

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	DESIGN OF STEEL STRUCTURES AND DRAWING
Course Code	:	ACE012
Program	:	B.Tech
Semester	:	VI
Branch	:	CivilEngineering
Section	:	A& B
Course Faculty		Dr. Venu M, Professor
Course Faculty		Dr. Vamsi Mohan U, Professor

COURSE OBJECTIVES:

The	course should enable the students to:
Ι	Discuss the concepts of structural steel design conforming to the IS 800 design code.
II	Identify various types of structural steel and its properties also define concepts of Limit State Design.
III	Analyse structures using plastic method of analysis and evaluate collapse load and plastic moment
	capacity
IV	Design compression members, beams, connections and girders.

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		UNIT-I				
1	What is a Buckling?	Buckling is defined as a mode of failure under compression of a structural component that is thin with respect to its length (slenderness).	Understand	CO1	CLO1	ACE012.01
2	What is plasticity?	Property of material to be deformed repeatedly without rupture by the action of a force, and remain deformed after the force is removed.	Remember	C01	CLO2	ACE012.02
3	What is limit state method of collapse and serviceability?	A structure designed by employing limit state method of collapse and checked for other limit states will ensure the strength and stability requirements at the collapse under the design loads and also deflection and cracking at the limit state of serviceability.	Understand	CO1	CLO3	ACE012.03

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
4	What is	A numerical value expressed as	Remember	CO1	CLO2	ACE012.02
	joint efficiency?	the ratio of the strength of a				
	· ·	riveted, welded, or				
		brazed joint to the strength of				
		the parent metal.				
5	How is welding	For a deep penetration weld, the	Understand	CO1	CLO4	ACE012.04
	thickness	depth of penetration should be a				
	calculated?	minimum of 2.4 mm. Then the				
		size of the weld is minimum leg				
		length plus 2.4 mm. The size of				
		a fillet weld should not be less				
		than 3 mm or more than				
		the thickness of the thinner part				
		joined.		-		
6	What is	The strength of a rivet joint is	Remember	CO1	CLO5	ACE012.05
	efficiency of	measured by its efficiency.	Second Second			
	riveted joint?	The efficiency of a joints				
		defined as the ratio between the				
		strength of a riveted joint to the				
		strength of an				
		unriveted joints or a solid plate.				
7	Why fillet weld	Fillet welding refers to the	Understand	CO1	CLO8	ACE012.08
	is commonly	process of joining two pieces of				
	used?	metal together whether they be				
		perpendicular or at an angle.				
		These welds are commonly refe				
		rred to as Tee joints which are				
		two pieces of metal				
		perpendicular to each other or				
		Lap joints which are two pieces				
		of metal that overlap and				
0	Are welds	For equal log longths making	Domombor	CO1	CL O7	ACE012.07
0	stronger in shear	the direction of	Kemember	COI	CL07	ACE012.07
	or tension?	applied tension nearly parallel			100	
	of tension.	to the throat leads to a large				2
		reduction in strength The				
		optimum weld shape			A	
		recommended is to				
		provide shear leg < 3 times			100	
		the tension leg. In general.				
		fillet welds are stronger in				
		compression than in tension.		1		
9	What is eccentric	Procedure for designing riveted	Understand	CO1	CLO9	ACE012.09
-	riveted joint?	joint under eccentric loading. In				
	5	many applications, a machine	1.00			
		member is subjected to load				
		such that a. bending moment is				
		developed in addition to direct				
		normal or shear loading. Such.				
		type of loading is commonly				
		known as eccentric loading.				
10	What is a 6mm	Fillet welding refers to the	Understand	CO1	CLO10	ACE012.10
	fillet weld?	process of joining two pieces of				
		metal together whether they be				
		perpendicular or at an angle.				
		I nese welds are commonly				
		referred to as fee joints which				
		are two pieces of metal				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		perpendicular to each other or				
		Lap joints which are two pieces				
		of metal that overlap and				
		are welded at the edges.				
11	Why weld joint	This is due to the reason, that	Remember	CO1	CLO11	ACE012.11
	are preferred	in welding, gussets or other				
	over riveted	connecting components are not				
	joints?	used. The welded joints provide				
		high efficiency, which is not				
		possible in the case of riveted				
		joints. Alterations and additions				
		can be made easily in the				
		is int has a great strength				
12	What is holted	Polited joints are one of the	Understand	CO1	CL 011	ACE012 11
12	what is bolled	most common cloments in	Understand	COI	CLOII	ACE012.11
	connection?	most common elements in				
		design They consist of				
		fasteners that capture and join				
		other parts and are secured with				
		the mating of screw threads				
		There are two main types				
		of bolted joint designs: tension				
		joints and shear joints.				
13	What are the	Disadvantages of Welding	Understand	CO1	CLO10	ACE012.10
	advantages an <mark>d</mark>	Joints. Welded joints are more				
	disadvantages of	brittle and therefore their				
	welded joints?	fatigue strength is less than the				
		members joined. Due to uneven				
		heating & cooling of the				
		members during the welding,				
		the members may distort				
	0	resulting in additional stresses.				100
14	How many types	There are five different types of	Remember	CO1	CL011	ACE012.11
	of welding joints	welded joints for bringing two			- C)
	are there?	parts together for joining. Five			-	
		types of welded joints are butt			4	
		joint, corner joint, lap joint, tee-				
15	What is a baaring	Slip critical joint from	Understand	CO1	CL 011	ACE012 11
15	type connection?	structural engineering is	Understand	COI	CLOII	ACE012.11
	type connection?	a type of bolted structural steel				
		connection which relies on		1		
		friction between the				
		two connected elements rather				
		than bolt shear or	1000			
		bolt bearing to join two				
		structural elements				
		UNIT-II				
1	What are tension	Tension members are	Understand	CO2	CLO12	ACE012.12
	and compression	linear members in which axial				
	members?	forces act so as to elongate				
		(stretch) the member.				
		Tension members carry loads				
		most efficiently, since the entire				
		cross section is subjected to				
		uniform stress.				
		Unlike compression members,				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	-	they do not fail by buckling (see				
		chapter on compression				
		members).				
2	What is meant by	Compression members are	Remember	CO2	CLO12	ACE012.12
	compression	structural elements that are				
	member?	pushed together or carry a load.				
		more technically they are				
		subjected only to axial				
		compressive forces				
3	What is	Explanation: The tendency	Understand	CO2	CL 012	ACE012 12
5	slenderness ratio	of member to buckle is usually	Onderstand	002	CLOIZ	ACLOI2.12
	of a compression	measured by its slenderness				
	member?	ratio Slanderness				
		ratio of member is ratio of				
		affective length to enprepriate				
		radius of curation $(1 - kL/r)$				
4	What is losing in	Tadius of gyration ($\lambda - KL/T$).	Damarahan	C02	CI 012	ACE012 12
4	what is lacing in	Built-up columns are widely	Remember	02	CL013	ACE012.13
	steel structures?	used in steel construction				
		especially when the effective				
		lengths are great and the				
		compression forces light. They				
		are composed of two or more				
		parallel main components				
		interconnected by lacing or				
		batten plates (Figures 1 and 2).				
		the internal forces in the				
		connecting members.				
5	What's the	Main Difference –	Understand	CO2	CLO13	ACE012.13
	difference	Tension vs. Compression. Tens				
	between tension	ion and compression refer to				
	and	forces that attempt to deform an				
	compression?	object. The main difference				
		between tension and				1000
		compression is				
		that tension refers to forces that				
		attempt to elongate a body,				1.
		whereas compression refers to				
		forces that attempt to shorten			-	
		the body.				
6	What is	In mechanics, compression is	Understand	CO2	CLO13	ACE012.13
	compression	the application of balanced		0		
	structure?	inward ("pushing") forces to				
		different points on a material		1		
		or structure, that is, forces with				
		no net sum or torque directed so				
		as to reduce its size in one or				
		more directions				
7	Is beam a tension	For example a beam is	Remember	CO2	CL014	ACE012 14
,	member?	essentially a tension member Λ	Remember	202	CLUIT	1101012.17
	member :	rule of thumb is that				
		members which has longer or an				
		in the V avia are tension				
		mambar Taxis are tension				
		members are structured alarea to				
		that are structural elements				
		tare subjected to axial				
		tensile forces.	TT 1	002	CI O12	A CE010.10
8	What is Batten in	A batten is most commonly a	Understand	CO2	CL013	ACE012.13
	steel structure?	strip of solid material,				
		historically wood but can also				
		ot plastic, metal, or				

S.No	OUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
200.00	X	fiberglass. Battens are variously				
		used in construction, sailing,				
		and other fields In				
		the steel industry, battens used				
		as furring may also be referred				
		to as "top hats", in reference to				
		the profile of the metal.				
9	What is	Imperfection Factor. The	Remember	CO2	CLO13	ACE012.13
	imperfection	generalized imperfection				
	factor?	factor takes into account all the				
		relevant defects in a real				
		column when considering				
		buckling:				
		geometric imperfections,				
		eccentricity of applied loads and				
		residual stresses; inelastic	Sec. 1			
		properties are not considered				
		because they only influence				
		stub columns.				
10	What is	Slenderness ratio is the ratio of	Understand	CO2	CLO13	ACE012.13
	slenderness ratio	the length of a column and the				
	in steel?	least radius of gyration of its				
		cross section. Often denoted by				
		lambda. It is used extensively				
		for finding out the design load				
		as well as in classifying various				
		columnsin				
		short/intermediate/long.Exampl				
		e- short Steel column - lambda				
11	What does redius	Is less than 50.	Domomhor	CO2	CL 014	ACE012 14
11	of gyration	of a body about an axis of	Kennennber	02	CL014	ACE012.14
	of gyration	rotation is defined as the radial				
	mean:	distance of a point from the axis				C
		of rotation at which if whole			1	
		mass of the body assumed to				2
		be concentrated, its moment of				
		inertia about the given axis			A	
		would be the same as with its				
		actual distribution of mass.			100	
12	What is the main	The main difference is in	Understand	CO2	CLO12	ACE012.12
	purpose of	the purpose for which they are			63	
	lacings and	provided-Lacing flats carry no	-	1		
	battens?	force but their sole purpose is to				
		prevent buckling of column				
		while Battensalong with to	1000			
		check buckling plays a role in				
		force transfer.				
13	What is battened	Lacings, battens or perforated	Remember	CO2	CLO14	ACE012.14
	column?	plates. These members are				
		frequently used as light				
		compression members, such as				
		struts in truss moment frames				
		and as columns of light steel				
		structures. Double-channel				
		sections. are often used as built-				
		up columns, which are				
		connected to each other at few				
		places by means of battens.				
1						

S.No	OUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
14	What is a built	Built-up columns are widely	Understand	CO1	CLO14	ACE012.14
	up column?	used in steel construction				
	1	especially when the effective				
		lengths are great and the				
		compression forces light. They				
		are composed of two or more				
		parallel main components				
		interconnected by lacing or				
		batten plates				
15	What is the	The answer lies in how each	Remember	CO2	CLO14	ACE012.14
	opposite of	bridge type deals with the				
	compression?	important forces				
	1	of compression and tension				
		That's right, you compress it,				
		and by squishing it, you shorten				
		its length. Compressional stress,				
		therefore, is the opposite of				
		tensional stress.				
			·			
		UNIT-III				
1	How do you	Determine the beam / header	Understand	CO3	CLO15	ACE012.15
	calculate beam	span (length) and the span				
	size?	carried (supported) by				
		the beam / header. Click on the				
		appropriate beam, this will take				
		you to the calculation table for				
		your project. The column on the				
		left of each chart labeled				
		BEAM SPAN represents				
		the beam length (with bearing)				
		required for your project				
2	Why do we use I	The reason an	Remember	CO3	CLO16	ACE012.16
	Beam?	I section is used in beam design				
		is because a beam resists			- C)
		bending. When a beam bends,				
		the lower most part of it is in			4	
		tension, and the uppermost is in				
		compression. Simply, its flange			Sec.	
		carries bending while the web				
		carry the shear. We can have			· · · · ·	
		large spans with lesser weight	- · · ·	Sec. 7		
2	What is Moment	of material due its snape.	Understand	<u>CO2</u>	CI 016	ACE012 16
3	what is woment	maximum banding moment that	Understand	COS	CL010	ACEU12.10
	capacity?	and he resisted by an element				
		before it fails in bending				
4	How far can	2 grade there is a method that	Remember	CO3	CI 017	ACE012 17
-	heams snan?	can be used for estimating beam	Remember	005	CLO17	ACL012.17
	beams span.	spans for a preliminary design				
		When supporting joists that				
		span 12 feet with no overhang				
		beyond the beam a double ply				
		beam can span in feet a value				
		equal to its depth in inches A				
		double 2x12 beam can span 12				
		feet: a (2) 2x10 can span 10				
		feet and so on.				
5	Why are beams	A higher section modulus	Understand	CO3	CLO16	ACE012.16
	stronger?	means a lower resultant stress in		-	-	

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		the beam from any given				
		bending moment M. The				
		section modulus for an I-beam,				
		when compared to a solid				
		rectangular beam of the same				
		cross-sectional area is much				
		higher. This is because more				
		fibers are distributed away from				
	XX71	the neutral axis.	The desired and	<u> </u>	CLO1(ACE012.16
6	What are steel I	Structural steel is most	Understand	CO3	CL016	ACE012.16
	beams used for?	industry in the form of				
		atructural beams. They provide				
		structural support to buildings				
		while the web of the				
		beam provides resistance to				
		shear forces, such as breaking.				
		tearing apart, or collapsing the				
		flange resists bending of the				
		section.				
7	What are the	The four different types of	Remember	CO3	CLO17	ACE012.17
	different types of	beams are:				
	beams?	Simply Supported				
		Beam.				
		• Fixed Beam.				
		Cantilever Beam.				
		Continuously				
		Supported Beam.				
				2 2 3	AT 0.40	
8	What is the	A bending moment is the	Understand	CO3	CLO18	ACE012.18
	difference	reaction induced in a structural				
	between moment	element when an external force			. 0	-
	and bending	element causing the element to				10 m
	moment:	bend The most common or			1	
		simplest structural element				1.
		subjected to bending			~	
		moments is the beam. For			· · · ·	
		example a beam which is	9		Sec. 1	
		simply supported at both ends.				
9	How far can a	(If a steel girder must span 24	Understand	CO3	CLO18	ACE012.18
	steel beam span	feet between columns, it should			6.00%	
	without support?	be at least 18" deep.) All other	- C	~		
		things being equal, a deeper				
		wide-flange beam will be more				
		economical than a shallower				
		one. There are exceptions to this				
10	XX71	rule, but it is generally correct.	D 1	002	CL O1C	A CE012 14
10	Why are girders	I beam have very high moment	Remember	CO3	CL016	ACE012.16
	given I snape?	of the given metarial. The				
		two horizontal parts (called				
		flanges) of the L beam can bear				
		high bending and shearing				
		stress. That means they do not				
		get twisted and tilted easily.				
		That is why they are used				
		in girders, and as rails on the				
		railway tracks.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
11	What is the	It gets its name because it looks	Understand	CO3	CLO15	ACE012.15
	difference	like a capital H over its cross				
	between an I	section. The H-beam has wider				
	beam and an H	flanges than an I-beam, but the				
	beam?	I-beam has tapered edges. The				
		width is the flange, and the				
		height is the Web.				
		The difference between both H-				
		beams and I-beams is the flange				
		by web ratio.				
12	What is the	It gets its name because it looks	Remember	CO3	CLO17	ACE012.17
	difference	like a capital H over its cross		000	02017	1102012117
	between a wide	section The H-beam has wider				
	flange beam and	flanges than an I-beam but the		_		
	an M beam?	I-beam has tapered edges The				
	un m beum.	width is the flange and the				
		height is the Web				
		The difference between both H-				
		beams and L-beams is				
		the flange by web ratio				
13	What are the	Two types of Steel	Understand	CO3	CL018	ACE012 18
15	types of	Structure are: Structural	Understand	COS	CLUIS	ACE012.16
	structural staal?	stal connections and Structural				
	suuctural steer?	steel Connections and Structural				
		Engineering Works Ltd is a				
		Lighteering works Ltd is a				
		Steel Deeme Celumne DEC				
		Steel Beams, Columns, PFCs				
		and Structures with the latest				
		technology involved in				
1.4	TT .	manufacturing.		001	CL 0.10	ACE010 10
14	How many types	21 Types of Beams in	Understand	03	CLUI8	ACE012.18
	of beams are	Construction. Different types of				
	there in	beams are used in construction				
	construction?	of building and structures.			1.00	
		These are norizontal structural		_	- C)
		element that withstand vertical		_		
		loads, shear forces and bending			4	
1.5	XX /1 / 1	moments.		000	01.010	A CE010 10
15	What are beams	Generally, a vertical member of	Remember	CO3	CL018	ACE012.18
	and columns in a	a structure that resists				
	structure?	axial/eccentric load is called			1. C	
		column. carries load parallel to		6		
		longitudinal axis. carries load		~		
		transferred by beam and		2		
		ultimately transfer it to footing				
		and ground. For				
		framed structures, column is an				
		essential element of a structure.				
		UNIT-IV				
1	What is eccentric	Eccentric connections • If the	Understand	CO4	CL 019	ACE012 19
1	connection?	force applied does not passes	Chaerstand	0.04		11012.19
		through the CG of the joint then				
		such joint carries moment in				
		addition to an axial direct force				
		Such types of connections are				
		called as accentric connections				
2	What is an	Drogodura for designing rivet-	Domomhor	CO4	CLO20	ACE012 20
4	what is all	ioint under accentric loading. In	Kennennber	004	CL020	ACE012.20
1 1		joint under eccentric toaunig. In	1		1	

S.No	OUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	ioint?	many applications, a machine				
	J	member is subjected to load				
		such that a, bending moment is				
		developed in addition to direct				
		normal or shear loading. Such.				
		type of loading is commonly				
		known as eccentric loading.				
3	What is a splice	Splice connections allow	Understand	CO4	CL019	ACE012 19
5	connection?	connecting two collinear	enderstand	001	CLO17	1102012.17
	connection.	elements using additional plates				
		on webs and/or flanges. They				
		can be standalone elements or				
		elements of a structure.				
4	What is bracket	A corbel and console are types	Remember	CO4	CL019	ACE012 19
	in civil	of brackets. In		001	02017	110201211)
	engineering?	mechanical engineering a brack				
	engineering.	et any intermediate component				
		for fixing one part to another.				
		usually larger part What makes				
		a bracket a bracket is that it is				
		intermediate between the two				
		and fixes the one to the other				
5	What is a beam	Beam splices typically resist	Understand	CO4	CL019	ACE012 19
5	splice?	large bending moments and	Chacistana	001	CLO1/	1102012.17
	spineer	shear forces. If a rolled				
		section beam splice is located				
		away from the point of				
		maximum moment, it is usually				
		assumed that the				
		flange splice carries all the				
		moment and the web splice				
		carries the shear.				
6	What are splice	A splice plate is a component of	Understand	CO4	CLO20	ACE012.20
	plates?	the railway track. It is a piece of				
	0	metal bolted onto the rails,				
		making it possible to connect				1
		two rails in a row. Splice				
		plates are often used near			1	
		switches or other sensitive				
		areas. Elsewhere on the track			100	
		the joint between two rails is				
		generally welded.			63	
7	What is wall	A bracket is an architectural	Remember	CO4	CLO20	ACE012.20
	bracket?	element: a structural or				
		decorative member. It can be				
		made of wood, stone, plaster,	· · · ·			
		metal, or other mediums. It				
		projects from a wall, usually to				
		carry weight and sometimes to				
		"strengthen an angle". A				
		corbel and console are types				
		of brackets.				
8	What is column	A column splice means the	Understand	CO4	CLO19	ACE012.19
	splice?	joining of two parts of				
		a column whereas a column				
		base transfers forces and				
		moments at the lower end of				
		a column to a foundation.				
9	What is flange	Beam splices typically resist	Remember	CO4	CLO20	ACE012.20
	splice?	large bending moments and				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		shear forces. If a rolled section				
		beam splice is located away				
		from the point of maximum				
		moment, it is usually assumed				
		that the flange splice carries all				
		the moment and the web splice				
		carries the shear.				
10	What is splice in	A splice joint is a method of	Understand	CO4	CLO19	ACE012.19
	steel structure?	joining two members end to end				
		in woodworkingSplice joints				
		are stronger than unenforced				
		butt joints and have the				
		potential to be stronger than a				
		scarf joint. Splices are therefore				
		most often used when structural				
		elements are required in longer				
		lengths than the available				
		material.				
11	What is Moment	MOMENT	Remember	CO4	CLO19	ACE012.19
	connection in	CONNECTIONS. Moment				
	steel?	connections are designed to				
		transfer bending moments,				
		shear forces and sometimes				
		normal forces. The design				
		strength and stiffness of				
		a moment connection are				
		defined in relation to the				
		strength and stiffness of the				
		connected members			CT 0.40	
12	What is the	A moment connection transfers	Understand	CO4	CLO19	ACE012.19
	difference	bending moments from a beam				
	between moment	to a column. It is a				
	connection and	still connection. A snear				
	snear	connection (also called a			1.00	
	connection?	little or no moment An)
		avample of noment. An			-	
		connection is a fully welded			A	
		and plata to				
		beam connected to a column			100	
		flange				
13	How do gusset	Gusset plate is a plate for	Understand	CO4	CLO20	ACE012 20
	plates work?	connecting beams and girders to				
	± ····	columns. A gusset plate can be				
		fastened to a permanent				
		member either by bolts, rivets	· · · · ·			
		or welding or a combination of				
		the three. Gusset plates not only				
		serve as a method of joining				
		steel members together, but also				
		strengthen the joint.				
14	What are	Stiffeners are secondary plates	Remember	CO4	CLO20	ACE012.20
	stiffeners?	or sections which are attached				
		to beam webs or flanges to				
		stiffen them against out of plane				
		deformations. Almost all main				
		bridge beams will				
		have stiffeners. However, most				
		will only have transverse web				
		stiffeners, i.e.				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		vertical stiffeners attached to				
		the web.				
15	What is stiffened	In multistory braced frame	Understand	CO4	CLO20	ACE012.20
	seat connection?	construction, the connection of				
		choice for simple				
		connections between beams and				
		column webs is the seated				
		connection But in more				
		heavily loaded connections,				
		a stiffened seat is frequently				
		used to support the beam				
		reaction.				
		UNIT-V				
1	What is welded	In a plate girder bridge,	Understand	CO5	CLO21	ACE012.21
	plate girder?	the plate girders are typically I-				
		beams made up from separate				
		structural steel plates (rather				
		than rolled as a single cross-				
		section), which are welded or,				
		in older bridges, bolted or				
		riveted together to form the				
		vertical web and horizontal				
		flanges of the beam.				
2	Why plate	It is made up from separate	Remember	CO5	CLO21	ACE012.21
	girders are used?	structural steel plates, which are				
		welded or, in older bridges,				
		bolted or riveted together. They				
		form the vertical web and				
		horizontal flanges of the girder.				
		The gantry girder is a long steel				
		beam that can carry heavy				-
		loads, especially moving loads.			1.00	
		They are used at construction			- C)
	****	sites.			GY 0.01	1 00010 01
3	What is the	The main difference	Understand	C05	CL021	ACE012.21
	difference	between a girder and a beam is				
	between beam	the size of the component. In			Sec. 1	
	and girder?	general, workers in				
		the construction industry refer				
		to large beams as girders If it		Sec. 7		
		is the chief norizontal support in		1 m		
		a structure, it is a girder, not				
		a beam. If it is one of the				
		smaller structural supports, it is				
1	What is a girdar	A girder is a support been used	Romamhar	COS	CLON	ACE012 22
4	what is a glider	A glider is a support beam used	Kennennber	COS	CLO22	ACE012.22
	used IOF?	horizontal support of a structure				
		which				
		smaller hears Girders often				
		have an I hear gross section				
		composed of two load bearing				
		flanges separated by				
		stabilizing web but mov also				
		have a how shape 7 shape or				
		other forms				
5	What is cross	A girder is a support beam used	Understand	CO5	CI 022	ACE012 22
5	oirder?	in construction It is the main	Understand	005	CL022	ACL012.22
	0					

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		horizontal support of a structure				
		which supports smaller				
		beams. Girders often have an I-				
		beam cross section composed of				
		two load-bearing flanges				
		separated by a stabilizing web,				
		but may also have a box shape,				
		Z shape, or other forms.				
6	How many types	Types of Bridges - Arch.	Understand	CO5	CLO23	ACE012.23
	of girders are	Girder, Cable, Truss, Rigid				
	there?	Frame. Below is the list				
		of 5main types of bridges based				
		on support mechanism: Girder				
		bridges. Arch bridges.				
7	Why are girders	I beam have very high moment	Remember	CO5	CLO23	ACE012.23
	given I shape?	of inertia for the same volume	1101110111001	000	01010	1102012120
	given i shape.	of the given material The two				
		horizontal parts (called flanges)				
		of the I beam can bear high				
		bending and shearing stress				
		That means they do not get				
		twisted and tilted easily. That is				
		why they are used in girders				
		and as rails on the railway				
		tracks				
8	What are plate	It is made up from separate	Understand	CO5	CL 022	ACE012 22
0	girders where are	structural steel plates which are	Onderstand	005		ACL012.22
	they used?	welded or in older bridges				
	they used?	bolted or riveted				
		together They form the vertical				
		web and horizontal flanges of				
		the girder. The gantry girder is a				
		long steel beam that can carry				-
		heavy loads especially moving				
		loads. They are used at			100	
		construction sites				2
0	What is stiffener	Stiffeners are	Remember	COS	CI 022	ACE012 22
2	what is sufficient	secondary plates or sections	Kemember	05	CLO22	ACE012.22
	plate:	which are attached to beam				
		when are attached to beam			100	
		against out of plane				
		deformations Deep beams				
		sometimes also have		100		
		longitudinal web stiffeners				
10	How does a	In its most basic form a beam	Understand	C05	CL 023	ACE012 23
10	girder bridge	bridge consists of	Chucistallu	005		ACE012.23
	work?	horizontal heam that				
	WOIN:	supported at each end by piers				
		The weight of the beam pushes				
		straight down on the piers				
		Under load the beam's top				
		surface is pushed down or				
		compressed while the bottom				
		edge is stretched or placed				
		under tension				
11	What is a girder	A girder cantilevered or drop	Remember	COS	CI 023	ACE012 23
11	on a deck?	heam is a structural member	Kemember	COS	CL025	ACE012.23
	on a uter:	positioned below the joists to				
		support the weight of the frame				
		Cantilevered beams are stronger				
		Cantile vereu beams are suonger				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		than flush style beams because				
		they rely on the strength				
		properties of the wood rather				
		than the individual mechanical				
		and fastener connections.				
12	What are the	The area immediately adjacent	Understand	CO5	CLO23	ACE012.23
	ends of a bridge	to the end of a bridge.				
	called?	Abutment comes to mind. From				
		Wikipedia: In engineering,				
		abutment refers to the				
		substructure at the ends of a				
		bridge span or dam whereon the				
		structure's superstructure rests				
		or contacts.		-		
13	What is gantry	Gantry girders are laterally	Understand	CO5	CLO23	ACE012.23
	girder?	unsupported beams to carry.				
		heavy loads from place to place				
		at the construction sites, mostly				
		these are of steel material.				
		A girder is a support beam used				
		in construction. It is the main				
		which supports smaller beems				
14	What do you	In a plate girder bridge	Domombor	COS	CLO22	ACE012 22
14	mean by plate	the plate girders are typically I-	Keinenibei	COS		ACE012.23
	girder?	beams made up from separate				
	girder :	structural steel plates (rather				
		than rolled as a single cross-				
		section), which are welded or.				
		in older bridges, bolted or				
		riveted together to form the				
		vertical web and horizontal			1	
		flanges of the beam.				100
15	What is buckling	Crippling is just like buckling,	Understand	CO5	CLO23	ACE012.23
	or crippling	but it happens in the web of a			0	
	load?	beam when it is being				1.
		compressed. It often occurs at			-	
		the supports of a beam, where			· · · ·	
		the bottom flange is resting on a	1		· · · · ·	
		support, and the top flange is			100	
		holding up the load, such as on			1. C	
		a bridge abutment.		6.7		
				~		
Signature of the Faculty HOD CE						

Signature of the Faculty

HOD,CE