

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	UNCONVENTIONAL MACHINING PROCESS
Course Code	:	AMEB50
Program	:	B.Tech
Semester	:	V
Branch	:	Mechanical Engineering
Course Faculty	:	Mr. M.Sunil Kumar, Assistant Professor.

OBJECTIVES:

The course should enable the students to:						
Ι	Understand the need and importance of non-traditional machining methods and process selection.					
II	Gain the knowledge to remove material by thermal evaporation, mechanical energy process.					
III	Apply the knowledge to remove material by chemical and electro chemical methods.					
IV	Analyze various material removal applications by unconventional machining process.					

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S N	QUESTION	ANSWER	Blooms Level	CO's	CLO	CLO Code
0		MODULE-I				
	INTRODU	CTION TO UNCONVENTIONAL M	ACHINING PR	ROCES	SSES	
1	What is the need for unconventional machining	a. High production rate b. Low cost of production c. Better surface integrity	Remember		CLO 01	AMEB50.01
2	processes? What are the characteristics of UCM processes?	d. High surface finish a. Performance is independent of strength barrier b. Use different kinds of energy in direct form c. In general, low MRR but better quality products d. Comparatively high initial investment cost e. Tool material need not be harder than the work piece material. f. Machined surface do not have any residual stresses.	- 28	CO 1	CLO 02	AMEB50.02
3	What is meant by conventional machining processes?	In conventional machining processes, metal is removed by using some sort of tool which is harder than work piece and is subjected to wear. In this process, tool and work piece are in direct contact with each other	Remember	CO 1	CLO 01	AMEB50.01
4	What is meant by Unconventional machining processes?	The unconventional machining processes do not employ a conventional or traditional tool for metal removal. Instead they directly utilize some form of energy for metal machining. In this process there is no direct physical contact between the	Understand	CO 1	CLO 03	AMEB50.03

		tool and work piece.				
5	processes in terms of principles.(or) Distinguish between traditional and	In conventional processes, the material is removed in the form of chips by the advancing cutting tool that plastically deforms (shearing) the material ahead. In the case of the UCM processes, energy (Electrical,	Remember		CLO 01	AMEB50.01
	non traditional machining processes?	Chemical, Thermo-Electric, and Mechanical) in its direct form is utilized for the material removal and so there is no physical contact between the work piece and tool.				
6	of energy sources used in non-traditional machining techniques? Give		Understand	CO 1	CLO 02	AMEB50.02
	material removal, transfer media and energy source for EDM.	Mechanism of material removal- Fusion of materials by arcs, Transfer media - Electron stream, Energy source – Electrical spark	Remember			AMEB50.03
	material removal, transfer media and energy source for ECM & ECG.	Mechanism of material removal- Ion displacement, Transfer media – Electrolyte, Energy source - High current	Understand			AMEB50.02
	Identify the mechanism of material removal, transfer media and energy source for EBM.	Mechanism of material removal- Vaporization, Transfer media - Electron stream, Energy source - High speed electrons	Remember	CO 1	CLO 02	AMEB50.02
	Identify the mechanism of material removal, transfer media and energy source for LBM.	Mechanism of material removal- Vaporization, Transfer media - Amplified coherent light radiation, Energy source – powerful radiation	Remember	CO 1	CLO 01	AMEB50.01
	Identify the mechanism of material removal, transfer media and energy source for PAM	Mechanism of material removal- Vaporization, Transfer media - Ionised gas stream, Energy source - High voltage	Remember	CO 1	CLO 02	AMEB50.02
	Identify the mechanism of material removal, transfer media and energy source for USM	Mechanism of material removal – Erosion, Transfer media - High velocity particles, Energy source - Hydraulic pressure.	Understand	CO 1	CLO 03	AMEB50.03
13	Identify the mechanism of material removal, transfer media and energy source for AJM.	Mechanism of material removal- Erosion, Transfer media - High velocity particles, Energy source - Pneumatic pressure (Mechanical and fluid motion)	Remember	CO 1	CLO 01	AMEB50.01
	Identify the mechanism of material removal, transfer media and energy source for WJM	Mechanism of material removal- Erosion, Transfer media - High velocity water jet, Energy source – pneumatic / Hydraulic pressure.	Remember	CO 1		AMEB50.02
	Identify the energy source applied in the following processes: i) IBM ii) CHM iii) ECG iv) ECM v) EDM vi) EBM vii) AJM viii) LBM	IBM – Ionised substance ii) CHM – corrosive agent iii) ECG – Electrical current and Mechanical motion iv) ECM – Electrical current v) EDM – Electrical spark vi) EBM – High speed electrons vii) AJM – Mechanical and fluid motion viii) LBM – Powerful Radiation.	Understand	CO 1	CLO 02	AMEB50.02

	XX /1		D 1	00.1	CT 0.01	A 1 (ED 50.01
	What is the necessity for	A harder and difficult to machine	Remember	01	CLO 01	AMEB50.01
		materials such as carbides, stainless				
	processes? (or) What are	steel, nitralloy, hastalloy and many				
	the importance of unconventional	other high strength temperature resistant alloys find wide application				
	machining? (or) Enlist the requirement that demands	in aerospace and nuclear engineering industries. Many of these materials				
	the use of advanced	also find applications in other				
	machining process	industries, owing to their high strength				
	machining process	to weight ratio, hardness and heat				
		resisting qualities.				
17	Explain the classification	Unconventional machining are	Understand	CO 1	CLO 02	AMEB50.02
	of Unconventional	classified according to major energy	Understand	0.01	CLO 02	AMED30.02
	machining according to	source as follows: a. Thermal Energy				
	major energy source	methods: In this method, heat energy				
	employed.	is concentrated on a small area of the				
	employed.	work piece to melt and vaporize tiny				
		bits of work material. Examples i)				
		Laser beam machining ii) Plasma Arc				
		machining iii) Electron beam				
		machining iv) Ion beam				
18	Name the unconventional	i) used to remove maximum material –	Understand	CO 1	CLO 01	AMEB50.01
	machining processes	Electro chemical machining, plasma	Charlena	001	020 01	
	which are i) used to	arc machining ii) used to remove				
	remove maximum	minimum material – Electron beam				
		machining iii) consumes maximum				
	minimum material iii)	power – Laser beam machining iv)				
	consumes maximum	consumes minimum power – Plasma				
	power iv) consumes	arc machining.				
	minimum power	C C				
19	Name the unconventional	i) Non metals like ceramics, plastics	Remember	CO 1	CLO 03	AMEB50.03
	machining processes for	and glass - USM, AJM, EBM, LBM				
	machining following	ii) Refractories - USM, AJM, EBM,				
	materials: i) Non metals	EDM iii) Titanium - EDM iv) super				
	like ceramics, plastics and	alloys - AJM, ECM, EDM, PAM v)				
	glass ii) Refractories iii)	steel – ECM, CHM, EDM, PAM.				
	Titanium iv) super alloys					
	v) steel.			GO 1	GY 0.00	
		i) Abrasive Jet machining (AJM) ii)	Understand	CO 1	CLO 02	AMEB50.02
	machining processes	Electro chemical grinding (ECG) iii)				
	which produce best	Electro chemical Deburring (ECD) iv)				
	surface finish	Ultrasonic machining (USM)				
		MODULE -II ABRASIVE JET MACHIN	ING			
1	Define ECM?	It is the controlled removal of metals	Understand	CO 2	CLO 04	AMEB50.04
		by the anodic dissolution in an				
					1	
		electrolytic medium, where the work				
		electrolytic medium, where the work piece (anode) and the tool (cathode)				
		electrolytic medium, where the work piece (anode) and the tool (cathode) are connected to the electrolytic				
		piece (anode) and the tool (cathode)				
		piece (anode) and the tool (cathode) are connected to the electrolytic				
2	Write the Faraday's first	piece (anode) and the tool (cathode) are connected to the electrolytic circuit, which is kept, immersed in the	Remember	CO 2	CLO 05	AMEB50.05
	Write the Faraday's first law of electrolysis?	piece (anode) and the tool (cathode) are connected to the electrolytic circuit, which is kept, immersed in the electrolytic medium.	Remember	CO 2	CLO 05	AMEB50.05
		piece (anode) and the tool (cathode) are connected to the electrolytic circuit, which is kept, immersed in the electrolytic medium. The amount of any material dissolved	Remember	CO 2	CLO 05	AMEB50.05
		piece (anode) and the tool (cathode) are connected to the electrolytic circuit, which is kept, immersed in the electrolytic medium. The amount of any material dissolved or deposited is proportional to the	Remember	CO 2	CLO 05	AMEB50.05
		piece (anode) and the tool (cathode) are connected to the electrolytic circuit, which is kept, immersed in the electrolytic medium. The amount of any material dissolved or deposited is proportional to the quantity of	Remember		CLO 05	AMEB50.05 AMEB50.06
3	law of electrolysis?	piece (anode) and the tool (cathode) are connected to the electrolytic circuit, which is kept, immersed in the electrolytic medium. The amount of any material dissolved or deposited is proportional to the quantity of electrolyte passed.				
3	law of electrolysis? Write the Faraday's	piece (anode) and the tool (cathode) are connected to the electrolytic circuit, which is kept, immersed in the electrolytic medium. The amount of any material dissolved or deposited is proportional to the quantity of electrolyte passed. The amount of different substances dissolved or deposited by the same quantity of electricity are proportional				
3	law of electrolysis? Write the Faraday's second law of electrolysis?	piece (anode) and the tool (cathode) are connected to the electrolytic circuit, which is kept, immersed in the electrolytic medium. The amount of any material dissolved or deposited is proportional to the quantity of electrolyte passed. The amount of different substances dissolved or deposited by the same				
3	law of electrolysis? Write the Faraday's	piece (anode) and the tool (cathode) are connected to the electrolytic circuit, which is kept, immersed in the electrolytic medium. The amount of any material dissolved or deposited is proportional to the quantity of electrolyte passed. The amount of different substances dissolved or deposited by the same quantity of electricity are proportional		CO 2		

5	What are the factors that	Nature of work piece. 2. Type of	Remember	CO 2	CLO 05	AMEB50.05
-	influence oxidation in	electrolyte. 3. Current density. 4.	Kemember	02	CLO 05	AMED30.03
	ECM?	Temperature of the electrolyte.				
6	What are the materials	Copper and copper alloys, titanium,	Remember	CO 2	CLO 04	AMEB50.04
Ŭ	used to make the tool	aluminum, Graphite, platinum,	Remember	002	02001	
	electrode? (or) What are	tungsten carbide, brass, bronze,				
	the materials used for	carbon, Monel and reinforced plastic.				
	tools in ECM?	·····				
7	What are the main	i) For completing the electric circuit	Understand	CO 2	CLO 05	AMEB50.05
	functions of electrolysis in	between the tool and the work piece				
	the ECM?	and to allow the reaction to proceed				
		efficiently. ii) To remove the products				
		of machining from the cutting region.				
		iii) To carry away the heat generated				
		during the chemical reaction. iv) To				
		avoid ion concentration at the work				
		piece- tool gap. v) It cools the cutting zone which becomes hot due				
8	What are the properties	to the flow of high current. 1. High thermal conductivity.	Remember	CO 2	CLO 05	AMEB50.05
0	are expected from the	2. Low viscosity and high specific	Kemember	02	CLO 05	ANIED30.03
	electrolysis used in the	heat.3. Should chemicallystable even				
	ECM?	at high temperature. 4. Should be non-				
		toxic and non-corrosive.				
9	What are the electrolytes	15 -20 % NaCl in water, sodium	Remember	CO 2	CLO 05	AMEB50.05
-	commonly used in ECM?	nitrate, potassium nitrate, sodium				
	-	sulphate, sodium				
		chromate and potassium chloride.				
10	What are the results due to		Understand	CO 2	CLO 04	AMEB50.04
	improper selection of	and stray cutting.				
	electrolyte in ECM?					
11	What are the methods	1. Running the system until it is	Remember	CO 2	CLO 05	AMEB50.05
	generally used to filter the	contaminated completely and replaces				
	electrolyte?	it. 2. Centrifugal separation. 3.				
		Sedimentation. 4. Use of clarifiers				
12	What are the	1. It should be a good conductor of	Remember	CO 2	CLO 05	AMEB50.05
	characteristics(requiremen	electricity and heat. 2. Easily				
	ts) of a good ECM tool?	machinable.3. Resistant to chemical				
		reaction. 4. It offers resistance to				
		the high electrolyte pressure.				
12	What are the parameters		Understand	CO 2	CLO 05	AMEB50.05
13	1	1. Feed rate. 2. Voltage. 3. Concentration of the electrolyte. 4.	Understand	CO 2	CLO 05	AMED30.03
	that affect the WIKK?	Temperature of the electrolyte. 5.				
		Current density. 6. Velocity of the				
		electrolyte.				
14	How the current density	Current density is controlled not only	Remember	CO 2	CLO 04	AMEB50.04
	affect the MRR?	by the amount of current but also by	Remember	002	02001	
		the size of the gap between the tool				
		and the work piece. A small gap				
		results in high current densities, which				
		in				
		turn produce more material removal.				
15	What are the advantages	Advantages:1.ECM is simple, fast and	Remember	CO 2	CLO 05	AMEB50.05
	of ECM?	versatile method. 2. Surface finish can				
1		be extremelygood.3. Fairly good				
1		tolerance can be obtained. 4. No				
1		cutting forces are involved 5. Wear				
		and tear of tool is negligible 6. Metal				
1		removal rate is high.				

	What are the	Disadvantages: 1. Large power	Understand	CO 2	CLO 05	AMEB50.05
	disadvantages of ECM?	consumption and the related problems.				
		2. Non conductingmaterials cannot be				
		machined.3. Maintenances of higher				
		tolerances require complicated				
		contours.				
		4. Initial investment is quite high 5.				
		More space is required.				
17	Define ECG. (or) State the	ECG is the material removal process	Remember	CO 2	CLO 05	AMEB50.05
	principle of ECG process.	in which the material is removed by				
		the combined effect of Electro-				
		Chemical effect and conventional				
		grinding operation. The major portion				
		of the metal (about 90%) is removed				
		by electrochemical effect.				
18	Which material s used to	Metal bonded diamond (or)	Remember	CO 2	CLO 04	AMEB50.04
	make the grinding wheel?	Aluminum oxide.				
	What are the important	It acts as insulator to maintain a small	Understand	CO 2	CLO 05	AMEB50.05
	functions of abrasive		Understand	CO 2	CLO 05	ANIED30.03
	particles used in ECG?	gap between the wheel and work piece. They are electrolysis products				
	particles used in ECG?					
		from the working area. To cut chips if the wheel should contact the work				
		piece particularly in the event of power failure.				
20	What are the limitations of	1	Understand	CO 2	CLO 05	AMEB50.05
20	ECG?	conductive.2. Not suitable for	Understand	02	CLO 05	AMED30.03
	ECO?					
		machining soft material. 3. Require dressing tools for preparing				
		the wheels.				
		MODULE III				
		THERMAL METAL REMOVAL	DDOOEGGEG	1		
			PRIN HANHA			
1					CLO 07	AMEB50.07
1	Define electrical discharge	EDM is the controlled erosion of	Remember		CLO 07	AMEB50.07
1		EDM is the controlled erosion of electrically conductive materials by			CLO 07	AMEB50.07
1	Define electrical discharge	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive			CLO 07	AMEB50.07
1	Define electrical discharge	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode			CLO 07	AMEB50.07
1	Define electrical discharge	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode			CLO 07	AMEB50.07
1	Define electrical discharge	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the			CLO 07	AMEB50.07
1	Define electrical discharge	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This			CLO 07	AMEB50.07
	Define electrical discharge machining?	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion.	Remember	CO 3		
2	Define electrical discharge machining? What are functions of	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It		CO 3	CLO 07	AMEB50.07 AMEB50.08
2	Define electrical discharge machining? What are functions of dielectric fluid used in	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in	Remember	CO 3		
2	Define electrical discharge machining? What are functions of	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool.	Remember	CO 3		
2	Define electrical discharge machining? What are functions of dielectric fluid used in	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance	Remember	CO 3		
2	Define electrical discharge machining? What are functions of dielectric fluid used in	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the	Remember	CO 3		
2	Define electrical discharge machining? What are functions of dielectric fluid used in	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains	Remember	CO 3		
2	Define electrical discharge machining? What are functions of dielectric fluid used in	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the	Remember	CO 3		
2	Define electrical discharge machining? What are functions of dielectric fluid used in	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been	Remember	CO 3		
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM?	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached.	Remember Understand	CO 3	CLO 08	AMEB50.08
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM? What are the basic	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached. Stable Dielectric strength. ii) It	Remember	CO 3		
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM? What are the basic requirements of dielectric	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached. Stable Dielectric strength. ii) It should have optimum viscosity. iii)	Remember Understand	CO 3	CLO 08	AMEB50.08
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM? What are the basic	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached. Stable Dielectric strength. ii) It should have optimum viscosity. iii) It should have high flash point. iv) It	Remember Understand	CO 3	CLO 08	AMEB50.08
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM? What are the basic requirements of dielectric	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached. Stable Dielectric strength. ii) It should have optimum viscosity. iii) It should have high flash point. iv) It should be chemically stable at high	Remember Understand	CO 3	CLO 08	AMEB50.08
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM? What are the basic requirements of dielectric	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached. Stable Dielectric strength. ii) It should have optimum viscosity. iii) It should have high flash point. iv) It should be chemically stable at high temperature and neutral. v) It should	Remember Understand	CO 3	CLO 08	AMEB50.08
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM? What are the basic requirements of dielectric fluid used in EDM?	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached. Stable Dielectric strength. ii) It should have optimum viscosity. iii) It should have high flash point. iv) It should be chemically stable at high temperature and neutral. v) It should not emit toxic vapors.	Remember Understand Remember	CO 3 CO 3	CLO 08	AMEB50.08 AMEB50.07
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM? What are the basic requirements of dielectric fluid used in EDM? What is the dielectric	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached. Stable Dielectric strength. ii) It should have optimum viscosity. iii) It should have high flash point. iv) It should be chemically stable at high temperature and neutral. v) It should not emit toxic vapors. 1. Petroleum based hydrocarbon	Remember Understand	CO 3	CLO 08	AMEB50.08
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM? What are the basic requirements of dielectric fluid used in EDM? What is the dielectric fluids commonly used in	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached. Stable Dielectric strength. ii) It should have optimum viscosity. iii) It should have high flash point. iv) It should be chemically stable at high temperature and neutral. v) It should not emit toxic vapors. 1. Petroleum based hydrocarbon fluids. 2. Parafin, white sprite,	Remember Understand Remember	CO 3 CO 3	CLO 08	AMEB50.08 AMEB50.07
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM? What are the basic requirements of dielectric fluid used in EDM? What is the dielectric	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached. Stable Dielectric strength. ii) It should have optimum viscosity. iii) It should have high flash point. iv) It should be chemically stable at high temperature and neutral. v) It should not emit toxic vapors. 1. Petroleum based hydrocarbon fluids. 2. Parafin, white sprite, transformer oil. 3. kerosene,	Remember Understand Remember	CO 3 CO 3	CLO 08	AMEB50.08 AMEB50.07
2	Define electrical discharge machining? What are functions of dielectric fluid used in EDM? What are the basic requirements of dielectric fluid used in EDM? What is the dielectric fluids commonly used in	EDM is the controlled erosion of electrically conductive materials by the initiation of rapid and repetitive spark discharge between the electrode tool to the cathode and work to anode separated by a small gap kept in the path of dielectric medium. This process also called spark erosion. i) It acts as an insulating medium ii) It cools the spark region and helps in keeping the tool and work piece cool. iii) It maintains a constant resistance across the gap. iv) It carries away the eroded metal particles. v) It remains electrically non conducting until the required breakdown voltage has been reached. Stable Dielectric strength. ii) It should have optimum viscosity. iii) It should have high flash point. iv) It should be chemically stable at high temperature and neutral. v) It should not emit toxic vapors. 1. Petroleum based hydrocarbon fluids. 2. Parafin, white sprite,	Remember Understand Remember	CO 3 CO 3	CLO 08	AMEB50.08 AMEB50.07

5	What are the prime	1. It should be electrically	Remember	CO 3	CLO 08	AMEB50.08		
5	requirements of tool	conductive. 2. It should have good	Kemember	05	CLO 08	AMED30.08		
	material in EDM?	machinability. 3. It should have low						
		erosion rate. 4. It should have low						
		electrical resistance. 5. Melting point						
		of the tool should be high.						
6	What is the effect	Increasing the capacitance causes	Remember	CO 3	CLO 09	AMEB50.09		
	of capacitance in	the discharge to increase and						
	EDM?	increase both the peak current and						
		discharge time.						
7	Name some of the tool	1. Copper, brass, alloys of Zinc &	Understand	CO 3	CLO 08	AMEB50.08		
	material used in EDM?	tin. 2. Hardened plain carbon steel 3.						
		Copper tungsten, silver tungsten,						
		tungsten. 4. Copper graphite and						
8	What are the process	graphite.	Damamhan	CO 3	CLO 08	AMEB50.08		
0	What are the process parameters which	 Energy discharge 2. Capacitance. Size of work piece. 4. M/c tool 	Remember	0.05	CLU 08	AMED30.08		
	affect efficiency?	design						
9	Write the formula for	W=(1/2) X EIT W-discharge	Remember	CO 3	CLO 09	AMEB50.09		
2	finding the energy	energy I- Current, T-time, E-	Kennennber	005	CLO 09	AMLD30.07		
	discharge in EDM?	voltage						
10	Define W/T (Tool Wear)	It is the ratio of volume of work	Understand	CO 3	CLO 08	AMEB50.08		
10	ratio?	material removed to the volume of			5 CLO 00	CLO 08		
	14101	electrode (tool) consumed.						
11	Explain electrode wear?	A crater is produced in the electrode,	Remember	CO 3	CLO 08	AMEB50.08		
		which is likewise dependent on the						
		electrode material and the energy of						
		the discharge.						
12	What are types of power	1. R-C circuit. 2. Rotary impulse	Remember	CO 3	CLO 09	AMEB50.09		
	supply circuits used in	generator. 3. Controlled pulse						
	EDM?	(vacuum tube). 4. Oscillator						
		controlled pulse. 5. Transistor pulsed						
10	XX71 .1 . 11 1	circuit	D 1	00.0	CT O 00			
13	Why the servo controlled	EDM requires that a constant arc gap	Remember	CO 3	CLO 09	AMEB50.09		
	system is needed in EDM?	(called spark gap) to be maintained						
		between the electrode and the work piece to obtain maximum machining						
		efficiency. Therefore EDM tool in						
		corporate some form of servo control.						
14	Define electrical discharge	EDM is the controlled erosion of	Understand	CO 3	CLO 09	AMEB50.09		
	machining?	electrically conductive materials by	Onderstand	005	CLO 07	AMLD30.07		
	machining.	the initiation of rapid and repetitive						
		spark discharge between the electrode						
		tool to the cathode and work to anode						
		separated by a small gap kept in the						
		path of dielectric medium. This						
		process also called spark erosion						
15	What are the factors	MRR increases with forced circulation	Remember	CO 3	CLO 09	AMEB50.09		
	affecting metal removal	of dielectric fluid. ii) MRR increases						
	rate?	upto optimum value of work – tool						
		gap, after that it drops suddenly.iii)						
		MRR is maximum when the pressure						
		is below atmospheric pressure.						
16	How the tool materials are	Tool or Electrodes can be classified	Remember	CO 3	CLO 09	AMEB50.09		
	classified?	into four groups: i) Metallic electrodes						
		– Brass, copper tungsten, chromium						
		copper, aluminium tungsten, silver						
		tungsten ii) Non – metallic –						
		Graphites iii) Combined metallic and						
		non – metallic – Copper graphite iv)						
		Metallic coating with insulators – Copper on moulded plastic and copper						

		on ceramic.				
	What are the principal components of EDM process?	Power supply, dielectric system, electrodes: work piece and tool, and servo system (tool feed)	Understand	CO 3		AMEB50.09
18	What is tool wear in EDM? How does tool wear occur in EDM?	Partial removal of the tool material from the tool surface while machining the work piece due to discharge spark produced between the tool and work piece. Due to the spark action, the intense heat generated near the zone melts and evaporates the material near the sparking zone. Since the tool is also within this zone, it also gets eroded.	Remember	CO 3	CLO 08	AMEB50.08
19	How to minimize tool wear in EDM?	Tool wear can be minimized by using a tool material that has a high melting point and high thermal conductivity. Also by properly configuring the tool design, tool wear can be minimized	Remember	CO 3	CLO 08	AMEB50.08
20	Identify the characteristics of an electrode material in order to serve as a good tool	i) It should be a good conductor of heat and electricity. ii) It should be easily machinable to any shape at a reasonable cost. iii) It should produce efficient material removal rates from the work piece. iv) It should resist the deformation during erosion process. v) It should exhibit low tool wear rates.	Understand	CO 3	CLO 09	AMEB50.09
		MODULE -IV ELECTRON BEAM MACHI	INING			
1	What is Laser?	It is acronym of light amplification by stimulated emission of radiation. It is an electromagnetic radiation. It produces a powerful, monochromatic, collimated beam of light in which the waves are coherent	Remember	CO 4	CLO 10	AMEB50.10
2	State the principle of LBM	In laser beam machining process, laser beam is focused on the work piece by means of lens to give extremely high energy density to melt and vaporize the work material.	Understand	CO 4	CLO 10	AMEB50.10
3	What are the characteristics of laser used in laser machining	(i) It can be focused to maximum intensity or to minimum intensity as needed. (ii) It can be moved rapidly on the work piece. (iii) It is projected on the work piece at particular distance from the lens. (iv) Dedicated to an online process. (v) Power is shared on a job.	Remember	CO 4	CLO 10	AMEB50.10
4	Give the examples of i) solid state laser ii) gas laser	i) solid state laser–Ruby laser, Neodymium doped Yitrium– Aluminium– Garnet(YAG) laser, Neodymium doped glass laser ii) gas laser – carbon dioxide laser, Helium – Neon laser.	Remember	CO 4	CLO 10	AMEB50.10
5	What are basic requirements of laser welding?	(i) The focus of the beam should be adjusted to the thickness of the material. (ii) The wave length of the laser beam must be compatible with the material being welded.	Understand	CO 4	CLO 10	AMEB50.10

6	What is solid state I ason?	Colid state Legan is the Legans which	Domomhor	CO 4	CLO 11	AMED 50 11
6	What is solid state Laser?	Solid state Laser is the Lasers, which consist of a hot nat, which may be crystalline solid / glass, doped with an active material whose atoms provide the lasing action.	Remember			AMEB50.11
7	How does Laser melting works?	It melts and vaporizes the unwanted material by means of narrow pulsed laser operating at 2 to 100 pulses/sec Because of this high accuracy is not possible to micro sized holes.	Remember	CO 4	CLO 10	AMEB50.10
	What are the characteristics of Laser beam?	1. Material removal 2. Material shaping 3. Welding 4. Thermo kinetic change.	Understand	CO 4	CLO 10	AMEB50.10
9	What are the fundamentals of photons used in Laser?	In the Laser the photons are in ground state at 0°C they are brought to the excited state by means of absorption of energy by temperature change, collision.	Remember	CO 4	CLO 11	AMEB50.11
10	What are the advantages of Laser drilling?	No physical contact between work root pair hence there is no possibility if breakage or wear of root. Precision location is ensured by focusing of the beam Large aspect ratio can be achieved	Remember	CO 4	CLO 11	AMEB50.11
	List the applications of LBM.	i) It is used for making small holes, difficult welding of non conductive and refractory materials, cutting complex profiles in thin and hard materials ii) It can be used for mass micro machining production iii) It can also be used for selective heat treating of materials.	Understand	CO 4	CLO 11	AMEB50.11
	List the advantages and limitations of LBM	Advantages: i) Machining of any materials including non metal is possible ii) Micro sized holes can be machined iii) Heat affected zone is small around the machined surface. Limitations: i) Highly skilled operators are needed ii) Rate of production is low iii) initial investment is high iv) Life of flash lamp is short.	Remember	CO 4	CLO 10	AMEB50.10
	What materials can be machined by using Laser Beam?	All materials except those having high thermal conductivity and high reflectivity	Remember	CO 4	CLO 12	AMEB50.12
	What are the characteristics of Laser used in Laser machining?	1. Can be focused to maximum intensity or to lower intensity as needed. 2. Can be moved rapidly on the work. 3. Remote cutting over long standoff distances.	Understand		CLO 11	
	State the working principle of EBM.	When the high velocity beam of electrons strike the work piece, its kinetic energy is converted into heat. This concentrated heat raises the temperature of work material and vaporizes a small amount of it, resulting in removal of metal from the work piece	Remember	CO 4	CLO 10	AMEB50.10

		(i) T 1	TT. 1	CO 4	$OI \cap 11$	AMED 50 11
	State any four limitations of EBM?	(i) The metal removal rate is very slow. (ii) It is not suitable for large work pieces. (iii) Cost of equipment is very high. (iv) A little taper produced on holes.v) it is applicable only for thin materials.	Understand		CLO 11	AMEB50.11
	What is the drawback of electron beam machining?	One major diameter of electron beam welding has been the requirement of high degree of vacuum essential or satisfactory operation of this process because of degassing	Remember		CLO 12	AMEB50.12
	Write the application of electron beam?	1. Thin film machining. 2. Surface treatment. 3. Engraving metals and non-metals.4. Cutting of materials	Remember	CO 4	CLO 12	AMEB50.12
19	Define EBM	It is the thermo-electrical material removal process on which the material is removed by the high velocity electron beam emitted from the tungsten filament made to impinge on the work surface, where kinetic energy of the beam is transferred to the work piece material, producing intense heat, which makes the material to melt or vaporize it locally.	Understand		CLO 12	AMEB50.12
	What are the two types of EBM? Explain	(i) Thermal type. (ii) Non-thermal Type. In thermal type, type the electron beam is used to heat the material up to the point where it is selectively vaporized. In Non - thermal type, the EBM produces a chemical reaction.	Remember	CO 4	CLO 12	AMEB50.12
		MODULE -V DI ASMA MACHININ	IC			
	What is the principle of plasma arc machining? What are the two stages in which the process of material removal is affected?	PLASMA MACHININ In plasma arc machining process, material is removed by directing a high velocity jet of high temperature (11,000°C to 28,000°C) ionized gas on the work piece. This high temperature plasma jet melts the material of the work piece. Plasma	Remember	CO 5	CLO 13	AMEB50.13
		formation and melting of work piece are the two stages in which the process of materials removed is affected.				
	What is the main industrial application of plasma cutting systems?	formation and melting of work piece are the two stages in which the process of materials removed is	Understand			AMEB50.13
3	industrial application of	formation and melting of work piece are the two stages in which the process of materials removed is affected. (i) It is used for cutting alloy steels, stainless steel, cast iron, copper, nickel, titanium, aluminum and alloy of copper and nickel etc. (ii) It is used	Understand	CO 5	CLO 13	AMEB50.13
3	industrial application of plasma cutting systems? What do you understand	formation and melting of work piece are the two stages in which the process of materials removed is affected. (i) It is used for cutting alloy steels, stainless steel, cast iron, copper, nickel, titanium, aluminum and alloy of copper and nickel etc. (ii) It is used for profile cutting. The dynamical properties of this gas of free electrons and ions are sufficiently different from the normal unionized gas. So it can be considered a fourth state of matter, and is given		CO 5 CO 5	CLO 13 CLO 13	

6	What is the number of	Etchants are used to remove the metal	Remember	CO 5	$CI \cap 12$	AMEB50.13
	What is the purpose of etchants in CHM?	from the work piece. The metal is removed by the chemical conversion of the metal into metallic salt.		CO 5		
7	Name the etchants used in CHM.	Caustic soda, Hydrochloric acid, Nitric acid, Iron chloride.	Remember	CO 5	CLO 14	AMEB50.14
	What is the use of maskant in CHM?	In CHM, the areas of work piece which are not to be machined are covered with a resistant, called a resist or maskant	Understand	CO 5		AMEB50.14
9	What are the advantages of plasma arc welding?	a. Exothermic oxidation takes place. b. DC power supply.	Remember	CO 5	CLO 14	AMEB50.14
10	What are the metals that can't be machined by plasma arc machining?	A. Stainless steel b. Monel c. Super alloys	Remember	CO 5	CLO 14	AMEB50.14
	What is the basic heating phenomenon that takes place in plasma arc welding?	The basic heating phenomenon that takes place at the work piece is a combination of anode heating due to direct electron bombardment recombination of molecules on the work piece.	Understand	CO 5		AMEB50.14
	How the initial ionization is accomplished in plasma arc machining?	A high voltage arc established between electrode and nozzle accomplishes initial ionization.	Remember	CO 5	CLO 14	AMEB50.14
13	Why does gas formed in plasma do in P.A.M?	This gas stabilizes the arc and prevents it from diverging.	Remember	CO 5	CLO 14	AMEB50.14
	How another source of heating achieved in P.A.M?	It is desirable to achieve a third source of heating by injecting oxygen into work area to take advantage of exothermic oxidation.	Understand	CO 5	CLO 15	AMEB50.15
15	Write the principle of P.A.M	Once the material has been raised to molten point the high velocity gas stream blows the material away.	Understand	CO 5	CLO 15	AMEB50.15
	Write the circuitry details in PAM.	+ ve terminal connected to work piece and - ve terminal connected to electrode.	Remember	CO 5	CLO 15	AMEB50.15
17	Which type of power supply is used in P.A.M?	DC power supply is used.	Understand	CO 5	CLO 15	AMEB50.15
18	Which part is constricted by plasma?	Nozzle duct is constricted by plasma.	Remember	CO 5	CLO 15	AMEB50.15
19	How does the basic plasma is generated?	The basic plasma is generated by subjecting a stream of gas to the electron bombardment of the electric arc.	Remember	CO 5	CLO 15	AMEB50.15
20	What are the metals that can't be machined by plasma arc machining?	1. Stainless steel 2. Monel 3. Super alloys	Understand	CO 5	CLO 15	AMEB50.15

Prepared by: Mr. M.Sunil Kumar, Assistant Professor.

HOD, ME