

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	UNCONVENTIONAL MACHINING PROCESSES
Course Code	:	AME507
Program	:	B.Tech
Semester	:	VII
Branch	:	Mechanical Engineering
Course Faculty	:	Mr. VKVS KrishnamRaju, Assistant Professor.

OBJECTIVES:

The course sl	The course should enable the students to:						
I	Understand the need and importance of non-traditional machining methods and process selection.						
II	Gain the knowledge to remove material by thermal evaporation, mechanical energy process.						
III	Apply the knowledge to remove material by chemical and electro chemical methods.						
IV	Analyze various material removal applications by unconventional machining process.						

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S N	QUESTION	ANSWER	Blooms Level	CO's	CLO	CLO Code
0			100			
	TIME OF THE	UNIT-I	. arrayana nn	o ana	a r a	
1		CTION TO UNCONVENTIONAL MA				A A EE 5 0 7 0 1
1	// Hat 15 the Heta 101	a. High production rate b. Low cost of	Remember	CO 1	CLO 01	AME507.01
	unconventional machining	production c. Better surface integrity				
_	processes?	d. High surface finish	XX 1 1	00.1	CT 0 02	A A FEE CO. CO.
2	What are the	a. Performance is independent of	Understand	COT	CLO 02	AME507.02
	characteristics of UCM	strength barrier b. Use different kinds				
	processes?	of energy in direct form c. In general,	- 10			
		low MRR but better quality products				
		d. Comparatively high initial				
		investment cost e. Tool material need				
		not be harder than the work piece				
		material. f. Machined surface do not				
3	What is meant by	have any residual stresses.	Remember	CO 1	CI O 01	AME507.01
3	What is meant by conventional machining	In conventional machining processes,	Remember	COI	CLOUI	AMESU7.01
	processes?	metal is removed by using some sort of tool which is harder than work piece				
	processes:	and is subjected to wear. In this				
		process, tool and work piece are in				
		direct contact with each other				
4	What is meant by	The unconventional machining	Understand	CO 1	CLO 03	AME507.03
	Unconventional machining		Chacistana		CLO 03	7 HVIL307.03
	processes?	conventional or traditional tool for				
	F	metal removal. Instead they directly				
		utilize some form of energy for metal				
		machining. In this process there is no				
		direct physical contact between the				

	tool and work piece.				
Differentiate the conventional and unconventional machining processes in terms of principles.(or) Distinguish between traditional and non traditional machining processes?	In conventional processes, the material is removed in the form of chips by the advancing cutting tool that plastically deforms (shearing) the material ahead. In the case of the UCM processes, energy (Electrical, Chemical, Thermo-Electric, and Mechanical) in its direct form is utilized for the material removal and so there is no physical contact between the work piece and tool.	Remember	CO 1	CLO 01	AME507.01
of energy sources used in non-traditional machining techniques? Give examples for each. (or) How non – traditional machining processes are classified?	(Creating avalanche in lazing medium); PAM (for ionizing the plasma gases)	Understand	CO 1	CLO 02	AME507.02
material removal, transfer media and energy source for EDM.	Mechanism of material removal- Fusion of materials by arcs, Transfer media - Electron stream, Energy source - Electrical spark	Remember	CO 1		AME507.03
Identify the mechanism of material removal, transfer media and energy source for ECM & ECG.	Mechanism of material removal- Ion displacement, Transfer media – Electrolyte, Energy source - High current	Understand			AME507.02
material removal, transfer media and energy source for EBM.	Mechanism of material removal- Vaporization, Transfer media - Electron stream, Energy source - High speed electrons	Remember			AME507.02
material removal, transfer media and energy source for LBM.	Mechanism of material removal- Vaporization, Transfer media - Amplified coherent light radiation, Energy source – powerful radiation	Remember			AME507.01
material removal, transfer media and energy source for PAM	Mechanism of material removal- Vaporization, Transfer media - Ionised gas stream, Energy source - High voltage		CO 1		AME507.02
Identify the mechanism of material removal, transfer media and energy source for USM	Mechanism of material removal – Erosion, Transfer media - High velocity particles, Energy source - Hydraulic pressure.	Understand	CO 1	CLO 03	AME507.03
Identify the mechanism of material removal, transfer media and energy source for AJM.	Mechanism of material removal- Erosion, Transfer media - High velocity particles, Energy source - Pneumatic pressure (Mechanical and fluid motion)	Remember	CO 1		AME507.01
material removal, transfer media and energy source for WJM	Mechanism of material removal- Erosion, Transfer media - High velocity water jet, Energy source – pneumatic / Hydraulic pressure.	Remember	CO 1		AME507.02
Identify the energy source applied in the following processes: i) IBM ii) CHM iii) ECG iv) ECM v) EDM vi) EBM vii) AJM viii) LBM	IBM – Ionised substance ii) CHM – corrosive agent iii) ECG – Electrical current and Mechanical motion iv) ECM – Electrical current v) EDM – Electrical spark vi) EBM – High speed electrons vii) AJM – Mechanical and fluid motion viii) LBM – Powerful Radiation.	Understand	CO 1	CLO 02	AME507.02

	What is the necessity for unconventional machining processes? (or) What are the importance of unconventional machining? (or) Enlist the requirement that demands the use of advanced machining process	A harder and difficult to machine materials such as carbides, stainless steel, nitralloy, hastalloy and many other high strength temperature resistant alloys find wide application in aerospace and nuclear engineering industries. Many of these materials also find applications in other industries, owing to their high strength to weight ratio, hardness and heat resisting qualities.	Remember	CO 1		AME507.01
	Explain the classification of Unconventional machining according to major energy source employed.	Unconventional machining are classified according to major energy source as follows: a. Thermal Energy methods: In this method, heat energy is concentrated on a small area of the work piece to melt and vaporize tiny bits of work material. Examples i) Laser beam machining ii) Plasma Arc machining iii) Electron beam machining iv) Ion beam	Understand	CO 1	CLO 02	AME507.02
18	Name the unconventional machining processes which are i) used to remove maximum material ii) used to remove minimum material iii) consumes maximum power iv) consumes minimum power	i) used to remove maximum material – Electro chemical machining, plasma arc machining ii) used to remove minimum material – Electron beam machining iii) consumes maximum power – Laser beam machining iv) consumes minimum power – Plasma arc machining.	Understand	CO 1	CLO 01	AME507.01
19	Name the unconventional machining processes for machining following materials: i) Non metals like ceramics, plastics and glass ii) Refractories iii) Titanium iv) super alloys v) steel.	i) Non metals like ceramics, plastics and glass – USM, AJM, EBM, LBM ii) Refractories – USM, AJM, EBM, EDM iii) Titanium - EDM iv) super alloys – AJM, ECM, EDM, PAM v) steel – ECM, CHM, EDM, PAM.	Remember	CO 1	CLO 03	AME507.03
20	Name the Unconventional machining processes which produce best	i) Abrasive Jet machining (AJM) ii) Electro chemical grinding (ECG) iii) Electro chemical Deburring (ECD) iv)	Understand	CO 1	CLO 02	AME507.02
	surface finish	Ultrasonic machining (USM) UNIT-II				
		ABRASIVE JET MACHIN	ING			
1	Define ECM?	It is the controlled removal of metals by the anodic dissolution in an electrolytic medium, where the work piece (anode) and the tool (cathode) are connected to the electrolytic circuit, which is kept, immersed in the electrolytic medium.	Understand	CO 2	CLO 04	AME507.04
2	Write the Faraday's first law of electrolysis?	The amount of any material dissolved or deposited is proportional to the quantity of electrolyte passed.	Remember	CO 2	CLO 05	AME507.05
3	Write the Faraday's second law of electrolysis?	The amount of different substances dissolved or deposited by the same quantity of electricity are proportional to their chemical equivalent weight.	Remember		CLO 06	AME507.06
4	Write Ohm's law?	Current, I = V/R V = Voltage (volt), R = resistance (ohm)	Understand	CO 2	CLO 05	AME507.05

5	What are the factors that influence oxidation in ECM?	Nature of work piece. 2. Type of electrolyte. 3. Current density. 4. Temperature of theelectrolyte.	Remember	CO 2	CLO 05	AME507.05
6	What are the materials used to make the tool electrode? (or) What are the materials used fortools in ECM?	Copper and copper alloys, titanium, aluminum, Graphite, platinum, tungsten carbide,brass, bronze, carbon, Monel and reinforced plastic.	Remember	CO 2	CLO 04	AME507.04
7	What are the main functions of electrolysis in the ECM?	i) For completing the electric circuit between the tool and the work piece and to allowthe reaction to proceed efficiently. ii) To remove the products of machining from the cuttingregion. iii) To carry away the heat generated during the chemical reaction. iv) To avoid ionconcentration at the work piece- tool gap. v) It cools the cutting zone which becomes hot due to the flow of high current.	Understand	CO 2	CLO 05	AME507.05
8	What are the properties are expected from the electrolysis used in the ECM?	1. High thermal conductivity. 2. Low viscosity and high specific heat.3. Should chemicallystable even at high temperature. 4. Should be nontoxic and non-corrosive.	Remember	CO 2	CLO 05	AME507.05
9	What are the electrolytes commonly used in ECM?	15 -20 % NaCl in water, sodium nitrate, potassium nitrate, sodium sulphate, sodium chromate and potassium chloride.	Remember	CO 2		AME507.05
10	What are the results due to improper selection of electrolyte in ECM?	1. Low machining rate. 2. Over cut and stray cutting.	Understand	CO 2	CLO 04	AME507.04
11	What are the methods generally used to filter the electrolyte?	1. Running the system until it is contaminated completely and replaces it. 2. Centrifugal separation. 3. Sedimentation. 4. Use of clarifiers	Remember	CO 2	CLO 05	AME507.05
12	s) of a good ECM tool?	1. It should be a good conductor of electricity and heat. 2. Easily machinable.3. Resistant tochemical reaction. 4. It offers resistance to the high electrolyte pressure.	Remember	CO 2	CLO 05	AME507.05
13	What are the parameters that affect the MRR?	1. Feed rate. 2. Voltage. 3. Concentration of the electrolyte. 4. Temperature of theelectrolyte. 5. Current density. 6. Velocity of the electrolyte.	Understand	CO 2		
14	How the current density affect the MRR?	Current density is controlled not only by the amount of current but also by the size of thegap between the tool and the work piece. A small gap results in high current densities, which in turn produce more material removal.	Remember	CO 2	CLO 04	
15	What are the advantages of ECM?	Advantages:1.ECM is simple, fast and versatile method. 2. Surface finish can be extremelygood.3. Fairly good tolerance can be obtained. 4. No cutting forces are involved 5. Wear and tearof tool is negligible 6. Metal removal rate is high.	Remember	CO 2	CLO 05	AME507.05

16	What are the disadvantages of ECM?	Disadvantages: 1. Large power consumption and the related problems. 2. Non conductingmaterials cannot be machined.3. Maintenances of higher tolerances require complicated contours. 4. Initial investment is quite high 5. More space is required.	Understand	CO 2	CLO 05	AME507.05
17	Define ECG. (or) State the principle of ECG process.	ECG is the material removal process in which the material is removed by the combinedeffect of Electro-Chemical effect and conventional grinding operation. The major portion of themetal (about 90%) is removed by electrochemical effect.	Remember	CO 2	CLO 05	AME507.05
18	Which material s used to make the grinding wheel?	Metal bonded diamond (or) Aluminum oxide.	Remember	CO 2	CLO 04	AME507.04
19	What are the important functions of abrasive particles used in ECG?	It acts as insulator to maintain a small gap between the wheel and work piece. They are electrolysis products from the working area. To cut chips if the wheel should contact the workpiece particularly in the event of power failure.	Understand	CO 2	CLO 05	AME507.05
20	What are the limitations of ECG?	conductive.2. Not suitable for machining soft material. 3. Require dressing tools for preparing the wheels.	Understand	CO 2	CLO 05	AME507.05
		UNIT-III THERMAL METAL REMOVAL :	DDACECCEC			
1	Define electrical discharge machining?	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This	Remember	CO 3	CLO 07	AME507.07
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM?	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached.	Remember	CO 3	CLO 08	AME507.08
	Define electrical discharge machining? What are functions of dielectric fluid used in	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been	Remember			

5	What are the prime	1. It should be electrically	Remember	CO 3	CLO 08	AME507.08
	requirements of tool	conductive. 2. It should have good				
	material in EDM?	machinability. 3. It should have low				
		erosion rate. 4. It should have low				
		electrical resistance. 5. Melting point				
		of the tool should be high.				
6	What is the effect	Increasing the capacitance causes	Remember	CO 3	CLO 09	AME507.09
	of capacitance in	the discharge to increase and				
	EDM?	increase both the peak current and				
		discharge time.				
7	Name some of the tool	1. Copper, brass, alloys of Zinc &	Understand	CO 3	CLO 08	AME507.08
	material used in EDM?	tin. 2. Hardened plain carbon steel 3.				
		Copper tungsten, silver tungsten,				
		tungsten. 4. Copper graphite and				
		graphite.				
8	What are the process	1. Energy discharge 2. Capacitance.	Remember	CO 3	CLO 08	AME507.08
	parameters which	3. Size of work piece. 4. M/c tool				
	affect efficiency?	design				
9	Write the formula for	W=(1/2) X EIT W-discharge	Remember	CO 3	CLO 09	AME507.09
	finding the energy	energy I- Current, T-time, E-				
	discharge in EDM?	voltage				
10	Define W/T (Tool Wear)	It is the ratio of volume of work	Understand	CO 3	CLO 08	AME507.08
	ratio?	material removed to the volume of				
		electrode (tool) consumed.				
11	Explain electrode wear?	A crater is produced in the electrode,	Remember	CO 3	CLO 08	AME507.08
		which is likewise dependent on the				
		electrode material and the energy of				
		the discharge.				
12	What are types of power	1. R-C circuit. 2. Rotary impulse	Remember	CO 3	CLO 09	AME507.09
	supply circuits used in	generator. 3. Controlled pulse				
	EDM?	(vacuum tube). 4. Oscillator				
		controlled pulse. 5. Transistor pulsed				
		circuit				
13	Why the servo controlled	EDM requires that a constant arc gap	Remember	CO 3	CLO 09	AME507.09
	system is needed in EDM?	(called spark gap) to be maintained				
		between the electrode and the work				
		piece to obtain maximum machining				
		efficiency. Therefore EDM tool in				
		corporate some form of servo control.	** 1	GO 2	GY 0 00	13.555.05.00
14	Define electrical discharge	EDM is the controlled erosion of	Understand	CO 3	CLO 09	AME507.09
	machining?	electrically conductive materials by				
		the initiation of rapid and repetitive				
		spark discharge between the electrode				
		tool to the cathode and work to anode				
		separated by a small gap kept in the				
		path of dielectric medium. This				
15	What are the factors	process also called spark erosion MRR increases with forced circulation	Remember	CO 3	CLO 09	AME507.09
13	affecting metal removal	of dielectric fluid. ii) MRR increases	Kemember	003	CLO 09	AMESU/.09
	rate?	upto optimum value of work – tool				
	iaic:	gap, after that it drops suddenly.iii)				
		MRR is maximum when the pressure				
		is below atmospheric pressure.				
16	How the tool materials are	Tool or Electrodes can be classified	Remember	CO 3	CLO 09	AME507.09
	classified?	into four groups: i) Metallic electrodes	10110111001		220 07	11.12.507.07
	The strict of	Brass, copper tungsten, chromium				
		copper, aluminium tungsten, silver				
		tungsten ii) Non – metallic – Graphites				
		iii) Combined metallic and non –				
		metallic – Copper graphite iv) Metallic				
		coating with insulators – Copper on				
		moulded plastic and copper on				
	İ	F and copper on				I

		ceramic.				
17	What are the principal	Power supply, dielectric system,	Understand	CO 3	CLO 09	AME507.09
1,	components of EDM	electrodes: work piece and tool, and	Onderstand	003	CLO 0)	THVILSOT.05
	process?	servo system (tool feed)				
18	What is tool wear in	Partial removal of the tool material	Remember	CO 3	CLO 08	AME507.08
	EDM? How does tool	from the tool surface while machining				
	wear occur in EDM?	the work piece due to discharge spark				
		produced between the tool and work				
		piece. Due to the spark action, the intense heat generated near the zone				
		melts and evaporates the material near				
		the sparking zone. Since the tool is				
		also within this zone, it also gets				
		eroded.				
19	How to minimize tool	Tool wear can be minimized by using	Remember	CO 3	CLO 08	AME507.08
	wear in EDM?	a tool material that has a high melting				
		point and high thermal conductivity. Also by properly configuring the tool				
		design, tool wear can be minimized				
20	Identify the characteristics	i) It should be a good conductor of	Understand	CO 3	CLO 09	AME507.09
	of an electrode material in	heat and electricity. ii) It should be				
	order to serve as a good	easily machinable to any shape at a				
	tool	reasonable cost. iii) It should produce				
		efficient material removal rates from				
		the work piece. iv) It should resist the deformation during erosion process. v)				
		It should exhibit low tool wear rates.				
		UNIT-IV	NINC			
1	What is Laser?	ELECTRON BEAM MACHI It is acronym of light amplification by	Remember	CO 4	CLO 10	AME507.10
1	What is Easer:	stimulated emission of radiation. It is	Remember	CO 4	CLO 10	7 HVIL307.10
		an electromagnetic radiation. It				
		produces a powerful, monochromatic,				
		collimated beam of light in which the				
_	G	waves are coherent	** 1	GO 1	GY 0 10	13.555.55.10
2	State the principle of LBM	In laser beam machining process, laser	Understand	CO 4	CLO 10	AME507.10
		beam is focused on the work piece by means of lens to give extremely high				
		energy density to melt and vaporize				
		the work material.				
3	What are the	(i) It can be focused to maximum	Remember	CO 4	CLO 10	AME507.10
	characteristics of laser	intensity or to minimum intensity as				
	used in laser machining	needed. (ii) It can be moved rapidly on				
		the work piece. (iii) It is projected on				
		the work piece at particular distance				
		from the lens. (iv) Dedicated to an online process (v) Power is shared on				
		online process. (v) Power is shared on a job.				
4	Give the examples of i)	i) solid state laser–Ruby laser,	Remember	CO 4	CLO 10	AME507.10
	solid state laser ii) gas	Neodymium doped Yitrium—				
	laser	Aluminium- Garnet(YAG) laser,				
		Neodymium doped glass laser ii) gas				
		laser – carbon dioxide laser, Helium –				
1	1	Neon laser.		1		1

				1		1
5	What are basic	(i) The focus of the beam should be	Understand	CO 4	CLO 10	AME507.10
	requirements of laser	adjusted to the thickness of the				
	welding?	material. (ii) The wave length of the				
		laser beam must be compatible with				
		the material being welded.				
6	What is solid state Laser?	Solid state Laser is the Lasers, which	Remember	CO 4	CLO 11	AME507.11
		consist of a hot nat, which may be				
		crystalline solid / glass, doped with an				
		active material whose atoms provide				
		the lasing action.				
7	How does Laser melting	It melts and vaporizes the unwanted	Remember	CO 4	CLO 10	AME507.10
	works?	material by means of narrow pulsed				
		laser operating at 2 to 100 pulses/sec				
		Because of this high accuracy is not				
		possible to micro sized holes.				
8	What are the	1. Material removal 2. Material	Understand	CO 4	CLO 10	AME507.10
	characteristics of Laser	shaping 3. Welding 4. Thermo kinetic	Onderstand		CLO 10	7 HVIL207.10
	beam?	change.				
9	What are the fundamentals	In the Laser the photons are in ground	Remember	CO 4	CLO 11	AME507.11
 	of photons used in Laser?	state at 0°C they are brought to the	Remember		CLO II	7 11 11 11 11 11 11 11 11 11 11 11 11 11
	or photons used in Laser:	excited state by means of absorption of				
		energy by temperature change,				
		collision.				
10	What are the advantages of	No physical contact between work root	Remember	CO 4	CI O 11	AME507.11
10	Laser drilling?	pair hence there is no possibility if	Remember		CLO II	7 11VILJU/.111
	Laser arming:	breakage or wear of root. Precision				
		location is ensured by focusing of the				
		beam Large aspect ratio can be				
		achieved				
11	List the applications of	i) It is used for making small holes,	Understand	CO 4	CLO 11	AME507.11
11	LBM.	difficult welding of non conductive	Officerstand	CO 4	CLO 11	AWILSO7.11
	LDIVI.	and refractory materials, cutting				
		complex profiles in thin and hard				
		materials ii) It can be used for mass				
		micro machining production iii) It can				
		also be used for selective heat treating				
		of materials.				
12	List the advantages and	Advantages: i) Machining of any	Remember	CO 4	CLO 10	AME507.10
12	limitations of LBM	materials including non metal is	Remember	004	CLO 10	7 HVIL 307.10
	initiations of LDW	possible ii) Micro sized holes can be				
		machined iii) Heat affected zone is				
		small around the machined surface.				
		Limitations: i) Highly skilled operators				
		are needed ii) Rate of production is				
		low iii) initial investment is high iv)				
		Life of flash lamp is short.				
13	What materials can be	All materials except those having high	Remember	CO 4	CLO 12	AME507.12
13	machined by using Laser	thermal conductivity and high	Remember	234		11112507.12
	Beam?	reflectivity				
14	What are the	1. Can be focused to maximum	Understand	CO 4	CLO 11	AME507.11
1-7	characteristics of Laser	intensity or to lower intensity as	Onderstand		CLO II	7 114111307.11
	used in Laser machining?	needed. 2. Can be moved rapidly on				
	assa in Laser macining:	the work. 3. Remote cutting over long				
		standoff distances.				
15	State the working principle	When the high velocity beam of	Remember	CO 4	CLO 10	AME507.10
13	of EBM.	electrons strike the work piece, its	Kemember		CLO 10	7 HVIL 507.10
	O. Libiti.	kinetic energy is converted into heat.				
		This concentrated heat raises the				
		temperature of work material and				
		vaporizes a small amount of it,				
		resulting in removal of metal from the				
		work piece				
Щ,	R D a g A	work piece				

		Los		00.4	~ ~	13.555.55.14
	State any four limitations of EBM?	(i) The metal removal rate is very slow. (ii) It is not suitable for large work pieces. (iii) Cost of equipment is very high. (iv) A little taper produced on holes.v) it is applicable only for thin materials.	Understand			AME507.11
	What is the drawback of electron beam machining?	One major diameter of electron beam welding has been the requirement of high degree of vacuum essential or satisfactory operation of this process because of degassing	Remember		CLO 12	AME507.12
	Write the application of electron beam?	1. Thin film machining. 2. Surface treatment. 3. Engraving metals and non-metals.4. Cutting of materials	Remember	CO 4	CLO 12	AME507.12
19	Define EBM	It is the thermo-electrical material removal process on which the material is removed by the high velocity electron beam emitted from the tungsten filament made to impinge on the work surface, where kinetic energy of the beam is transferred to the work piece material, producing intense heat, which makes the material to melt or vaporize it locally.	Understand	CO 4	CLO 12	AME507.12
20	What are the two types of EBM? Explain	(i) Thermal type. (ii) Non-thermal Type. In thermal type, type the electron beam is used to heat the material up to the point where it is selectively vaporized. In Non - thermal type, the EBM produces a chemical reaction.	Remember	CO 4	CLO 12	AME507.12
		UNIT-V DI ASMA MACHININ	C			
1	What is the principle of plasma arc machining? What are the two stages in which the process of material removal is affected?	PLASMA MACHINING In plasma arc machining process, material is removed by directing a high velocity jet of high temperature (11,000°C to 28,000°C) ionized gas on the work piece. This high temperatureplasma jet melts the material of the work piece. Plasma formation and melting of work piece arethe two stages in which the process of materials removed is affected.	Remember	CO 5	CLO 13	AME507.13
2	What is the main industrial application of plasma cutting systems?	(i) It is used for cutting alloy steels, stainless steel, cast iron, copper, nickel, titanium, aluminum and alloy of copper and nickel etc. (ii) It is used for profile cutting.	Understand	CO 5	CLO 13	AME507.13
3	What do you understand by fourth state of matter?	The dynamical properties of this gas of free electrons and ions are sufficiently different from the normal unionized gas. So it can be considered a fourth state of matter, and is given anew name, 'PLASMA'	Remember	CO 5		AME507.13
	What are the gases used in PAM?	nitrogen, hydrogen, air, mixture of nitrogen-hydrogen andargon – hydrogen etc.	Remember	CO 5		AME507.13
5	Define plasma.	Plasma is defined as the gas, which has been heated to a sufficiently high	Understand	CO 5	CLO 13	AME507.13

6	What is the purpose of etchants in CHM?	Etchants are used to remove the metal from the work piece. The metal is removed by thechemical conversion of the metal into metallic salt.	Remember	CO 5	CLO 13	AME507.13
7	Name the etchants used in CHM.	Caustic soda, Hydrochloric acid, Nitric acid, Iron chloride.	Remember	CO 5	CLO 14	AME507.14
	in CHM?	In CHM, the areas of work piece which are not to be machined are covered with a resistant, called a resist or maskant	Understand	CO 5		AME507.14
9	What are the advantages of plasma arc welding?	a. Exothermic oxidation takes place. b. DC power supply.	Remember	CO 5	CLO 14	AME507.14
10	What are the metals that can't be machined by plasma arc machining?	A. Stainless steel b. Monel c. Super alloys	Remember	CO 5	CLO 14	AME507.14
	What is the basic heating phenomenon that takes place in plasma arc welding?	The basic heating phenomenon that takes place at the work piece is a combination of anode heating due to direct electron bombardment recombination of molecules on the workpiece.	Understand	CO 5		AME507.14
12	How the initial ionization is accomplished in plasma arc machining?	A high voltage arc established between electrode and nozzle accomplishes initial ionization.	Remember	CO 5	CLO 14	AME507.14
13	Why does gas formed in plasma do in P.A.M?	This gas stabilizes the arc and prevents it from diverging.	Remember	CO 5	CLO 14	AME507.14
	How another source of heating achieved in P.A.M?	It is desirable to achieve a third source of heating by injecting oxygen into work area totake advantage of exothermic oxidation.	Understand	CO 5	CLO 15	AME507.15
	Write the principle of P.A.M	Once the material has been raised to molten point the high velocity gas stream blowsthe material away.	Understand	CO 5	CLO 15	AME507.15
16	Write the circuitry details in PAM.	+ ve terminal connected to work piece and ve terminal connected to electrode.	Remember	CO 5	CLO 15	AME507.15
17	Which type of power supply is used in P.A.M?	DC power supply is used.	Understand	CO 5	CLO 15	AME507.15
18	Which part is constricted by plasma?	Nozzle duct is constricted by plasma.	Remember	CO 5	CLO 15	AME507.15
19	How does the basic plasma is generated?	The basic plasma is generated by subjecting a stream of gas to the electron bombardment of the electric arc.	Remember	CO 5	CLO 15	AME507.15
20	What are the metals that can't be machined by plasma arc machining?	1. Stainless steel 2. Monel 3. Super alloys	Understand	CO 5	CLO 15	AME507.15

Prepared by: Mr. VKVS KrishnamRaju, Assistant Professor.

HOD, ME