

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	POWER SYSTEM ANALYSIS
Course Code	:	AEE012
Program	:	B.Tech
Semester	:	VI
Branch	:	Electrical and Electronics Engineering
Section	:	A&B
Course Faculty	:	Mr. T. Anil Kumar, Assistant Professor Mr. P. Mabu Hussain, Assistant Professor

OBJECTIVES:

Ι	To help students to consider in depth the terminology and nomenclature used in the syllabus.
Π	To focus on the meaning of new words / terminology/nomenclature

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms	CO 1	CLO	CLO Code
	-		Level			
		UNIT-I				
1	Define graph of original network.	Graph is the pictorial representation of original network where all the elements are replaced with straight lines.	Remember	CO 1	01	AEE012.01
2	Define bus.	Bus is the point or junction where two or more than two elements of power system are connected . The bus is named after known variables at respective buses as generator bus, load bus and slack bus.	Remember	CO 1	01	AEE012.01
3	Explain incidence matrix.	Incidence matrix gives the information of connection of elements between buses and current flow in the network.	Understand	CO 1	01	AEE012.01
4	Discuss about primitive network.	Primitive network is the representation of power system governed with impedance and admittance performance equations.	Understand	CO 1	02	AEE012.02
5	State single line diagram.	A single line diagram is a diagrammatic representation of power system in which the components are represented by their symbols and the interconnection between them are shown by a single straight line.	Remember	CO 1	02	AEE012.02
6	Classify components of power systems.	The components of a power system are Generators, Power transformers, transmission lines, Substation transformers, distribution transformers and Loads.	Understand	CO 1	02	AEE012.02
7	Define bus admittance matrix.	The matrix consisting of the self and mutual admittance of the network of a power system is called bus admittance matrix.	Remember	CO 1	02	AEE012.02

S.No	QUESTION	ANSWER	Blooms Level	CO 1	CLO	CLO Code
8	Define bus impedance matrix.	impedances and transfer impedances of the network of a power system is called bus impedance matrix.	Remember	CO 1	02	AEE012.02
9	Name the diagonal and off-diagonal elements of bus impedance matrix.	The diagonal elements of bus impedance matrix are called driving point impedances of the buses and off-diagonal elements are called transfer impedances of the buses.	Understand	CO 1	02	AEE012.02
10	Define tree.	same number of buses without closed loop.	Remember	CO 1	01	AEE012.01
11	Define addition of branch.	The new element connected between existing bus and newly added bus.	Remember	CO 1	03	AEE012.03
12	State addition of link.	The new element connected between already existing pair of buses.	Remember	CO 1	03	AEE012.03
13	Give the order of bus impedance matrix for addition of branch.	The order of impedance matrix for addition of branch is (m+1)x1. Where, m-original number of buses in power system.	Remember	CO 1	02	AEE012.02
14	Give the order of impedance matrix for addition of link.	The order of impedance matrix for addition of link is mx1. Where, m-original number of buses in power system.	Remember	CO 1	02	AEE012.02
15	Write performance equations of partial network.	$E_{Bus} = Z_{Bus} * I_{Bus}$ $I_{Bus s} = Z_{Bus} * E_{Bus}$	Remember	CO 1	03	AEE012.03
		UNIT-II				
1	Name the quantities defined at voltage controlled bus	The quantities defined at voltage controlled bus are P and V.	Remember	CO 2	04	AEE012.04
2	Write quantities todeterminedatgenerator bus.	The quantities to be determined at generator bus are Q and δ .	Remember		04	AEE012.04
3	Define acceleration factor.	The acceleration factor speed ups the convergence of power system.	Remember	CO 2	05	AEE012.05
4	State tie line control.	The transmission lines that connect an area to its neighboring area are called tie-lines.	Remember	CO 2	04	AEE012.04
5	Name the quantities defined at load bus.	The quantities defined at load bus are P and Q.	Remember	CO 2	04	AEE012.04
6	Write quantities to be determined at load bus.	The quantities to be determined at load bus are V and δ .	Remember	CO 2	04	AEE012.04
7	Name the quantities defined at slack bus.	The quantities defined at load bus are V and δ .	Remember	CO 2	04	AEE012.04
8	Write unknown quantities at slack bus.	The unknown quantities at load bus are P and Q	Remember	CO 2	04	AEE012.04
9	Name iterative methods for load flow studies .	 The iterative methods for load flow studies are: 1) Gauss siedel method 2) Newton Raphson method. 3) Decoupled methods. 4) Fast decoupled method. 	Remember	CO 2	05	AEE012.05

S.No	QUESTION	ANSWER	Blooms Level	CO 1	CLO	CLO Code
10	Write the objective of DC load flow studies.	The objective of a DC load flow studies is calculation of bus voltage values with specified system loads and sources.	Understand		05	AEE012.05
11	Give the value of acceleration factor used in the Gauss Siedel method.	The value of acceleration factor used in the Gauss Siedel method ranges form 1.6-2.0.	Remember	CO 2	05	AEE012.05
12	Give the main assumption to solve a load flow problem by Gauss Siedel method.	All the buses are to be considered as PQ bus excluding the slack bus in Gauss Siedel method.	Understand	CO 2	05	AEE012.05
13	Write drawback of Newton Raphson method in load flow studies.	A large memory allocation is required to store the Jacobian Matrix in Newton Raphson method	Understand	CO 2	05	AEE012.05
14	Which types of equations are solved using Newton Raphson method?	The equations are solved using Newton Raphson method are Non linear algebraic equations	Understand		05	AEE012.05
15	Select best method with high accuracy in load flow studies.	The best method in load flow studies with high accuracy is Newton Raphson method	Understand	CO 2	05	AEE012.05
		UNIT-III				
1	Define per unit system in power system.	A per-unit system is the expression of system quantities as fractions of a defined base unit quantity in power system	Remember	CO 3	07	AEE012.07
2	State symmetrical fault in power system.	A symmetrical fault is a fault where all phases are affected so that the power system remains balanced.	Remember	CO 3	08	AEE012.08
3	Write about unsymmetrical faults in three phase system.	Unsymmetrical faults are the faults which leads unequal currents with unequal phase shifts in a three phase system.	Remember	CO 3	09	AEE012.09
4	How unsymmetrical faults are occurred?	The unsymmetrical fault occurs in a system due to presence of an open circuit or short circuit of transmission or distribution line.	Understand	CO 3	09	AEE012.09
5	Name types symmetrical faults.	The types of symmetrical faults are – i) line to line to line to ground (L-L-L-G). ii) line to line to line (L-L-L)	Remember	CO 3	08	AEE012.08
6	Name types unsymmetrical faults.	The types of unsymmetrical faults are – i) line to ground (L-G) ii) line to line (L-L) iii) double line to ground (LL-G).	Remember	CO 3	09	AEE012.09

S.No	QUESTION	ANSWER	Blooms Level	CO 1	CLO	CLO Code
7	Define earth fault impedance.	Earth fault loop impedance is the path followed by fault current when a lowimpedance fault occurs between the phase conductor and earth	Remember		08	AEE012.08
8	Write about positive sequence components.	A balanced three-phase system with the same phase sequence as the original sequence is positive sequence component.	Understand	CO 3	08	AEE012.08
9	Write about negative sequence components.	A balanced three-phase system with the opposite phase sequence as the original sequence negative sequence component.	Understand	CO 3	08	AEE012.08
10	Write about zero sequence components.	A three phase system with Three phasors that are equal in magnitude and phase zero sequence component.	Understand	CO 3	08	AEE012.08
11	Give the importance of series reactor.	Series reactors are used as current limiting reactors to increase the impedance of a system.	Understand	CO 3	08	AEE012.08
12	State fault level.	Fault level at any given point of the Power system is the maximum current that would flow in case of a short circuit fault at that point.	Remember		08	AEE012.08
13	Name the factors on which fault current depends.	The factors on which fault current depends-i) Total impedance upto the fault.ii) Voltage at the fault point	Understand	CO 3	09	AEE012.09
14	Mentionthemethodsusedforcalculationofsymmetricalfaults.	The methods used for calculation of symmetrical faults- i) Thevenin's theorem ii) Kirchhoff's laws.	Understand	CO 3	08	AEE012.08
15	Give the value of zero sequence impedance in line to line faults.	The value of zero sequence impedance in line to line faults is zero.	Understand	CO 3	08	AEE012.08
		UNIT-IV				
1	Define steady state stability of power system.	The steady state stability of a power system refers to the ability of a system to return back to its steady state when subjected to a disturbance.	Remember	CO 4	10	AEE012.10
2	Write about stability limit in power system.	The stability limit defines the maximum power permissible to flow through a particular part of the system for which it is subjected to line disturbances or faulty flow of power.	Understand	6.	11	AEE012.11
3	State dynamic stability.	Dynamic stability of a system denotes the artificial stability given to an inherently unstable system by automatically controlled means. It is concerned to small disturbances lasting for about 10 to 30 seconds.	Remember	CO 4	10	AEE012.10
4	Give the condition for steady state stability.	The steady state stability plays role for very gradual and infinitesimally small power change.	Understand	CO 4	10	AEE012.10
5	Name the method to improve steady state stability of the synchronous generator for a better performance.	The method to improve steady state stability of the synchronous generator for a better performance Increasing the excitation.	Understand	CO 4	12	AEE012.12

S.No	QUESTION	ANSWER	Blooms Level	CO 1	CLO	CLO Code
6	Define synchronizing coefficient.	The term $P_{max} .cos\delta$ is called synchronizing coefficient.	Remember	CO 4	11	AEE012.11
7	For what value of synchronizing coefficient system is stable.	The system is stable if synchronizing coefficient is positive.	Understand	CO 4	11	AEE012.11
8	Define power angle.	The power angle or torque angle is defined as the angular displacement of the rotor from synchronously rotating reference frame.	Remember	CO 4	11	AEE012.11
9	Write the units of inertia constant.	The units of inertia constant are MJ/MVA or MW.sec/MVA.	Remember	CO 4	10	AEE012.10
10	Name the parameters for which swing curve is plotted.	The swing curve is the plot or graph between the power angle δ and time t.	Remember	CO 4	11	AEE012.11
11	State the assumptions made in stability studies	The assumptions made in stability studies- i) The losses in the system are Neglected. ii) The voltage behind transient is reactance assumed to remain constant.	Understand	CO 4	11	AEE012.11
12	Define rotor angle stability.	Rotor angle stability is the ability of interconnected synchronous machines of a power system to remain in synchronism.	Remember	CO 4	10	AEE012.10
13	Explain voltage stability.	Voltage stability is the ability of a power system to maintain steady acceptable voltages at all buses in the system under normal operating conditions and after being subjected to a disturbance.	Remember	CO 4	10	AEE012.10
14	State the causes of voltage instability.	A system enters a state of voltage instability when a disturbance, increase in load demand, or change in system condition causes a progressive and uncontrollable drop in voltage	Understand	CO 4	10	AEE012.10
15	Give the factor causing instability of power system.	The main factor causing instability is the inability of the power system to meet the demand for reactive power.	Understand	CO 4	10	AEE012.10
		UNIT-V				
1	Define transient stability.	Transient stability is defined as the ability of the power system to bring it to a stable condition or remain in synchronism after a large disturbance.	Remember	CO 5	14	AEE012.14
2	State transient stability limit.	The transient stability limit is the maximum power that can be transferred by a machine to a fault or a receiving system during a transient state without loss of synchronism.	Understand	CO 5	14	AEE012.14
3	Compare steady state and transient state limit.	Transient stability limit is always less than steady state stability limit.	Understand	CO 5	14	AEE012.14
4	Give the methods to determine transient stability of power system.	The methods to determine transient stability of power system-i)Equal area criteria.ii)Point by point method.	Remember	CO 5	14	AEE012.14

S.No	QUESTION	ANSWER	Blooms Level	CO 1	CLO	CLO Code
5	Define critical clearing angle.	The critical clearing angle is the maximum allowable change in the power angle δ before clearing the fault, without loss of synchronism.	Remember	CO 5	14	AEE012.14
6	Methods to improve transient stability.	Methods to improve transient stability are-i)Higher system voltage.ii)Reduce the series reactance.iii)High speed circuit breakers and auto reclosing breakers.	Understand	CO 5	14	AEE012.14
7	Define automatic voltage regulator.	The automatic voltage regulator is used to regulate the voltage. It takes the fluctuate voltage and changes them into a constant voltage. The fluctuation in the voltage mainly occurs due to the variation in load on the supply system.	Remember	CO 5	15	AEE012.15
8	Name the component for which transient stability limit of a power system can be improved.	The component for which transient stability limit of a power system can be improved Series capacitor.	Understand	CO 5	14	AEE012.14
9	What are the common assumptions made for the equal area criterion?	The common assumptions made for the equal area criterion- i) The transmission line and machine resistances are neglected. ii) Rotor speed of the machine is constant iii) Mechanical input remains constant.	Understand	CO 5	14	AEE012.14
10	Give the case for which equal area criteria is used.	The equal area criteria is used for One machine and infinite bus bar.	Understand	CO 5	14	AEE012.14
11	Name the stability from equal area criteria.	The stability from equal area criteria Absolute stability.	Remember	CO 5	14	AEE012.14
12	Under what condition is the system stable under equal area criterion?	The area under the curve $P_a - \delta$ curve must reduce to zero.	Understand	CO 5	14	AEE012.14
13	Give the use of swing curve.	Swing curve is usually plotted for a transient state to study the nature of variation in power angle for a sudden large disturbance. From the nature of variation in power angle the stability of a system for any disturbance can be determined.	Understand		12	AEE012.12
14	Define critical clearing time	The critical clearing time is defined as the maximum time delay that can be allowed to clear a fault, without loss of synchronism.	Remember	CO 5	14	AEE012.14
15	State Equal area criterion.	Equal area criterion for stability states that the system is stable if the area under $P_a - \delta$ curve reduces to zero at some value of δ .	Remember	CO 5	14	AEE012.14

Signature of the Faculty

Signature of HOD