008.07
11	What material are generally used in making an arch?	An arch is a curved structure that is usually made of stone, brick, concrete, or, more recently, steel.	Remember	CO 2	CLO 7	ACE008.07
12	What is theoretical Arch?	An arch is a vertical curved structure that spans an elevated space and may or may not support the weight above it, or in case of a horizontal arch like an arch dam, the hydrostatic pressure against it.	Remember	CO 2	CLO 7	ACE008.07
13	What is a rolling load?	Rolling loads are those loads which roll over the given structural element from one end to the another.	Remember	CO 2	CLO 7	ACE008.07

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
14	Why is an arch stronger?	The natural curve of the arch and its ability to dissipate the force outward greatly reduces the effects of tension on the underside of the arch	Remember	CO 2	CLO 7	ACE008.07
15	What is linear arch?	Eddy's theorem states that the bending moment at any section of an arch is equal to the vertical intercept between the linear arch and the center line of the actual arch.	Remember	CO 2	CLO 7	ACE008.07
		MODULE-I	ш			
1	What is propped beam?	A cantilever beam for which one end is fixed and other is provided support, in order to resist the deflection of the beam, is called a propped cantilever beam.	Understand	CO 3	CLO 13	ACE008.13
2	What is overhanging beam?	An overhanging beam is defined as a beam, which is freely supported at two points and having one or both ends extending beyond these supports.	Remember	CO 3	CLO 13	ACE008.13
3	What is meant by fixed beam?	If a beam is inflexible at both ends in order that the slope at the ends becomes zero, it is known as fixed beam.	Remember	CO 3	CLO 13	ACE008.13
4	Define built-in beam?	If a beam is inflexible at both ends in order that the slope at the ends become zero.	Remember	CO 3	CLO 13	ACE008.13
5	What is the advantages of fixed beam?	The advantages are that you reduce the sagging moment in the beam thus also reducing the deflection.	Remember	CO 3	CLO 13	ACE008.13
6	What are the disadvantages of fixed beam?	The disadvantages are that moment are causing at the top over supports thus need some reinforcing in the top of the beam.	Understand	CO 3	CLO 13	ACE008.13
7	What is a continuous beam?	A continuous beam is a statically indeterminate multispan beam on hinged support. The end spans may be cantilever, may be freely supported or fixed supported	Remember	CO 3	CLO 15	ACE008.15
8	What is end span beam?	A span that is a slab or a continuous beam at its interior support.	Understand	CO 3	CLO 13	ACE008.13
9	What is a simple beam?	A simply supported beam is a type of beam that has pinned support at one end and roller support at the other end.	Remember	CO 3	CLO 13	ACE008.13
10	Is cantilever beam statically indeterminate?	A structure is usually externally indeterminate or redundant if the reactions at the supports cannot be determined by using three equations of equilibrium,	Remember	CO 3	CLO 13	ACE008.13

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
11	Is fixed beam	The fixed end moments are	Understand	CO 3	CLO 13	ACE008.13
	statically	reaction moments developed in				
	indeterminate?	a beam member under certain load conditions with both ends				
		fixed. A beam with both ends				
		fixed is statically indeterminate				
		to the 3rd degree, and any				
		structural analysis method				
		applicable on statically				
10	TT.	indeterminate beams	D 1	GO 2	CI O 12	A CE000 12
12	How many types of beams are	The four different types of beams are: Simply Supported	Remember	CO 3	CLO 13	ACE008.13
	there?	Beam. Fixed Beam. Cantilever				
	there.	Beam.				
13	What is meant by	Sinking of support means the	Remember	CO ₃	CLO 15	ACE008.15
	sinking of	support of the beams are at	Name of Street			
4.4	support?	different levels.		GO 2	GY 0 4 #	1 GT000 1 7
14	What is the	A continuous beam has lesser maximum positive bending	Remember	CO 3	CLO 15	ACE008.15
	advantages of continuous	moment than a simply supported				
	beam?	beam.				
15	Define effective	The distance between the	Remember	CO 3	CLO 13	ACE008.13
	span for a beam?	centers of support, or the clear				
		distance between supports plus				
		the effective depth of the beam or slab, the lesser value being				
		taken.				
		turon				
		MODULE-1	IV			
1	What is	In regards to beams, if the	Understand	CO 4	CLO 16	ACE008.17
	statistically	reaction forces can be calculated				
	determinate beam?	using equilibrium equations alone, they are statically	. 10			
	beam?	determinate.	4		-	
2	What do you	Statically indeterminate	Remember	CO 4	CLO 16	ACE008.18
	mean by a	structures indicate that there's at			. ~	
	statically	least one more unknown				
	indeterminate	reaction force than there are			500	
	system?	equations of equilibrium, meaning that the sum of forces				
		and moments in each direction				
	17	is equal to zero.		~		
3	What is a	A truss is considered statically	Understand	CO 4	CLO 16	ACE008.17
	determinate	determinate if all of its support	1 7 7 7 7			
	truss?	reactions and member forces can	100			
	uuss:					l
	truss:	be calculated using only the				
4		be calculated using only the equations of static equilibrium.	Remember	CO 4	CLO 16	ACE008.17
4	What is indeterminacy	be calculated using only the	Remember	CO 4	CLO 16	ACE008.17
4	What is	be calculated using only the equations of static equilibrium. Degree of static indeterminacy = Total number of unknown (external and internal) forces.	Remember	CO 4	CLO 16	ACE008.17
4	What is indeterminacy	be calculated using only the equations of static equilibrium. Degree of static indeterminacy = Total number of unknown (external and internal) forces Number of independent	Remember	CO 4	CLO 16	ACE008.17
•	What is indeterminacy degree?	be calculated using only the equations of static equilibrium. Degree of static indeterminacy = Total number of unknown (external and internal) forces Number of independent equations of equilibrium.				
5	What is indeterminacy degree? What is static	be calculated using only the equations of static equilibrium. Degree of static indeterminacy = Total number of unknown (external and internal) forces Number of independent equations of equilibrium. In statics, a structure is statically	Remember	CO 4	CLO 16	ACE008.17 ACE008.17
	What is indeterminacy degree?	be calculated using only the equations of static equilibrium. Degree of static indeterminacy = Total number of unknown (external and internal) forces Number of independent equations of equilibrium. In statics, a structure is statically indeterminate (or hyperstatic)				
	What is indeterminacy degree? What is static	be calculated using only the equations of static equilibrium. Degree of static indeterminacy = Total number of unknown (external and internal) forces Number of independent equations of equilibrium. In statics, a structure is statically				
	What is indeterminacy degree? What is static	be calculated using only the equations of static equilibrium. Degree of static indeterminacy = Total number of unknown (external and internal) forces Number of independent equations of equilibrium. In statics, a structure is statically indeterminate (or hyperstatic) when the static equilibrium				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
6	What is moment	The moment distribution	Remember	CO 4	CLO 16	ACE008.17
	distribution	method is a structural analysis				
	method?	method for statically				
		indeterminate beams and frames				
7	What is the use	developed by Hardy Cross. Moment distribution method	Understand	CO 4	CLO 16	ACE008.18
/	of moment	offers a convenient way to	Oliderstand	CO 4	CLO 10	ACE006.16
	distribution	analyse statically indeterminate				
	method?	beams and rigid frames.				
8	Why ever joint	In the moment distribution	Remember	CO 4	CLO 16	ACE008.18
	has to be	method, every joint of the				
	analysed in	structure to be analysed is fixed				
	moment	so as to develop the fixed-end				
	distribution	moments.				
	method?		D 1	GO 4	OT 0.16	A GE000 10
9	What is carry over in moment	Carry over moment is the same	Remember	CO 4	CLO 16	ACE008.18
	distribution	nature of the applied moment.				
	method?					
10	How carry over	A moment applied at the hinged	Remember	CO 4	CLO 17	ACE008.17
- 0	moment is	end B "carries over" to the fixed				1102000117
	distributed?	end A, a moment equal to half				
		the amount of applied moment				
		and of the same rotational sense.				
11	What is beam end	An end release will allow either	Remember	CO 4	CLO 16	ACE008.18
	release?	or both ends of a beam element				
		to rotate about or translate along				
		one or more of the local axes of				
12	Why slope	the beam. Slope-deflection equations are	Understand	CO 4	CLO 17	ACE008.17
12	deflection	obtained by expressing moment	Understand	CO 4	CLO 17	ACE006.17
	method is called	at the end of a member as the				
	as displacement	superposition of end moment				700
	method?	due to external loads on the	- // -			
	0	member assuming ends are	. 10			3
		restrained and end moments				
		caused by the actual end			4	
12	XXIII	displacements and rotations.	D 1	ac :	OY C 15	, gpaca 17
13	What are the	All the joints of the frame are	Remember	CO 4	CLO 17	ACE008.17
	assumption made	rigid distortion, due to axial and				
	in slope deflection	shear stresses, being very small, are neglected.				
	method?	are negreeted.		~		
14	What is stiffness	Stiffness factor is the ratio of	Remember	CO 4	CLO 16	ACE008.17
-	factor?	moment of inertia of cross			1 1 1 1 1 1	
		section of beam or wire to it's	100			
		length. Stiffness factor is the				
		measure of "resistance to				
		bending"				
15	What is sway	Sway correction is defined as	Remember	CO 4	CLO 17	ACE008.18
	correction?	the removal of lateral movement				
		in the beams or frames by				
		correction factor is multiplied by				
		corresponding sway moment.]			

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE-	V			
1	What is influence line in structural analysis?	An influence line for a given function, such as a reaction, axial force, shear force, or bending moment, is a graph that shows the variation of that function at any given point on a structure due to the application of a unit load at any point on the	Remember	CO 5	CLO 19	ACE008.21
2	What is the significance of influence line diagram?	It shows the variation in the function when unit load is applied at any point on the structure.	Remember	CO 5	CLO20	ACE008.21
3	What is a rolling load?	Rolling loads are those loads which roll over the given structural element from one end to another.	Remember	CO 5	CLO 19	ACE008.23
4	What are the uses of influence line?	Influence lines are very useful in the quick determination of reactions, shear force, bending moment or similar functions at a given section under any given system of moving loads.	Remember	CO 5	CLO20	ACE008.21
5	What is bending moment diagram?	Shear and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear	Understand	CO 5	CLO 19	ACE008.21
	6	force and bending moment at a given point of a structural element such as a beam.	· 21 :		- 2	2
6	What does the influence line for bending moment indicate?	The influence line shows the value of bending moment at a point in a structure as a given point load moves across the structure.	Understand	CO 5	CLO20	ACE008.23
7	What is ILD in structural analysis?	An influence line for any given point or section of structure is a curve whose ordinates represent to scale the variation of a function such as shear force, bending moment, deflection.	Understand	CO 5	CLO20	ACE008.21
8	What is absolute maximum bending moment?	The indeterminacy of a structure that is expressed in terms of its degrees of freedom is known as the kinematic indeterminacy.	Understand	CO 5	CLO 19	ACE008.21
9	What is the difference between static and kinetic energy?	The main difference between static and kinetic friction is that static friction acts while the surfaces are at rest while kinetic friction acts when there is relative motion between the surfaces.	Understand	CO 5	CLO 19	ACE008.21
10	What is compatibility equation?	Compatibility equation is used when solving indeterminate members	Remember	CO 5	CLO 19	ACE008.21

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
11	What is	Statically determinacy is a term	Remember	CO 5	CLO 19	ACE008.23
	Determinacy of a	used in structural mechanics to				
	structure?	describe a structure where force				
		and moment equilibrium				
		conditions alone can be utilized				
		to calculate internal member				
		actions.				
12	What is strain	Strain is a measure of	Remember	CO 5	CLO 19	ACE008.23
	displacement?	deformation representing the				
		displacement between particles				
		in the body relative to a				
		reference length.				
13	What is an	It is a beam when a cantilever	Remember	CO 5	CLO 19	ACE008.21
	overhanging	portion is hanging out of a				
	beam?	simply supported beam.				
14	What is point of	In a bending moment diagram, it	Remember	CO 5	CLO 19	ACE008.21
	Contra-flexure?	is the point at which the bending				
		moment curve intersects with				
		the zero line.				
15	What is internal	It refers to the geometric	Remember	CO 5	CLO 19	ACE008.21
	static	stability of the structure.				
	indeterminacy?					

Signature of the Faculty

HOD, CE