

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	THERMODYANMICS
Course Code	:	AMEB04
Program	:	B. Tech
Semester	:	III
Branch	:	Mechanical Engineering
Section	:	A & B
Academic Year	:	2019-2020
Course Faculty	:	Dr. P SrinvasaRao, Professor Mr. A Venuprasad, Assistant Professor

OBJECTIVES:

~

Ι	Understand the laws of thermodynamics and determine thermodynamic properties, gas laws.						
II	Knowledge of properties during various phases of pure substances, mixtures, usage of steam tablesand Mollier chart, psychometric charts.						
III	Understand the direction law and concept of increase in entropy of universe.						
IV	Understand the working of ideal air standard, vapor cycles and evaluate their performance in opensystems like steam power plants, internal combustion engines, gas turbines and refrigerationsystems.						

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		MODULE-I				
1	What Thermodynamics?	Thermodynamics is a branch of science which deals with the energy changes accompanying physical and chemical transformations. It is not concerned with the total energy of a body, but with energy changes accompanying a given process or transformation. Thermodynamics is concerned in nature.	Understand	CO1	CL01	AMEB04.01
2	Define System?	A portion of universe which is under investigation, e.g., portion of test tube where reaction is taking place, is called system	Understand	CO1	CLO1	AMEB04.01
3	Define surroundings?	The rest of the universe which might be in a position to exchange energy and matter with the system is called the surroundings.	Remember	CO1	CLO1	AMEB04.01
4	What is boundary?	The system is separated from the surroundings by a boundary which may be real or imaginary.	Understand	CO1	CLO2	AMEB04.01
5	What is homogeneous	A system is said to be homogeneous when it is	Understand	CO1	CLO 1	AMEB04.01

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	system?	completely uniform throughout, for example, a pure solid or liquid or a solution or a mixture of gases. In other words, a homogeneous system consists of only one phase.				
6	Define Isolated system?	Isolated system is one that can transfer neither matter nor energy to and from, its surroundings.	Remember	CO1	CLO 2	AMEB04.02
7	Define closed system?	The boundary is sealed but not insulated. Therefore, A closed system is one which cannot transfer matter but can transfer energy in the form of heat, work and radiation to and from its surroundings	Understand		CLO 2	AMEB04.02
8	Define open system?	An open system is one which can transfer both energy and matter to and from its surroundings.	Remember	CO1	CLO 2	AMEB04.02
9	What is macroscopic System?	A system is said to be macroscopic when it consists of a large number of molecules, atoms or ions.	Remember	CO1	CLO 2	AMEB04.02
10	What are macroscopic properties?	The properties associated with a macroscopic system are called macroscopic properties. These properties are pressure, volume, temperature, composition, density, viscosity, surface tension, refractive index, colour etc.	Remember	CO1	CLO 3	AMEB04.03
11	What is state of system?	When macroscopic properties of a system have definite values, the system is said to be in a definite state	Understand	CO1	CLO 3	AMEB04.03
12	What is state variables	The state of a system changes with the change in any of the macroscopic properties, these are called state variables	Understand	CO1	CLO 3	AMEB04.03
13	What is state extensive property?	An extensive property of a system is that which depends upon the amount of the substance or substances present in the system. The examples are mass, volume, energy, heat capacity, enthalpy, entropy, free change etc.	Remember	CO1	CLO 3	AMEB04.03
14	Define Isolated system?	Isolated system is one that can transfer neither matter nor energy to and from, its surroundings.	Understand		CLO1	AMEB04.03
15	What intensive property?	An intensive property of a system is that which is independent of the amount of the substance present in the systel'n.The examples are temperature, pressure, density, viscosity, refractive index, surface tension and specific heat.	Understand	CO1	CLO 3	AMEB04.03
16	Define Mechanical equilibrium?	A system is said to be-tin mechanical equilibrium if no mechanical work is done by one part of the system on another part of the system. This is possible if	Understand	CO1	CLO 4	AMEB04.04

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		the pressure remains the same throughout in all parts of the system.				
17	Define Chemical equilibrium?	A system is said to be in chemical equilibrium if the composition of the various phases in the system remains the same throughout.	Understand	CO1	CLO 4	AMEB04.04
18	What is a process?	It Whenever the state of a system changes, it is said to have undergone a process. Thus a process may be defined as the operation by which a system changes from one state to another.	Understand	CO1	CLO 4	AMEB04.04
19	What is a Isothermal process?	T remains constant): It is the process in which the temperature of the system remains constant during each step. In such a process the systems are in thermal contact with a constant temperature and both exchange heat with surroundings i.e. both maintain this temperature (DeltaT = 0).	Understand	CO1	CLO 1	AMEB04.01
20	What is a Adiabatic process? (Thermally insulated from the surroundings)	A process in which no heat is exchanged between the system and surroundings is called adiabatic process ($Q = O$). System in which such processes occur are thermally insulated from the surroundings.	Understand	CO1	CLO 1	AMEB04.01
21	What is a Zeroth law of thermodynamics?	Zeroth law of thermodynamics states that if system A is in thermal equilibrium with system B, and system B is in thermal equilibrium with system C, then system C is also in thermal equilibrium with	Remember	CO1	CLO 1	AMEB04.01
22	Define Isobaric process (P remains constant)?	system A (TA = TB = TC). It is the process in which the pressure of the system remains constant during each step of the system (\Delta $P = O$).	Understand	CO1	CLO 1	AMEB04.01
23	Define Cyclic process?	The process which brings aback a system to its original state after a series of changes is called a cyclic process.	Understand	CO1	CLO 1	AMEB04.01
24	What is Reversible Processes?	A thermodynamic reversible process is one that takes place infinitesimally slowly and its direction at any point can be reversed by an infinitesimally change in the state of the system.	Understand	CO1	CLO 2	AMEB04.02
25	What is Irreversible Processes?	When a process goes from the initial state to the final state in a single step and cannot be carried in the reverse order, it is to be an irreversible process.	Remember	CO1	CLO 2	AMEB04.02
26	What is a first law of thermodynamics?	First law of thermodynamics states that in closed system the internal energy can be changed by work or heat only, i.e., $\Delta U = q+w$.	Understand	CO1	CLO 2	AMEB04.02
27	What is	If as system contains a large	Remember	CO1	CLO 2	AMEB04.02

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	Macroscopic	number of chemical species such				
	system and its	as atoms, ions, and molecules, it is				
	properties?	called macroscopic system.				
28	What is Isochoric	It is a process during which the	Remember	CO1	CLO 2	AMEB04.02
	process?	volume of the system is kept constant.				
29	Define Isobaric	It is a process during which the	Remember	CO1	CLO 3	AMEB04.03
2)	process?	pressure of the system is kept	Remember	COI	CLO J	AMLD04.03
	process.	constant.				
30	Reversible	A process which is carried out	Understand	CO1	CLO 3	AMEB04.03
	processes:	infinitesimally slowly so that all				
		changes occurring in the direct				
		process can be exactly reversed		_		
		and the system remains almost in				
		a state of equilibrium with the surroundings at every stage of the				
		process.				
		MODULE-II	· · · · · · · · · · · · · · · · · · ·			
	What is a Second	Second law of thermodynamics	Understand	CO1	CLO 6	AMEB04.06
1	law of	states that in isolated systems the				
	thermodynamics?	entropy increases in spontaneous				
		processes, i.e., $\Delta S > 0$; in reversible				
		process at equilibrium it is constant, i.e., $\Delta S = 0$. or It is impossible to				
		convert heat completely into work.	-			
		or Heat cannot spontaneously flow				
		from a material at lower				
		temperature to a material at higher				
		temperature.				
2	Define enthalpy ?	Enthalpy (H, J) H=U+pV, where U	Understand	CO1	CLO 6	AMEB04.06
		is the internal energy, p pressure				
		and V volume. Its change gives the heat at constant pressure when there	-		1.00	
		is no other work.		-		
3	What is heat	Heat capacity (C, J/K) at constant	Understand	CO1	CLO 6	AMEB04.06
	capacity?	volume: $CV = \partial U \partial T V$ and at		J		
		constant pressure: $Cp = \partial H \partial T p$		P 4	4	
		where U denotes the internal				
		energy, T the temperature, and H			-	
4	What is a reversible	the enthalpy. Reversible process is a process in	Understand	C01	CLO 6	AMEB04.06
4	process?	which the system is always	Understallu	COI		
	P1000000.	infinitesimally close to equilibrium.	-	S		
		Such a process can never be				
		observed, it is only of theoretical	1.1.1			
		interest.			CT C	
5	Define enthalpy?	Enthalpy of reaction is the change in	Understand	CO2	CLO 6	AMEB04.06
6	What is a standard	the enthalpy during a reaction. Standard molar enthalpy of	Understand	CO2	CLO 6	AMEB04.06
U	molar enthalpy?	formation The enthalpy change	Understalld	002		AWED04.00
	motur onthurpy:	when 1 mole of a compound is				
		synthesized from its elements in				
		their standard states of one bar at				
		some temperature.				
7	Define Hess' law?	Hess' law states that the change in	Understand	CO2	CLO 6	AMEB04.06
		the enthalpy of a reaction is the sum				
		of the enthalpies of reactions from				
8	Define entropy?	which the reaction can be built.Entropy(S, J/K) is a	Understand	CO2	CLO 6	AMEB04.06
0	Denne entropy?	thermodynamic quantity that	Understalld	002		AWED04.00
		distinuouynamic quantity that	1			

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		expresses the degree of disorder or randomness in a system at the molecular level dS=δqrev/T.				
9	What is Helmholtz energy?	Helmholtz energy (A, J) defined as A=U-TS, where U is the internal energy, T is the thermodynamic temperature and S is the entropy. The change in Helmholtz energy at constant volume and temperature gives the maximal work available. In a closed system at constant volume and temperature the Helmholtz energy decreases during a spontaneous process.	Understand	CO2	CLO 6	AMEB04.06
10	What is Gibbs energy?	Gibbs energy (G, J) defined as G=H-TS, where H denotes enthalpy, T the thermodynamic temperature and S the entropy. The change in Gibbs energy at constant pressure and temperature gives the maximal work available. In a closed system at constant pressure and temperature the Gibbs energy decreases during a spontaneous process.	Remember	CO2	CLO 7	AMEB04.07
11	What is Raoult's law?	Raoult's law for any component pi = xi $p * i$, where pi is the vapor pressure of the component and $p* i$ is the vapor pressure of the pure component and xi is the mole fraction of the component in the solution.	Remember	CO2	CLO 7	AMEB04.07
12	What is ideal dilute solution?	Ideal dilute solution a solution in which the solvent obeys Raoult's law and the solute obeys Henry's law	Understand	CO2	CLO 7	AMEB04.07
13	What is activity coefficient?	Activity coefficient ai = γixi , where γi is the activity coefficient of the ith compound	Remember	CO2	CLO 7	AMEB04.07
14	What is molar concentration?	Molarity or molar concentration (c, $mol/dm3$) cB = nB/V solution, where nB denotes the amount of substance of the solute and V solution the volume of the solution.	Understand	CO2	CLO 8	AMEB04.08
15	Define colligative properties?	Colligative properties are properties independent of the nature of the compounds and depend on the numbers of the solute particles only. e.g. osmosis, boiling point elevation, freezing point depression, vapor pressure lowerin	Remember	CO2	CLO 8	AMEB04.08
16	Define Osmosis movement?	Osmosis movement of the solvent through a semipermeable membrane from a dilute solution to a more concentrated on	Remember	CO2	CLO 8	AMEB04.08
17	What is Adiabatic Efficiency?	Adiabatic Efficiency of a Compressor - The ratio of the work input required to raise the pressure of a gas to a specified	Understand	CO2	CLO 8	AMEB04.08

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		value in an isentropic manner to the				
18	What is Adiabatic Efficiency of a Nozzle?	actual work input. Adiabatic Efficiency of a Nozzle - The ratio of the actual kinetic energy of the fluid at the nozzle exit to the kinetic energy value at the exit of an isentropic nozzle for the	Understand	CO2	CLO 8	AMEB04.08
19	What is Adiabatic Efficiency of a Turbine?	same inlet state and exit pressure. Adiabatic Efficiency of a Turbine - The ratio of the actual work output of the turbine to the work output that would be achieved if the process between the inlet state and the avit that work instruction	Understand	CO2	CLO 5	AMEB04.05
20	Define Air-	exit state was isentropic. Air-Standard Cycle - A cycle for	Understand	CO2	CLO 5	AMEB04.05
	Standard Cycle?	which the air-standard assumptions are applicable.	Understand	CO2	CLO 5	AMEB04.05
21	Availability?	Availability - The maximum useful work that can be obtained from a system at a given state in a specified environment.	Understand	02	CLO 5	AMEB04.05
22	What is Binary Vapor Cycle?	Binary Vapor Cycle - A power cycle that is a combination of two cycles, one in a higher temperature region and the other in a lower temperature region.	Understand	CO2	CLO 8	AMEB04.05
23	Define Boundary?	Boundary - A real or imaginary surface that separates a system from its surroundings.	Understand	CO2	CLO 8	AMEB04.05
24	Define Carnot Cycle?	Carnot Cycle - The Carnot cycle is composed of four reversible processes. Two of the processes are isothermal and two are adiabatic. The Carnot cycle can be executed in either a closed or a steady-flow system	Understand	CO2	CLO 6	AMEB04.06
25	Define Carnot Heat Engine?	Carnot Heat Engine - A Carnot heat engine is a hypothetical heat engine that operates on the Carnot cycle.	Remember	CO2	CLO 8	AMEB04.08
26	Define Carnot Principles?	Carnot Principles - (1) The efficiency of an irreversible heat engine is always less than the efficiency of a reversible one operating between the same two reservoirs.	Understand	CO2	CLO 8	AMEB04.08
27	What is Carnot Heat Pump?	Carnot Refrigerator or Carnot Heat Pump - A refrigerator or heat pump that operates on the reversed Carnot cycle.	Understand	CO2	CLO 8	AMEB04.08
28	What is Clausius Inequality?	Clausius Inequality - The Clausius inequality states that the cyclic integral of dQ/T (change in heat over temperature) is always less than or equal to zero.	Understand	CO2	CLO 5	AMEB04.05
29	Define Clausius	Clausius Statement - States that it is	Remember	CO2	CLO 8	AMEB04.08

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	Statement?	impossible to construct a device that				
		operates in a				
		cycle and produces no effect other				
		than the transfer of heat from a				
		lower temperature body to a higher temperature body.				
30	What is Closed	Closed Feedwater Heater - A device	Understand	CO2	CLO 5	AMEB04.05
	Feedwater Heater?	that is often used in vapor power				
		plants. In a closed feedwater heater,				
		heat is transferred from steam				
		extracted from a turbine to				
		feedwater entering a boiler. The steam and feedwater do not mix.				
		MODULE-III				
1	What is Closed	A system with fixed mass. Heat,	Understand	CO4	CLO 14	AMEB04.14
	System?	work energy, and volume are not				
		necessarily fixed.				
2	What is Coefficient	Coefficient of Performance of a	Remember	CO4	CLO 16	AMEB04.16
	of Performance of	Heat Pump - A measure of the				
	a Heat Pump?	efficiency of a heat pump. The coefficient of				
		performance of a heat pump is				
		defined as the fraction of the				
		desired output over the required				
		input of the heat pump.				
3	What is COP of a	Coefficient of Performance of a	Remember	CO3	CLO 13	AMEB04.13
	Refrigerator?	Refrigerator - Coefficient of				
		performance of a refrigerator is the efficiency of a				
		refrigerator and is defined as the				
		fraction of the desired				
		output over the required input of the		1		
	10	refrigerator.				50-
4	What is Cold-Air- Standard	Cold-Air-Standard Assumption -	Remember	CO3	CLO 13	AMEB04.13
	Assumption?	Used to simplify the analysis of gas cycles. Includes		7		
	Assumption.	all of the air-standard assumptions		1	-	
		in addition to the assumption that	- /		<	
		the working fluid			1	
	-0	(air) has constant specific heats.		-		
5	Define	Compression Ratio - The ratio of	Understand	CO3	CLO 13	AMEB04.13
	Compression Ratio?	the maximum volume to the minimum volume formed		6		
	Nauo:	in the cylinder of a reciprocating	8			
		engine.	1 1 -			
6	Define	Conservation of Energy Principle	Remember	CO4	CLO 14	AMEB04.14
	Conservation of	(for a general steady-flow system				
	Energy Principle?	with multiple inlets				
		and exits) - The total energy crossing boundary as heat and work				
		per unit time equals				
		the total energy transported out of				
		control volume with mass per unit				
		time minus total				
		energy transported into control				
_	XX71	volume with mass per unit time.	TT. I 1	004		
7	What is Conservation of	Conservation of Mass Principle (for a control volume) - The net change	Understand	CO4	CLO 14	AMEB04.14
	Mass Principle?	in mass within				
	muss i meipie:	control volume equals the total mass				
L			I			

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
		entering control volume minus total				
		mass leaving				
		control volume.				
8	Define Cutoff	Cutoff Ratio - The ratio of the	Remember	CO4	CLO 14	AMEB04.14
	Ratio?	cylinder volumes before and				
		after the combustion				
0	What is Cruslia	process in a diesel engine.	Dementer	CO4	$CI \cap 14$	AMEB04.14
9	What is Cyclic Process?	Cyclic Process - A process in which the initial and final states	Remember	CO4	CLO 14	AMEB04.14
	FIDCESS?	are identical.				
10	What is Dead	Dead State - A state that is in	Remember	CO4	CLO 15	AMEB04.15
10	State?	thermodynamic equilibrium with	Remember	004	CLO IS	7 HVILD04.15
	State.	its surroundings.				
11	What is Diffuser	Diffuser - A device that increases	Understand	CO4	CLO 15	AMEB04.15
		the pressure of a fluid by decreasing				
		the velocity of				
	_	the fluid.				
12	Define Entropy	Entropy - A measure of molecular	Understand	CO4	CLO 15	AMEB04.15
		disorder.				
13	What is Entropy	Entropy Balance for Closed	Remember	CO4	CLO 14	AMEB04.14
	Balance for Closed	Systems - The entropy change of a				
	Systems?	closed system during a process is				
		equal to the sum of the entropy				
		transferred through the system				
		boundary by heat transfer and the				
		entropy generated within the system boundaries as a result of				
		irreversibilities.				
14	What is Entropy	Entropy Balance for Control	Understand	CO4	CLO 15	AMEB04.15
1.	Balance for	Volumes - The rate of the entropy	Chaorbhana	001	010 15	
	Control Volumes?	change within the				
		control volume (dScv/dt) during a				
		process is equal to the sum of the				100 C
		rate of entropy			_	
		transfer through the control			0	
		volume boundary by heat transfer,				
		the net rate of entropy			A	
		transport into the control volume				
		by mass flow, and the rate of			-	
		entropy generation within the boundaries of the				
		control volume as a result of				
		irreversibilities.	-	0		
15	What is Entropy	Entropy Generation - A	Understand	CO4	CLO 15	AMEB04.15
	Generation?	measure of the		201		
		irreversibilities or	1000			
		imperfections which				
		occurduring a cycle.				
16	What is Extensive	Extensive Property - A property	Understand	CO4	CLO 16	AMEB04.16
	Property?	dependent on the size or extent of				
		the system. (Most				
		extensive properties are denoted by				
17	XX71	uppercase letters.)		<u> </u>		
17	What is Externally	Externally Reversible - A process	Understand	CO4	CLO 16	AMEB04.16
	Reversible?	is called externally reversible if no				
		irreversibilities				
		occur outside the system boundaries during the process.				
18	What is Flow	Flow Work (or Flow Energy) - The	Remember		CLO 15	AMEB04.15
10	Work?	work required to push mass into or	Remember	CO4		AWILD04.13
	WOIK:	work required to push mass into of		CUT		

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		out of the control volume. Flow work is necessary for maintaining a continuous flow through a control volume.				
19	What is Heat Engine?	A heat engine is a device used to convert heat to work.	Understand	CO4	CLO 14	AMEB04.14
20	What is Heat Pump?	Heat Pump - A heat pump is a device that transfers heat from a low-temperature medium to a high-temperature medium.	Understand	CO4	CLO 14	AMEB04.14
21	Define Heat Regeneration?	Heat Regeneration - A process during which heat is transferred to a thermal energy storage device (regenerator) during one part of the cycle and is transferred back to theworking fluid during another part of the cycle.	Remember	CO4	CLO 15	AMEB04.15
22	Define Heat Reservoir?	Heat Reservoir - A heat reservoir is a thermal energy reservoir that supplies or absorbs energy in the form of heat. Both sources and sinks are heat reservoirs.	Remember	CO4	CLO 15	AMEB04.15
23	Define Ideal Cycl <mark>e</mark> ?	Ideal Cycle - A model cycle which resembles an actual cycle but contains no internally irreversible processes.	Understand	CO4	CLO 15	AMEB04.15
24	What is Ideal Cycle?	Ideal Gas Law - An equation of state that is generally accurate only at low pressure and/or high temperature. The ideal gas law states that: $PV = nRT$ where P = pressure, $V= volume, n = number of moles, R =universal gas constant, and T =temperature.$	Remember	CO4	CLO 14	AMEB04.14
25	Define Ideal Rankine Cycle?	Ideal Rankine Cycle - An ideal Rankine cycle does not involve any internalirreversibilities and consists of the following four processes: 1-2, isentropiccompression in a pump; 2-3, heat addition in a boiler at constant pressure; 3-4,isentropic expansion in a turbine; 4-1, heat rejection in a condenser at constant pressure.	Understand	CO4	CLO 14	AMEB04.14
26	What is Increase of Entropy Principle?	Increase of Entropy Principle - States that the total entropy change associated with a process must be positive or zero.	Remember	CO4	CLO 14	AMEB04.14
27	What is Intensive Property?	Intensive Property - A property which does not depend on mass.	Remember	CO4	CLO 14	AMEB04.14
28	What is Internal Energy?	Internal Energy - A property whose value is the sum of all the microscopic forms of	Remember	CO4	CLO 15	AMEB04.15

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
29	What is Isentropic Process?	energy. Internally Reversible Adiabatic Process (Isentropic Process) - A process that involves no heat transfer (adiabatic) and no irreversibilities within the system (internally reversible). The entropy of a fixed mass must remain constant during an isentropic process.	Understand	CO4	CLO 15	AMEB04.15
30	Define Internally Reversible?	Internally Reversible - A process where no irreversibilities occur within the system boundaries.	Understand	CO4	CLO 15	AMEB04.15
		MODULE-IV			·	
1	What is Internally Reversible?	Internally Reversible - A process in which no irreversibilities occur within the system boundaries.	Remember	CO4	CLO 17	AMEB04.17
2	Define Irreversible Process?	Irreversible Process - A process that leaves a trace on the surroundings when reversed.	Remember	CO4	CLO 17	AMEB04.17
3	Define Irreversibility?	Irreversibility - Any difference between the reversible work and useful work.	Remember	CO4	CLO 17	AMEB04.17
4	Define Isentropic Processes?	Isentropic Processes of Pure Substances - $s2 = s1$	Remember	CO4	CLO 17	AMEB04.17
5	Define Isentropic?	Isentropic Processes of Solids and Liquids - T2 = T1	Remember	CO4	CLO 17	AMEB04.17
6	Define Isobaric?	Isobaric - Describes a process for which the pressure is constant.	Remember	CO4	CLO 17	AMEB04.17
7	Define Isochoric?	Isochoric - Describes a process for which the volume is constant.	Understand	CO4	CLO 17	AMEB04.17
8	Define Isolated System?	Isolated System - A special case in which energy does not cross the boundary of the system.	Remember	CO4	CLO 16	AMEB04.16
9	Define Isothermal?	Isothermal - Describes a process for which the temperature is constant.	Remember	CO4	CLO 16	AMEB04.16
10	What is Kelvin- Planck?	Kelvin-Planck Statement of Second Law - States that no system can produce a net amount of work while operating in a cycle and exchanging heat with a single thermal energy reservoir.	Remember	CO4	CLO 16	AMEB04.16
11	Define Kelvin Scale?	Kelvin Scale - An absolute thermodynamic temperature scale first proposed by Lord Kelvin. In a reversible process, the ratio of the heat associated with the high temperature to the heat associated with the low temperature is equal to the ratio of the high temperature over the low temperature.	Remember	CO4	CLO 17	AMEB04.17
12	What is Mass Flow Rate?	Mass Flow Rate - The amount of mass flowing through a cross	Understand	CO4	CLO 17	AMEB04.17

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		sectional area per unit time.				
13	Define Mixing	An area where two or more fluids	Understand	CO4	CLO 16	AMEB04.16
15	Chamber?	mix together.	Chaorbana	001	010 10	
14	What is Multistage	Multistage Compression with	Understand	CO4	CLO 16	AMEB04.16
	Compression with	Intercooling - A technique where a				
	Intercooling?	gas is compressed in stages and cooled between each				
		stage by passing the gas through a				
		heat exchanger				
15	Define Nozzle ?	called an intercooler. A device that increases the velocity	Understand	CO4	CLO 17	AMEB04.17
15	Define Rozzie .	of a fluid at the expense of pressure.	Chaerstand	001	CLO II	
16	What is Open	An open feedwater heater is a	Understand	CO4	CLO 17	AMEB04.17
	feedwater heater?	mixing chamber where steam extracted from a turbine mixes		<u> </u>		
		with feedwater entering a boiler.				
17	What is Open	A selected region in space, often	Understand	CO4	CLO 17	AMEB04.17
	System or Control	used to study mass				
	Volume ?	flow. Both mass and energy can cross the boundary of an open				
		system.				
18	Define Path?	Path - The series of states a system	Understand	CO4	CLO 17	AMEB04.17
19	What is DMM9	passes through during a process.	Dementer	CO4	CLO 17	AMED04.17
19	What is PMM?	Perpetual-Motion Machine - A perpetual-motion machine is a	Remember	CO4		AMEB04.17
		device that violates either	-	-		
		the first or the second law of				
20	What is PMM1?	thermodynamics. Perpetual-Motion Machine of the	Remember	CO4	CLO 17	AMEB04.17
20	w hat is I when I	First Kind (PMM1) - A perpetual-	Remember	04	CLO I/	AMED04.17
		motion machine of		- 7	1.00	
		the first kind is a device that violates the first law of			-	
		thermodynamics (by creating			0	
	1	energy).		J	~	
21	Define PMM2?	Perpetual-Motion Machine of the	Understand	CO4	CLO 16	AMEB04.16
		Second Kind (PMM2) - A perpetual-motion machine				
		of the second kind is a device that			S	
		violates the second law of		28		
22	What is Pressure	thermodynamics. The ratio of high pressure to low	Remember	CO4	CLO 16	AMEB04.16
22	ratio?	pressure in a Brayton cycle.	Kemember	004	CLU 10	ANICDU4.10
23	Define Pump ?	A device that functions like a	Remember	CO4	CLO 16	AMEB04.16
		compressor, but handles liquids				
24	Define Pure	instead of gases. A substance that has a single	Remember	CO4	CLO 17	AMEB04.17
	Substance?	composition throughout.	remember	007		1 11120 (1.1 /
25	What is	A device that transfers heat from a	Remember	CO4	CLO 16	AMEB04.16
	Refrigerator?	low temperature medium to a high				
26	What is	temperature medium. A process in which a feedwater	Understand	CO4	CLO 16	AMEB04.16
	Regeneration?	heater uses steam extracted from a			-	
		turbine to preheat water entering a				
		boiler. Regeneration is often used in power plants.				
27	What is Reversible	The maximum amount of useful	Remember	CO4	CLO 16	AMEB04.16
	Work?	work that can be obtained as a				
		system undergoes a process				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		between specified initial and final				
		states.				
28	Define State	States that the state of a system	Remember	CO4	CLO 15	AMEB04.15
	Postulate?	can be completely specified by two				
		independent, intensive properties.				
29	Define Source?	A source is a reservoir that	Remember	CO4	CLO 16	AMEB04.16
		supplies energy in the form of				
		heat.				
30	Define Nozzle ?	A device that increases the velocity	Understand	CO4	CLO 17	AMEB04.17
		of a fluid at the expense of pressure. MODULE - V				
1	What is Stream	The availability of a fluid stream.	Remember	CO4	CLO 17	AMEB04.17
1	Availability?	The availability of a fluid stream.	Remember	0.04	CLO II	7 MVILD04.17
2	Define	The mass or region outside of a	Understand	CO4	CLO 17	AMEB04.17
	Surroundings -?	system.				
3	Define Surroundings	The work done by or against the	Understand	CO4	CLO 17	AMEB04.17
	Work ?	surroundings during a process.	TL 1	004		
4	Define Thermal Efficiency?	Thermal efficiency is the fraction of the heat input that is converted to	Understand	CO4	CLO 15	AMEB04.15
	Efficiency:	net work output. Thermal efficiency				
		is a measure of the performance of				
		a				
		heat engine				
5	What is Thermal	A thermal energy reservoir is a	Understand	CO4	CLO 17	AMEB04.17
	Energy Reservoir?	hypothetical body with arelatively				
		large thermal energy capacity (mass times specific heat) that can supply				
		or absorb finite amounts of heat				
		without undergoing any change in				
		temperature.				
6	What	A temperature scale that is	Understand	CO4	CLO 15	AMEB04.15
	Thermodynamic	independent of theproperties of the		-		
	temperature Scale?	substances that are used to measure		25	0	
7	Define	temperature. Thermodynamic Equilibrium -	Remember	CO4	CLO 16	AMEB04.16
, í	Thermodynamic	Occurs when the same temperature	remember	207		1.1.12.1907.10
	Equilibrium?	exists throughout thesystem.			0	
8	Define Third Law	States that the entropy of a pure	Remember	CO5	CLO 18	AMEB04.18
	of	crystalline substanceat absolute zero		0		
	Thermodynamics ?	temperature is zero.		005	CL 0.10	
9	What is Throttling	Any kind of flow-restricting device	Understand	CO5	CLO 18	AMEB04.18
	Valve ?	that causes a significant essuredrop in the working fluid. The pressure				
		drop is often accompanied by a large	1.1.2			
		drop intemperature. Throttling				
		valves are often used in refrigeration				
		and air-conditioningapplications.				
10	What is Totally	Totally Reversible - A process is	Understand	CO4	CLO 17	AMEB04.17
	Reversible ?	totally reversible if it involves no				
		irreversibilities within the system or its				
		surroundings.				
11	What is Trap?	Trap - A trap is a device which	Understand	CO5	CLO 18	AMEB04.18
	×	allows liquid to be throttled to a				
		lower pressure region				
		but traps any vapor.	.	<i>a</i>		
12	What is Utilization	Utilization factor - Utilization	Understand	CO5	CLO 18	AMEB04.18
1	factor?	factor is the ratio of the sum of net				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		work output plusprocess heat delivered over the total heat input of a cogeneration plant.				
13	Define Volume Flow Rate?	Volume Flow Rate - The volume of a fluid flowing through a cross sectional area per unit time.	Understand	CO5	CLO 18	AMEB04.07
14	What is Working Fluid?	Working Fluid - A fluid to and from which heat is transferred in a cyclic device.	Understand	CO5	CLO 18	AMEB04.18
15	What is Actual Useful Work?	Actual Useful Work (Useful Work)- Its value is the difference between the actual work and the surroundings work.	Understand	CO5	CLO 17	AMEB04.17
16	Define Unsteady- Flow Process?	Unsteady-Flow Process (or Transient-Flow Process) - The process which involves changes within the control volume with time.	Understand	CO4	CLO 17	AMEB04.17
17	What is Uniform- Flow Process?	Uniform-Flow Process - An unsteady-flow process - An unsteady-flow process with the following idealizations: (1)At any instant during the process, the state of the control volume is uniform (i.e., it is the same throughout). The state of the control volume may change with time, but it will do so uniformly.	Understand	CO4	CLO 15	AMEB04.15
18	Define Otto cycle?	An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine. It is the thermodynamic cycle most commonly found in automobile engines	Understand	CO4	CLO 17	AMEB04.17
19	What is K in Otto cycle?	The fuel is then injected such that the ignition process occurs at a constant pressure. In the ideal Otto cycle the fuel-air mixture is introduced during the induction stroke and compressed to a much lower compression ratio (around 8:1) and is then ignited by a spark	Understand	CO4	CLO 15	AMEB04.15
20	What is the Otto cycle engine?	An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine.	Remember	CO4	CLO 16	AMEB04.16
21	What is meant by Brayton cycle?	Brayton cycle. A thermodynamic cycle using constant pressure, heat addition and rejection. Fuel and a compressor are used to heat and increase the pressure of a gas; the gas expands and spins the blades of a turbine, which, when connected to a generator, generates electricity	Remember	CO5	CLO 18	AMEB04.18
22	What is reverse Joule cycle?	The Brayton cycle is a thermodynamic cycle that describes the workings of a constant pressure	Understand	CO5	CLO 19	AMEB04.19

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		heat engine Edit : Apparently, the Brayton cycle and the Joule cycle are almost the same. The reversed Joule cycle is actually known as Bell-coleman cycle. Its purpose is to move heat, rather than produce work.				
23	What is gas cycle?	A thermodynamic cycle is a sequence or series of processes performed on a system, that eventually returns the system to its original tate. Gas power cycles are thermodynamic cycles, which use air, as the working fluid	Understand	CO4	CLO 19	AMEB04.19
24	What is Vapour cycle?	A power cycle continuously converts heat(energy released. by the burning of fuel) into work , in which a working fluid. repeatedly performs a succession of processes.	Understand	CO5	CLO 18	AMEB04.18
25	What is binary Vapour cycle?	The vapor exiting the turbine is then condensed by cold air radiators or cold water and cycled back through the heat exchanger. A binary vapor cycle is defined in thermodynamics as a power cycle that is a combination of two cycles, one in a high temperature region and the other in a lower temperature region.	Understand	CO5	CLO 19	AMEB04.19
26	What is engine temperature ratio?	The nozzle then converts the high pressure and temperature into high velocity The engine temperature ratio (ETR) is defined to be the total temperature ratioacross the engine. Using our station numbering system, ETR is the ratio of nozzle total temperature Tt8 to compressor face total temperature Tt2.	Understand	CO4	CLO 20	AMEB04.20
27	What does pressure ratio mean?	In aeronautical engineering, overall pressure ratio, or overall compression ratio, is the ratio of the stagnation pressure as measured at the front and rear of the compressor of a gas turbine engine Overall compression ratio also means the overall cycle pressure ratio which includes intake ram.	Understand	CO5	CLO 20	AMEB04.20
28	What is the critical pressure ratio?	The maximum gas flow through a nozzle is determined by critical pressure. critical pressure ratio is the pressure ratio where the flow is accelerated to a velocity equal to the local velocity of sound in the fluid.	Understand	CO4	CLO 20	AMEB04.20
29	What is Bell Coleman cycle?	BellColemanCycle.The BellColemanCycle isa	Understand	CO5	CLO 20	AMEB04.20

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		refrigeration cycle where the working fluid is a gas that is compressed and expanded, but does not change phase				
30	What is the Otto cycle engine?	An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine.	Remember	CO4	CLO 16	AMEB04.16

Signature of the Faculty

Signature of HOD