INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)

Code No: BCS208

MODEL QUESTION PAPER - II

M. Tech II Semester Regular Examinations, August 2017

Max. Marks: 70

SOFT COMPUTING

(Computer Science and Engineering)

Time: 3 hours

Answer ONE Question from each Unit

All Questions Carry Equal Marks

All parts of the question must be answered in one place only

UNIT-I

1.	(a)	Consider a multilayer feed forward network, all the neurons of which operate in their linear regions. Justify the statement that such a network is equivalent to a single-layer feed forward network. Define hebb's rule and delta rule. List the features that distinguish two rules	[7M]
	(0)	from each other.	[/141]
2.	(a) (b)	List out various applications of neural networks. Explain how neural networks can be implemented in handwritten digit recognition application. Consider the simple example of a network involving a single weight, for which the cost function is	[9M]
		$\mu(w)=k_1(w-w_0)^2+k_2$ Where w ₀ , k ₁ and k ₂ are constants. A back-propagation algorithm with momentum is used to minimize μ (w). Explore the way in which the inclusion of the momentum constant α influences the learning process with particular reference to the number of epochs required for convergence versus α .	[5M]
		UNIT-II	
3.	(a)	Explain the architecture of counter propagation networks and their training algorithms.	[6M]
	(b)	State how the Hop-field network may be used to maximize an objective function by recasting the objective as one to be minimized.	[5M]
	(c)	Discuss energy function of continuous Hopfield network.	[3M]
4.	(a)	Using suitable diagrams and equations explain the basic bidirectional associative memory configuration. Also describe its energy function.	[7M]
	(b)	Draw and explain the architecture of popular self-organizing maps. Derive the training algorithm of kohonen network. Also explain how SOMs can be used for data compression	[7M]
			[/101]
		UNI I -111	
5.	(a)	Develop a reasonable membership function for a square, based on the geometric properties of a rectangle, for this problem use L as length of the longer side and l is the length of the smaller side.	[8M]
	(b)	Explain the following with example i. Fuzzy union	[]
		iii.Fuzzy complement.	[6M]
6.	(a)	What do you mean by defuzzification? Explain the following methods of	[8M]

defuzzification.

i. Centroid method

ii.Weighted average method

(b) Compare and contrast between crisp variables and fuzzy variables. Give examples. [6M]

UNIT-IV

7. What are the four major steps in fuzzy rule-based model? Explain them. [4M] (a) How multivalued logic and fuzzy logic are related? Give brief description of (b) the following i. unconditional and unqualified fuzzy proposition ii. Conditional and unqualified fuzzy proposition. [6M] (b) Define and explain fuzzy interference systems with examples. [4M] With an example discuss fuzzy individual decision making and also explain 8. (a) the direct methods of fuzzy construction. [7M] What is fuzzy compliment? What are the axioms to be satisfied so that a (b) function can be used as fuzzy compliment? Check whether the function x+yx.y can be used as a fuzzy union or not. [7M] **UNIT-V** 9. Differentiate between genetic algorithm and genetic programming. Write (a) short notes on tree based genetic programming. [7M] Discuss the characteristics of genetic programming. With a computer program, (b) explain the approach of genetic programming to scheduling algorithms. [7M] Mention some of the areas where genetic algorithms can be applied. How is 10. (a)

fuzzy optimization performed? Illustrate with an example. [6M]
(b) How genetic algorithms are related to internet? Discuss about selection of the degree of crossover and generation of the output set with an example. [8M]