

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	ENGINEERING OPTIMIZATION
Course Code	:	AME516
Program	:	B.Tech
Semester	:	V
Branch	:	Mechanical Engineering
Section	:	A& B
Course Faculty	 :	Ms. T Vanaja, Assistant Professor

COURSE OBJECTIVES:

The	course should enable the students to:
т	Understand the theory of optimization methods and algorithms developed for solving various
1	types of optimization problems.
П	Develop and promote research interest in applying optimization techniques in problems of
ш	Engineering and Technology.
III	Apply the mathematical results and numerical techniques of optimization theory to concrete
111	Engineering problems.

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		UNIT-I				
1	What is uni modal function?	A uni modal function is one that has only one peak maximum or valley minimum in a given interval. Thus a function of one variable is said to be unimodal, if given that two values of the variable are on the same side of the optimum, the one nearer the optimum gives the better functional value.	Understand	CO 1	CLO 1	AME516.01
2	What is single variable optimization?	Single variable function involve only one variable the optimization procedures are simple and easier to understand. Min $f(x)$, where $f(x)$ is the objective function and x is a real variable.	Remember	CO 1	CLO 1	AME516.01
3	What are design variables?	A design optimization problem usually involves many design parameters of which some are highly sensitive to the proper working of the design. These parameters are called as design	Remember	CO 1	CLO 1	AME516.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	XVI	variables.	During 1	00.1		AME516.01
4	What are constraints?	The constraints represent some functional relationships among the design variables and other design parameters satisfying certain physical phenomenon and certain resource limitations.	Remember	CO 1	CLO 1	AME516.01
5	What is objective function?	The function to be minimized or maximized is called the objective function and the set of alternatives is called the feasible region (or constraint region).Linear programming is an extremely powerful tool for addressing a wide range of applied optimization problems.	Remember	CO 1	CLO 1	AME516.01
6	What are variable bounds?	In general all the design variables are restricted with maximum and minimum limits called as variable bounds.	Remember	CO 1	CLO 2	AME516.02
7	What are the steps involved in optimization?	Choose design variables, formulate constraints, formulate objective function, set up variables bounds and choose an optimization algorithm to obtain a solution.	Remember	CO 1	CLO 2	AME516.02
8	What is a linear programming problem?	The problem which consists of all its terms in linear equations including objective function constraints and variables.	Remember	CO 1	CLO 2	AME516.02
9	What is gradient based method?	This method uses the derivative information of the objective function, first order and second order derivatives.	Remember	CO 1	CLO 2	AME516.02
10	What is direct search method?	This method uses only the objective function values, no derivative information of objective function is required to find the optimal solution.	Remember	CO 1	CLO 2	AME516.02
11	what is optimization?	Task involving either minimization or maximization of an objective of various engineering problems.	Remember	CO 1	CLO 3	AME516.03
12	what are inequality constraints?	Inequality constraints state the functional relationships among the design variables are either greater than or smaller than or equal to a resource value.	Remember	CO 1	CLO 3	AME516.03
13	What are the equality constarints?	Equality constraints state that the functional relationships should exactly match a resource value.	Understand	CO 1	CLO 3	AME516.03
14	What are specialized optimization problems?	Integer programming methods can solve optimization problems with integer design variables. Geometric programming methods solve optimization problems with objective functions and constraints written	Remember	CO 1	CLO 3	AME516.03

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
15	What is constrained	in special form. These algorithms use the single variable and multi variable	Remember	CO 1	CLO 3	AME516.03
	optimization?	optimization algorithms				
		repeatedly and simultaneously				
		maintain the search effort inside the feasible region.				
		UNIT-II	· · · · · · · · · · · · · · · · · · ·			
1	What is local	A maximum or minimum is said	Remember	CO 2	CLO 4	AME516.04
	minima?	to be local if it is the largest or				
		smallest value of the function, respectively, within a given				
		range.However, a maximum or		0		
		minimum is said to be global if				
		it is the largest or smallest value of the function, respectively, on		_		
		the entire domain of a function.				
2	What is global minima?	A maximum or minimum is said to be local if it is the largest or	Remember	CO 2	CLO 4	AME516.04
	minina :	smallest value of the function,				
		respectively, within a given				
		range.However, a maximum or minimum is said to be global if				
		it is the largest or smallest value		_		
		of the function, respectively, on				
3	What is inflection	the entire domain of a function. An inflection point is a point on	Understand	CO 2	CLO 4	AME516.04
	point?	a curve at which the sign of the				
		curvature (i.e., the concavity) changes. The first derivative test				
		cansometimes				
		distinguish inflection pointsfrom extrema for differentiable		- 17		
		extrema for differentiable functions .The second derivative		_	0	
	-	test is also useful.				<i>.</i>
4	What is optimality	There are three different types of optimal points are: (i) Local	Understand	CO 2	CLO 4	AME516.04
	criteria?	Optimal point: A point or	/		-	
		solution x* is said to be a local			1.0	
		optimal point, if no point in the neighbourhood has a function		23		
		value smaller than $f(x^*)$. (ii)	0	1		
		Global Optimal point: A point or solution x^{**} is said to be a	1.1.1	/ · · ·		
		global optimal point, if no point	1 C 1			
		in the entire search space has a				
		function value smaller than $f(x^{**})$.				
5	What are	Two of these algorithms -	Understand	CO 2	CLO 4	AME516.04
	specialized	integer programming and				
	optimization algorithms?	geometric programming - are often used in engineering design				
	c	problems. Integer programming				
		methods can solve optimization problems with integer design				
		variables. Geometric				
		programming methods solve				
		optimization problems with objective functions and				
L		objective functions and				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		constraints written in a special				
		form.				
6	What is single	The algorithms described in this	Remember	CO 2	CLO 5	AME516.05
	variable	section can be used to solve				
	optimization?	minimization problems of the				
		following type: Minimize $f(x)$ Where $f(x)$ is the objective				
		function and x is a real variable.				
		The purpose of an optimization				
		algorithm is to find a solution x,				
		for which the function $f(x)$ is				
		minimum.				
7	What is multi	These algorithms demonstrate	Remember	CO 2	CLO 5	AME516.05
	variable	how the search for the optimum				
	optimization?	point progresses in multiple				
		dimensions. Depending on whether the gradient				
		information is used or not used,				
		these algorithms are also				
		classified into direct and				
		gradient-based techniques.				
8	What is	These algorithms use the single	Remember	CO 2	CLO 5	AME516.05
	constrained	variable and multivariable				
	optimization?	optimization algorithms				
		repeatedly and simultaneously				
		maintain the search effort inside				
		the feasible search region. These algorithms are mostly used in				
		engineering optimization	and the second se			
		problems.				
9	What is	The formulation of engineering	Remember	CO 2	CLO 5	AME516.05
	optimization	design problems differ from				
	algorithm?	problem to problem. They are (i)				
		Linear terms for constraints and			1.00	
		objective function (ii)Non linear				2
		terms for constraints and objective function. The terms				
		are not explicit functions of the			A	
		design variables. No single	1			
		optimization algorithm which			100	
		will work in all optimization			1. C	
		problems equals efficiently.		63		
10	What are the two	These algorithms are classified	Remember	CO 2	CLO 5	AME516.05
	methods used in	into two categories i. Direct				
	optimization?	methods ii. Gradient based	1. 1. 1. 1.			
		methods 39 Direct methods do not use any derivative				
		not use any derivative information of the objective				
		function; only objective function				
		values are used to guide the				
		search process. However,				
		gradient-based methods use				
		derivative information (first and/				
		or second order) to guide the				
	XX 71 *	search process.		00.0	ar o c	
11	What is brooksting	The minimum of a function is found in two phases. Initially on	Remember	CO 2	CLO 6	AME516.06
	bracketing method?	found in two phases. Initially an approximate method is used to				
	memou :	find a lower and an upper bound				
		of the minimum. Next, a				
		or the minimum. room, a			1	

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	-	sophisticated technique is used				
		to search within these two limits				
10	W/h at is	to find the optimal solution.	Remember	00.2	CLO 6	AME516.06
12	What is exhaustive search	It is the simplest of all search methods. The optimum of a	Remember	CO 2	CLU 6	AME516.06
	method?	function is bracketed by				
	method.	calculating the function values				
		at a number of equally spaced				
		points. Usually the search begin				
		from a lower bound on the				
		variable and three consecutive				
		function values are compared at a time based on the assumption				
		of unimodality of the function.				
		Based on the outcome of				
		comparison, the search is either				
		terminated or continued by				
		replacing one of the three points				
13	What is region	with a new point. Once the minimum point is	Remember	CO 2	CLO 6	AME516.06
15	elimination	bracketed, a more sophisticated	Kemeniber	02		AMEJ10.00
	method?	algorithm is used to improve the				
		accuracy of the solution. Region				
		elimination methods are used for this purpose. The				
		fundamental rule for region				
		elimination method				
14	What is rule to	Consider a unimodal function	Remember	CO 2	CLO 6	AME516.06
	eliminate region?	drawn in Fig.9. The two points			-	
		x1 and x2 lie in the interval (a,b) and satisfy $x1 < x2$. For				
		minimization, the following				
		conditions apply • If then the				
		minimum does not lie in (a, x1)				
		• If then the minimum does not			- 0	S
		lie in $(x2, b)$ • If then the minimum does not lie in $(a, x1)$				
		and (x2, b)			-	
15	What is interval	The region in the interval (a, b).	Remember	CO 2	CLO 6	AME516.06
	halving method?	Three points divide the search			Sec	
		space into four regions. The				
		fundamental rule for region elimination is used to eliminate				
		a portion of search space based	6	1		
		on function values at three				
		chosen points				
		UNIT -III				
1	What is golden	In golden section search	Understand	CO 3	CLO 7	AME516.07
	section search	method, the search space (a, b)				
	method?	is first linearly mapped to a unit				
		interval search space (0,1). Two				
		points at from either end of search space are chosen so that				
		at every iteration the eliminated				
		region is to that in the previous				
		iteration. This can be achieved				
		by equating This yields the colden number $= 0.018$				
		golden number $\tau = 0.618$				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
2	What is Nelder-	The Nelder-Mead method uses a	Remember	CO 3	CLO 7	AME516.07
	Mead method ?	geometrical shape called a simplex as its 'vehicle' of sorts				
		to search the domain. This is				
		why the technique is also called				
		the Simplex search method. In				
		layman's terms, a simplex is the n-dimensional version of a				
		'triangle'.				
3	what is uni	Generates trial solution for one	Remember	CO 3	CLO 7	AME516.07
	variate method?	decision variable keeping all				
		others fixed.Best solution for				
		each of the decision variables keeping others constant are		_		
		obtained.The whole process is				
		repeated iteratively till		\sim		
		convergence.				
4	What is powell	conjugate direction method, is	Remember	CO 3	CLO 8	AME516.08
	conjugate	an algorithm proposed				
	method?	by Michael J. D. Powell for				
		finding a local minimum of a				
		function. The function need not				
		be differentiable, and no derivatives are taken. The				
		function must be a real-valued				
		function of a fixed number of				
		real-valued inputs.				
5	What is	The formulation of engineering	Remember	CO 3	CLO 8	AME516.08
	optimization	design problems differ from				
	algorithm?	problem to problem. They are (i)				
		Linear terms for constraints and objective function (ii)Non linear				1
		terms for constraints and		_		
	0	objective function. The terms		-7	- C	2
	1	are not explicit functions of the			-	
	~	design variables. No single			4	
	0	optimization algorithm which will work in all optimization				
	-19	problems equals efficiently.			100	
6	What is region	Once the minimum point is	Understand	CO 3	CLO 8	AME516.08
	elimination	bracketed, a more sophisticated		Sec. 1		
	method?	algorithm is used to improve the accuracy of the solution. Region		5		
		elimination methods are used	1 1 1			
		for this purpose. The	· · · ·			
		fundamental rule for region elimination method				
7	What is	There are three different types	Remember	CO 3	CLO 8	AME516.08
	optimality	of optimal points are: (i) Local				
	criteria?	Optimal point: A point or				
		solution x* is said to be a local				
		optimal point, if no point in the neighbourhood has a function				
		value smaller than $f(x^*)$. (ii)				
		Global Optimal point: A point				
		or solution x** is said to be a				
		global optimal point, if no point				
		in the entire search space has a				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	-	function value smaller than				
		f(x**).		~~ ~		
8	What is rule to	Consider a unimodal function	Understand	CO 3	CLO 8	AME516.08
	eliminate region?	drawn in Fig.9. The two points x1 and x2 lie in the interval (a,b)				
		and satisfy $x_1 < x_2$. For				
		minimization, the following				
		conditions apply • If then the				
		minimum does not lie in (a, x1)				
		• If then the minimum does not				
		lie in $(x2, b)$ • If then the minimum does not lie in $(a, x1)$				
		and (x2, b)				
9	What is rosen	In mathematical optimization,	Remember	CO 3	CLO 9	AME516.09
_	brock's method?	the Rosenbrock function is a				
		non-convex function, introduced		\sim		
		by Howard H. Rosenbrock in				
		1960, which is used as				
		a performance test problem for				
10	What is steepest	optimization algorithms The method of steepest descent,	Remember	CO 3	CLO 9	AME516.09
10	descent?	also called the gradient descent	Remember	005		1 10.09
	deseent.	method, starts at a point and, as				
		many times as needed, moves	-			
		from to by minimizing along the				
		line extending from in the				
		direction of , the local downhill				
		gradient. from a starting point for some small until a fixed				
		point is reached.		-		
11	What is gradient	This method uses the derivative	Remember	CO 3	CLO 9	AME516.09
	based method?	information of the objective				
		function, first order and second				
12	What are the two	order derivatves. These algorithms are classified	Remember	CO 3	CLO 10	AME516.010
12	methods used in	into two categories i. Direct	Remember	05	CLO 10	AMES10.010
	optimization?	methods ii. Gradient based	Contraction of the local division of the loc	-	~	
	1	methods 39 Direct methods do			~	
		not use any derivative	1		· · · ·	
		information of the objective			10	
		function; only objective function		28		
		values are used to guide the search process. However,		See. 1		
		gradient-based methods use		1.		
		derivative information (first and/	1 1 1			
		or second order) to guide the				
		search process.				
13	What is direct	This method uses only the	Remember	CO 3	CLO 10	AME516.010
	search method?	objective function values, no derivative information of				
		objective function is required to				
		find the optimal solution.				
14	What is multi	These algorithms demonstrate	Remember	CO 3	CLO 10	AME516.010
	variable	how the search for the optimum				
	optimization?	point progresses in multiple				
		dimensions. Depending on				
		whether the gradient information is used or not used,				
		these algorithms are also				
		and a gorianno are abo				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		classified into direct and gradient-based techniques.				
15	What is powell conjugate method?	conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken.The function must be a real-valued function of a fixed number of real-valued inputs.	Remember	CO 3	CLO 10	AME516.010
		UNIT -IV				
1	What is classical optimization?	The classical optimization techniques are very useful to obtain the optimal solution of problems involving continuous and differentiable functions. Such types oftechniques are analytical in nature to obtain maximum and minimum points for unconstrained and constrained continuous objective functions.	Remember	CO 3	CLO 11	AME516.011
2	What is rule to eliminate region?	Consider a unimodal function drawn in Fig.9. The two points x1 and x2 lie in the interval (a,b) and satisfy x1 < x2. For minimization, the following conditions apply • If then the minimum does not lie in (a, x1) • If then the minimum does not lie in (x2, b) • If then the minimum does not lie in (a, x1) and (x2, b)	Remember	CO 3	CLO 11	AME516.011
3	what is hooke jeeve's method?	A combination of exploratory and pattern moves – Exploratory – find the best point in the vicinity of the current point – Pattern – Jump in the direction of change, if better then continue, else reduce size of exploratory move and continue	Remember	CO 3	CLO 11	AME516.011
4	What are the different gradient based methods?	Methods in Gradient Search. – Decent Direction – Cauchy's (steepest decent) method – Newton's Method – Marquardt's Method – Conjugate gradient method – Variable-metric method.	Remember	CO 3	CLO 11	AME516.011
5	What is steepest descent method?	In nonlinear function the steepest decent direction at any point may not exactly pass through the true minimum. • The steepest decent direction is a direction which is a local best direction • It is not guaranteed	Remember	CO 3	CLO 12	AME516.012

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		that moving along the steepest decent direction will always take the search closer to the true minimum				
6	What is region elimination method?	Consider a unimodal function drawn in The two points x1 and x2 lie in the interval (a,b) and satisfy x1 < x2. For minimization, the following conditions apply \cdot If then the minimum does not lie in (a, x1) \cdot If then the minimum does not lie in (x2, b) \cdot If then the minimum does not lie in (a, x1)	Remember	CO 3	CLO 12	AME516.012
		and (x2, b)		1	-	
7	what is lagrangian multiplier?	In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables)	Remember	CO 3	CLO 12	AME516.012
8	What is optimality criteria?	There are three different types of optimal points are: (i) Local Optimal point: A point or solution x^* is said to be a local optimal point, if no point in the neighbourhood has a function value smaller than $f(x^*)$. (ii) Global Optimal point: A point or solution x^{**} is said to be a global optimal point, if no point in the entire search space has a function value smaller than	Remember	CO 3	CLO 12	AME516.012
	~	f(x**).			1	
9	What is Kuhn tucker conditions?	In mathematical optimization, the Karush–Kuhn– Tucker (KKT) conditions, also known as the Kuhn–Tucker conditions, are first derivative tests (sometimes called first- order) necessary conditionsfor a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.	Remember	CO 3	CLO 13	AME516.013
10	what is Beale's method ?	Beale's method is that it reduces to the LP simplex method for purely linear problems, which most QP simplex methods do not. In general the simplex method deals with the minimization or local minimization of an objective function C, of n variables x	Remember	CO 3	CLO 13	AME516.013

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
11	what is wolfe's	Wolfe method is one method for	Remember	CO 3	CLO 13	AME516.013
	method?	solving quadratic				
		programmingproblems by means of transforming				
		the quadratic				
		programmingproblems into a				
		linear programming problem.				
12	What is	Quadratic programming (QP) is	Remember	CO 3	CLO 13	AME516.013
	Quadratic	the process of solving a special				
	programming?	type of				
		mathematical optimization				
		problem—specifically, a (linearly constrained) quadratic				
		optimization problem, that is,				
		the problem of optimizing				
		(minimizing or maximizing)	<u> </u>			
		a quadratic function of several				
		variables subject to linear				
12	Whatia	constraints	Domorsher	CO 2		AME51C 014
13	What is constrained	These algorithms use the single variable and multi variable	Remember	CO 3	CLO 14	AME516.014
	optimization?	optimization algorithms				
	· F	repeatedly and simultaneously				
		maintain the search effort inside				
		the feasible region.				
14	what are	Inequality constraints state the	Remember	CO 3	CLO 14	AME516.014
	inequality constraints?	functional relationships among the design variables are either				
	constraints?	greater than or smaller than or				
		equal to a resource value.				
15	What are the	Equality constraints state that	Remember	CO 3	CLO 14	AME516.014
	equality	the functional relationships	-			
	constarints?	should exactly match a resource value.				- C
		value.		-		
		UNIT -V				
1	What is integer	Integer programming is the class	Domomhon	CO 2	CLO 15	AME516 015
1	What is integer programming?	Integer programming is the class of problems that can be	Remember	CO 2	CLO 15	AME516.015
	programming.	expressed as the optimization of			100	
		a linear function subject to a set			1 C	
		of linear constraints				
		overinteger variables.	-		~ -	
2	What is	A geometric program is	Remember	CO 2	CLO 15	AME516.015
	geometric program?	composed of an objective function that is subjected to	1			
	Program:	constraints. All of the				
		components must be in the				
		nature of monomials and				
		posynomials.				
3	What is cutting	Cutting planes were proposed by	Remember	CO 2	CLO 15	AME516.015
	plane method?	Ralph Gomory in the 1950s as				
		a method for solving integer programming and mixed-integer				
		programming problems				
4	what is Branch-	Branch-and-bound	Remember	CO 2	CLO 15	AME516.015
	and-bound?	algorithm consists of a				
		branching rule that defines how				
		to generate successors, a bounding rule that defines how				
1 1						

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		to compute a bound, and an elimination rule that recognizes and eliminates subproblems, which cannot result in an optimal solution				
5	What is optimality criteria?	There are three different types of optimal points are: (i) Local Optimal point: A point or solution x^* is said to be a local optimal point, if no point in the neighbourhood has a function value smaller than $f(x^*)$. (ii) Global Optimal point: A point or solution x^{**} is said to be a global optimal point, if no point in the entire search space has a function value smaller than	Understand	CO 2	CLO 16	AME516.016
6	What is objective function?	$f(x^{**})$. The function to be minimized or maximized is called the objective function and the set of alternatives is called the feasible region (or constraint region).Linear programming is an extremely powerful tool for addressing a wide range of applied optimization problems.	Understand	CO 2	CLO 16	AME516.016
7	What are constraints?	The constraints represent some functional relationships among the design variables and other design parameters satisfying certain physical phenomenon and certain resource limitations.	Understand	CO 2	CLO 16	AME516.016
8	what are inequality constraints?	Inequality constraints state the functional relationships among the design variables are either greater than or smaller than or equal to a resource value.	Understand	CO 2	CLO 16	AME516.016
9	What are the equality constarints?	Equality constraints state that the functional relationships should exactly match a resource value.	Understand	CO 2	CLO 16	AME516.016
10	What is constrained optimization?	These algorithms use the single variable and multi variable optimization algorithms repeatedly and simultaneously maintain the search effort inside the feasible region.	Understand	CO 2	CLO 17	AME516.017
11	What is optimization algorithm?	The formulation of engineering design problems differ from problem to problem. They are (i) Linear terms for constraints and objective function (ii)Non linear terms for constraints and objective function. The terms are not explicit functions of the design variables. No single optimization algorithm which will work in all optimization problems equals efficiently.	Remember	CO 2	CLO 17	AME516.017

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
12	What is multi	These algorithms demonstrate	Remember	CO 2	CLO 17	AME516.017
1	variable	how the search for the optimum				
	optimization?	point progresses in multiple				
		dimensions. Depending on				
		whether the gradient				
		information is used or not used,				
		these algorithms are also				
		classified into direct and				
		gradient-based techniques.				
13	What are	Two of these algorithms -	Remember	CO 2	CLO 18	AME516.018
	specialized	integer programming and				
	optimization	geometric programming - are				
	algorithms?	often used in engineering design				
		problems. Integer programming				
		methods can solve optimization				
		problems with integer design				
		variables. Geometric				
		programming methods solve				
		optimization problems with				
		objective functions and				
		constraints written in a special				
		form.				
14	what is the	Branch-and-bound	Remember	CO 2	CLO 18	AME516.018
	method to solve	algorithm consists of a				
	IPP?	branching rule that defines how				
		to generate successors, a				
		bounding rule that defines how				
		to compute a bound, and an				
		elimination rule that recognizes				
		and eliminates subproblems,				
		which cannot result in an				
		optimal solution				
15	What is the	Cutting planes were proposed by	Remember	CO 2	CLO 18	AME516.018
	method to solve	Ralph Gomory in the 1950s as				
	GPP?	a method for solving integer			- C	2
		programming and mixed-integer				e
	0	programming problems				
Signat	cure of the Faculty			£	4	HOD, ME
Signat	cure of the Faculty			49	8	