

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	ANALOG AND DIGITAL ELECTRONICS
Course Code	:	AECB05
Program	:	B.Tech
Semester	:	Ш
Branch	:	INFORMATION TECHNOLOGY
Section	:	A,B
Academic Year	:	2019 - 2020
Course Faculty	:	Ms. M Saritha, Assistant Professor

COURSE OBJECTIVES:

Ι	Introduce components such as diodes, BJTs and FETs.
II	Know the applications of components.
III	Understand common forms of number representation in logic circuits
IV	Learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
V	Understand the concepts of combinational logic circuits and sequential circuits.

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	Question	Answer	Blooms Taxonomy Level	CLO	CLO Code
		MODULE-I			
1	Define Electronics	The branch of engineering which deals with conduction of current through vacuum or gas or a semiconductor.	Understand	CLO 1	AECB05.01
2	Define conductivity	Conductivity is the ability of a metal to conduct electricity when a potential difference (Voltage) is applied.	Understand	CLO1	AECB05.01
3	Define voltage	Potential difference in charge between two points in an electrical field. The MODULE of voltage is Volt (V).	Understand	CLO1	AECB05.01
4	Define current	Current is a flow of electrical charge carriers, usually electrons or electron-deficient atoms.	Understand	CLO1	AECB05.01
5	Define Resistance	The opposition offered to the flow of electrons.	Understand	CLO1	AECB05.01
6	Define circuit	Circuit comes from the word circle. A circuit is a collection of real components, power sources, and signal sources, all connected so current can flow in a complete circle.	Understand	CLO1	AECB05.01

7	Define electronic circuit	An electronic circuit is composed of individual electronic components such as resistors, transistors, capacitors, inductors and diodes.	Understand	CLO1	AECB05.01
8	Define conductor	A conductor is a material which has very high conductivity. Ex: Copper, Aluminum, Silver.	Understand	CL01	AECB05.01
9	Define semiconductor	A semiconductor is a material that has its conductivity lies between the insulator and conductor. Ex: Si & Ge.	Understand	CLO1	AECB05.01
10	What is an insulator	An insulator is a material that offers a very low level of conductivity when voltage is applied. Ex: Wood, Glass.	Understand	CLO1	AECB05.01
11	Define Intrinsic Semiconductor	A pure form of semiconductor is called as intrinsic semiconductor. Ex: Si and Ge	Understand	CL01	AECB05.01
12	Define Extrinsic Semiconductor	The current conduction capability of intrinsic semiconductor can be increased significantly by adding a small amount of impurity to the intrinsic semiconductor.	Understand	CLO1	AECB05.01
13	Define Diode	A p-n junction diode is a basic semiconductor device that controls the flow of electric current in a circuit.	Understand	CLO1	AECB05.01
14	What is Static resistance?	The resistance of a diode at a particular operating point is called the dc or static resistance diode. RD =VD/ID	Understand	CLO1	AECB05.01
15	What is Dynamic resistance?	The ac resistance is determined by a straight line drawn between the two intersections of the maximum and minimum values of input voltage. $rd=\Delta VD/\Delta ID$	Understand	CLO1	AECB05.01
16	Define Drift current	Drift current is the electric current, or movement of charge carriers, which is due to the applied electric field, often stated as the electromotive force over a given distance.	Understand	CLO1	AECB05.01
17	Define Diffusion current	Diffusion Current is a current in a semiconductor caused by the diffusion of charge carriers (holes and/or electrons). This is the current which is due to the transport of charges occurring because of non-uniform concentration of charged particles in a semiconductor.	Understand	CLO1	AECB05.01
18	What is Capacitance?	Capacitance is the ability of a component or circuit to collect and store energy in the form of an electrical charge.	Understand	CLO1	AECB05.01
19	Define Diffusion capacitance	Diffusion Capacitance is the capacitance due to transport of charge carriers between two terminals of a device. $CD = dQ / dV$	Understand	CLO1	AECB05.01
20	Define Transition capacitance	The amount of capacitance changed with increase in voltage is called transition capacitance. $CT = dQ / dV$	Understand	CLO1	AECB05.01
21	What is load line?	A load line is a line drawn on the characteristic curve, a graph of the current vs. voltage in a nonlinear device like a diode.	Understand	CLO1	AECB05.01
22	Define storage time	The time period for which the diode remains in the conduction state even in the reverse biased state, is called as Storage time.	Understand	CLO1	AECB05.01
23	Define transition time	The time elapsed in returning back to the state of non-conduction, i.e. steady state reverse bias, is called Transition time.	Understand	CLO1	AECB05.01
24	Define forward recovery time	The time required for the diode to change from reverse bias to forward bias is called as Forward recovery time.	Understand	CLO1	AECB05.01

25	Define reverse recovery time	The time required for the diode to change from forward bias to reverse bias is called as Reverse recovery time.	Understand	CLO1	AECB05.01
26	What is a rectifier?	A circuit that converts ac voltage of main supply into pulsating dc voltage using one or more PN junction diodes is called rectifier.	Understand	CLO2	AECB05.02
27	Define PIV	Peak inverse voltage (PIV) or peak reverse voltage (PRV) is the maximum value of reverse voltage which occurs at the peak of the input cycle when the diode is reverse-biased.	Understand	CLO2	AECB05.02
28	Define ripple factor	The ratio of the root mean square (rms) value of the ripple voltage to the absolute value of the DC component of the output voltage.	Understand	CLO2	AECB05.02
29	Define efficiency	Efficiency signifies a level of performance that describes using the least amount of input to achieve the highest amount of output.	Understand	CLO2	AECB05.02
30	Define Form Factor	The form factor of an alternating current waveform (signal) is the ratio of the RMS (root mean square) value to the average value (mathematical mean of absolute values of all points on the waveform).	Understand	CLO2	AECB05.02
31	Define TUF	It is defined as a ratio of dc power delivered to the load to the ac power rating of the transformer.	Understand	CLO2	AECB05.02
32	Define cut-in voltage.	The forward voltage at which the current through the junction starts increasing rapidly, is called the knee-voltage or cut-in voltage.	Understand	CLO2	AECB05.02
33	Define Voltage Regulation	It is the factor which tells us about the change in DC output voltage as load changes from no load to full load condition.	Understand	CLO3	AECB05.03
34	Define Filter	It is an electronic circuit composed of L,C,LC components connected between the rectifier and the load so as to convert pulsating DC to pure DC	Understand	CLO4	AECB05.04
35	Define Pulsating DC	Pulsating direct current is a periodic current which changes in value but never changes direction.	Understand	CLO2	AECB05.02
36	Define Zener Breakdown	The Zener breakdown can be defined as the flow of electrons across the p kind material barrier of the valence band to the evenly filled n-type material conduction band.	Understand	CL04	AECB05.04
37	Define Avalanche Beakdown	The avalanche breakdown is an occurrence of raising the flow of electric current or electrons in insulating material or semiconductor by giving the high voltage.	Understand	CLO4	AECB05.04
38	Define Fermi Level	Fermi level is the term used to describe the top of the collection of electron energy levels at absolute zero temperature	Understand	CLO1	AECB05.01
39	What is Cut in voltage for si & ge		Understand	CLO1	AECB05.01
40	What is doping?	The process of adding impurities to the intrinsic semiconductor is called as doping.	Understand	CLO1	AECB05.01
		MODULE-II			
1	Define Transistor	Transistor is a three terminal semiconductor device.	Understand	CLO5	AECB05.05
2	Define Base	Base is lightly doped .	Remember	CLO5	AECB05.05
3	Define Emitter	Emitter is heavily doped	Understand	CLO5	AECB05.05
4	Define Collector	Collector is moderately doped	Understand	CLO5	AECB05.05
5	Define Alpha	It is a large signal current gain in common base	Understand	CLO5	AECB05.05

		configuration. It is the ratio of collector current (output current) to the emitter current (input current).			
6	Define Beta	It is a current gain factor in the common emitter configuration. It is the ration of collector current (output current) to base current (output current).	Understand	CLO5	AECB05.05
7	Define Gamma	It is a current gain in common collector configuration and it is the ration of emitter current (output current) to base current (input current).	Understand	CLO5	AECB05.05
8	What is the other name of Base width modulation	Early Effect	Understand	CLO5	AECB05.05
9	Define Punch Through Effect	It is defined as with the increase in collector voltage, effective base width is reduced to zero, and the emitter barrier voltage becomes smaller than Vo VEB as the collector voltage reaches through the base region. Due to lowering of emitter junction voltage, an extensively large emitter current flows. Therefore, there is an upper limit on the magnitude of collector voltage. This phenomenon is called punch- through.	Understand	CLO5	AECB05.05
10	Define Active Region	Active region is one in which Base emitter junction is forward biased and Base Collector junction will be reverse biased in a transistor	Understand	CLO5	AECB05.05
11	Define Saturation Region	The transistor operates in saturation region when both the emitter and collector junctions are forward biased.	Understand	CLO5	AECB05.05
12	Define Cut off Region	The transistor operates in cutoff region when both the emitter and collector junctions are reverse biased.	Understand	CLO5	AECB05.05
13	Define Early Effect	The Early effect, named after its discoverer James M. Early, is the variation in the effective width of the base in a bipolar junction transistor(BJT) due to a variation in the applied base-to- collector voltage	Understand	CLO6	AECB05.06
14	Define Reverse Saturation Current	In a PN junction diode, the reverse saturation current is due to the diffusive flow of minority electrons from the p-side to the n-side and the minority holes from the n-side to the p-side. Hence, the reverse saturation current depends on the diffusion coefficient of electrons and holes.	Remember	CLO6	AECB05.06
15	Define Operating Point	The operating point of a device, also known as a bias point, quiescent point or Q-point, is the steady-state DC voltage or current at a specified terminal of an active device such as a transistor with no input signal applied.	Understand	CLO7	AECB05.07
16	Define Load Line	A load line is used in graphical analysis of nonlinear electronic circuits, representing the constraint other parts of the circuit place on a non-linear device, like a diode or transistor. It is usually drawn on a graph of the current vs the voltage in the nonlinear device, called the device's characteristic curve.	Remember	CL07	AECB05.07
17	Define Z Parameters	The Z-parameters are defined as a impedance parameters with vltage as dependent and current as independent variables	Remember	CLO9	AECB05.09

18	Define Y Parameters	The Y-parameters are defined as admittance parameters with current as dependent and voltage as independent parameters	Remember	CLO9	AECB05.09
19	What is CE configuration	In common emitter configuration, base is the input terminal, collector is the output terminal and emitter is the common terminal for both input and output.	Understand	CLO8	AECB05.08
20	What is CB Configuration	In common base configuration, emitter is the input terminal, collector is the output terminal and base terminal is connected as a common terminal for both input and output.	Understand	CLO8	AECB05.08
21	What is CC Configuration	In CC configuration, the input circuit is connected between emitter and base and the output is taken from the collector and emitter. The collector is common to both the input and output circuit	Understand	CLO8	AECB05.08
22	Define Amplifier	An amplifier, is an electronic device that can increase the voltage, current & power of a signal	Understand	CLO7	AECB05.07
23	Justify BJT as Current controlled Device	A BJT is a current controlled device because its output characteristics are determined by the input current.	Understand	CLO7	AECB05.07
24	Current Transfer Characteristics	This characteristic curve shows the variation of output current in accordance with the input current, keeping output voltage constant.	Understand	CLO7	AECB05.07
25	Define BJT	A Bipolar Junction Transistor, or BJT, is a solid-state device in which the current flow between two terminals (the collector and the emitter) is controlled by the amount of current that flows through a third terminal (the base).	Understand	CLO7	AECB05.07
26	Define NPN	A bipolar transistor in which the p-type (positively charged) material causing the base is sandwiched between two n-type (negatively charged) material causing the emitter and the collector respectively	Understand	CLO5	AECB05.05
27	Define PNP	The PNP transistor has two crystal diodes connected back to back. The left side of the diode in known as the emitter-base diode and the right side of the diode is known as the collector-base diode.	Understand	CLO5	AECB05.05
28	What is Thermal Runaway	The problem with increasing temperature causing increasing collector current is that more current increase the power dissipated by the transistor which, in turn, increases its temperature. This self-reinforcing cycle is known as thermal run away, which may destroy the transistor.	Understand	CLO6	AECB05.06
29	Define Current Gain(Ai)	Current gain of an amplifier is defined as the ratio of output current to input current	Remember	CLO9	AECB05.09
30	Define Voltage Gain(Av)	Voltage gain of an amplifier is defined as the ratio of output voltage to input voltage	Remember	CLO9	AECB05.09
31	Define input Impedance(Zi)	Input impedance of a circuit is defined as the ratio of input voltage to input current	Remember	CLO9	AECB05.09
32	Define Output Admittance(Y0)	Output impedance of a circuit is defined as the ratio of output voltage to output current	Remember	CLO9	AECB05.09
33	Define Input Characteristics	The changes in input current with the variation in the values of input voltage keeping the output voltage constant.	Understand	CLO8	AECB05.08
34	Define Output Characteristics	This is a plot of output current versus output voltage with constant input current.	Understand	CLO8	AECB05.08

35	Explain Transistor as	In a transistor, unless a current flows in the	Understand	CLO7	AECB05.07
	a switch	base circuit, there is no current can flow in the collector circuit. This property will allow a transistor to be used as a switch. The transistor can be switched ON or OFF by changing the base.			
36	Define hi	It is defined as a short circuit input impedance	Remember	CLO9	AECB05.09
37	Define hr	It is defined as a open circuit reverse voltage transfer ratio	Remember	CLO9	AECB05.09
38	Define ho	It is defined as a open circuit output admittance	Remember	CLO9	AECB05.09
39	Define hf	It is defined as a short circuit forward current gain	Remember	CLO9	AECB05.09
40	Define two-port network	Two-port network of an equivalent circuit is defined as circuit having input port and output port	Remember	CLO9	AECB05.09
		MODULE-III			
1	Define Binary Number?	The binary number system is a numbering system that represents numeric values using two unique digits (0 and 1). Most computing devices use binary numbering to represent electronic circuit voltage state, (i.e., on/off switch), is the base-2 number system.	Understand	CLO10	AECB05.10
2	What is decimal number?	A number system that uses a notation in which each number is expressed in base 10 by using one of the first nine integers or 0 in each place and letting each place value be a power of 10.	Understand	CLO10	AECB05.10
3	What is octal number?	The octal numeral system, or oct for short, is the base-8 number system, and uses the digits 0 to 7. Octal numerals can be made from binary numerals	Remember	CLO10	AECB05.10
4	What is hexa decimal number system?	The hexadecimal numeral system, also known as just hex, is a numeral system made up of 16 symbols (base 16). The standard numeral system is called decimal (base 10) and uses ten symbols: 0,1,2,3,4,5,6,7,8,9. Hexadecimal uses the decimal numbers and includes six extra symbols.	Understand	CLO10	AECB05.10
5	Define one's compliment?	The ones' complement of a binary number Is defined as the value obtained by inverting all the bits in the binary representation of the number.	Remember	CLO10	AECB05.10
6	Define Two's compliment?	The 2's complement of a binary number is obtained by adding one to the 1's complement of signed binary number. So, 2's complement of positive number gives a negative number. Similarly, 2's complement of negative number gives a positive number.	Understand	CLO10	AECB05.10
7	What is binary coded decimal?	Binary coded decimal (BCD) is a system of writing numerals that assigns a four-digit binary code to each digit 0 through 9 in a decimal (base-10) numeral. The four-bit BCD code for any particular single base-10 digit is its representation in binary notation.	Understand	CLO11	AECB05.11

0	Define whit distance	An up weighted code that sharper at anti-	Undaratar 1	CLO11	
8	Define unit distance code?	An un weighted code that changes at only one digit position when going from one number to the next in a consecutive sequence of numbers. Note 1: Use of one of the many unit-distance codes can minimize errors at symbol transition points when converting analog quantities into digital quantities	Understand	CLO11	AECB05.11
9	Define parity bit?	It is easy to include (append) one parity bit either to the left of MSB or to the right of LSB of original bit stream. There are two types of parity codes, namely even parity code and odd parity code based on the type of parity being chosen.	Remember	CLO10	AECB05.10
10	What is error correction?	Error detection codes – are used to detect the error(s) present in the received data (bit stream). These codes contain some bit(s), which are included (appended) to the original bit stream. These codes detect the error, if it is occurred during transmission of the original data (bit stream).Example – Parity code, Hamming code.	Understand	CLO12	AECB05.12
11	What is error correction?	Error correction codes – are used to correct the error(s) present in the received data (bit stream) so that, we will get the original data. Error correction codes also use the similar strategy of error detection codes. Example – Hamming code.	Understand	CLO12	AECB05.12
12	Define Boolean algebra?	Boolean algebra or switching algebra is a system of mathematical logic to perform different mathematical operations in binary system. These are only two elements 1 and 0 by which all the mathematical operations are to be performed. There only three basis binary operations, AND, OR and NOT by which all simple as well as complex binary mathematical operations are to be done. There are many rules in Boolean algebra by which those mathematical operations are done.	Understand	CLO10	AECB05.10
13	What is De Morgan's Theorem,	The compliment of a product is equal to the sum of the products and viceversa.	Understand	CLO10	AECB05.10
14	Define sop form?	Canonical SoP form means Canonical Sum of Products form. In this form, each product term contains all literals. So, these product terms are nothing but the min terms. Hence, canonical SoP form is also called as sum of min terms form.	Understand	CLO11	AECB05.11
15	Define pos form?	Canonical PoS form means Canonical Product of Sums form. In this form, each sum term contains all literals. So, these sum terms are nothing but the Max terms. Hence, canonical PoS form is also called as product of Max terms form.	Understand	CL011	AECB05.11
16	What is binary?	Binary (or base-2) a numeric system that only uses two digits — 0 and 1. Computers operate in binary, meaning they store data and perform calculations using only zeros and ones. A single binary digit can only represent True (1) or False (0) in Boolean logic.	Understand	CLO11	AECB05.11
17	Define number system?	A number system is a collection of various symbols which are called digits. Different types of Number System.	Understand	CLO11	AECB05.11

18	Define Gray code?	A Gray code is an encoding of numbers so that	Understand	CLO11	AECB05.11
		adjacent numbers have a single digit differing by 1. The term Gray code is often used to refer to a "reflected" code, or more specifically still, the binary reflected Gray code.			
19	Define Excess-3 code?	Excess-3, also called XS3, is a non-weighted code. is a self-complementary binary-coded decimal (BCD) code and numeral system. It is a self-complementing code.	Understand	CLO11	AECB05.11
20	What is self complementing code?	Self-Complementing Codes (Excess 3, 84-2-1, 2*421) Such codes have the property that the 9's complement of a decimal number is obtained directly by changing 1's to 0's and 0's to 1's (i.e., by complementing each bit in the pattern).	Understand	CLO11	AECB05.11
21	Define codes?	In the coding, when numbers or letters are represented by a specific group of symbols, it is said to be that number or letter is being encoded. The group of symbols is called as code. The digital data is represented, stored and transmitted as group of bits. This group of bits is also called as binary code.	Understand	CLO11	AECB05.11
22	What is hamming code?	Hamming code is useful for both detection and correction of error present in the received data. This code uses multiple parity bits and we have to place these parity bits in the positions of powers of 2. The minimum value of 'k' for which the following relation is correct (valid) is nothing but the required number of parity bits. $2k\ge n+k+1$	Understand	CLO12	AECB05.12
23	What is Duality theorem?	This theorem states that the dual of the Boolean function is obtained by interchanging the logical AND operator with logical OR operator and zeros with ones. For every Boolean function, there will be a corresponding Dual function	Understand	CLO11	AECB05.11
24	What is 8421 code?	The weights of this code are 8, 4, 2 and 1. This code has all positive weights. So, it is a positively weighted code. This code is also called as natural BCD (Binary Coded Decimal) code.	Understand	CLO11	AECB05.11
25	What is 2421 code?	This code has all positive weights. So, it is a positively weighted code. It is an unnatural BCD code. Sum of weights of unnatural BCD codes is equal to 9.It is a self-complementing code. Self-complementing codes provide the 9's complement of a decimal number, just by interchanging 1's and 0's in its equivalent 2421 representation.	Understand	CLO11	AECB05.11
26	State idempoten law of Boolean algebra.	Ax $A = A$ means that A is idempotent under the AND operator. As examples, 0 is idempotent under addition and 0 and 1 are idempotent for multiplication. With Boolean algebras, every element is idempotent under both binary operations in the Boolean algebra.	Understand	CLO11	AECB05.11
27	State distributive law of Boolean algebra.	This law permits the multiplying or factoring out of an expression. $A(B + C) = A.B + A.C$ (OR Distributive Law) $A + (B.C) = (A + B).(A + C)$ (AND Distributive Law)	Understand	CLO11	AECB05.11

28	State commutative law	The order of application of two separate terms	Understand	CLO11	AECB05.11
	of Boolean algebra.	is not important A . $B = B$. A The order in which two variables are AND'ed makes no difference $A + B = B + A$ The order in which two variables are OR'ed makes no difference			
29	Write 1's complement of	The ones' complement of a binary number is defined as the value obtained by inverting all the bits in the binary representation of the number.	Understand	CLO11	AECB05.11
30	State identity law of Boolean algebra.	A term OR'ed with a "0" or AND'ed with a "1" will always equal that term $A + 0 = A A$ variable OR'ed with 0 is always equal to the variable A . 1 = A A variable AND'ed with 1 is always equal to the variable	Understand	CLO13	AECB05.13
31	State absorption law of Boolean algebra.	This law enables a reduction in a complicated expression to a simpler one by absorbing like terms. $A + (A.B) = A$ (OR Absorption Law) $A(A + B) = A$ (AND Absorption Law)	Understand	CLO13	AECB05.13
32	State associative law of Boolean algebra.	This law allows the removal of brackets from an expression and regrouping of the variables. A + $(B + C) = (A + B) + C = A + B + C$ (OR Associate Law) A(B.C) = $(A.B)C = A.B.C$ (ANDAssociate Law)	Understand	CLO13	AECB05.13
33	Which gates are called as universal gates? Why?	NAND and NOR are called universal gates because all the other gates like and,or,not,xor and xnor can be derived from it.	Understand	CLO13	AECB05.13
34	Define weighted code.	The weighted codes are those that obey the position weighting principle, which states that the position of each number represent a specific weight. In these codes each decimal digit is represented by a group of four bits. Examples:8421,2421,84-2-1 are all weighted codes	Understand	CLO11	AECB05.11
35	Define Non- weighted codes.	The non-weighted codes are not positionally weighted . In other words codes that are not assigned with any weight to each digit position.Examples:Exess-3,gray code.	Understand	CLO11	AECB05.11
36	Define even parity.	Even parity refers to a parity checking mode in asynchronous communication systems in which an extra bit, called a parity bit, is set to zero if there is an even number of one bits in a one- byte data item. If the number of one bits adds up to an odd number, the parity bit is set to one.	Understand	CLO10	AECB05.10
37	Define odd parity.	In asynchronous communication systems, odd parity refers to parity checking modes, where each set of transmitted bits has an odd number of bits. If the total number of ones in the data plus the parity bit is an odd number of ones, it is called odd parity	Understand	CLO10	AECB05.10
38	What is standard form?	A Boolean variable can be expressed in either true form or complemented form. In standard form Boolean function will contain all the variables in either true form or complemented form.	Understand	CLO14	AECB05.14
39	What is canonical form?	In a Boolean expression a literal is an input variable or its complement. A Boolean function is in canonical sum of product form when each product term contains each of the literal.	Understand	CLO13	AECB05.13

40	Write any two Boolean algebraic laws.	Distributive law: A + BC = (A + B)(A + C) A (B+C) = (A B) + (A C) Commutative law: $A + B = B + A$ A * B = B * A	Understand	CLO13	AECB05.13
		MODULE-IV			
1	What is parallel adder?	A parallel adder is an arithmetic combinational logic circuit that is used to add more than one bit of data simultaneously.	Understand	CLO18	AECB05.18
2	Define 5-variable k- map.	The number of cells in 5 variable K-map is thirty-two, since the number of variables is 5. The following figure shows 5 variable K- Map. here is only one possibility of grouping 32 adjacent min terms. There are two possibilities of grouping 16 adjacent min terms. i.e., grouping of min terms from m0 to m15 and m16 to m31.	Remember	CLO15	AECB05.15
3	Define 4-variable k- map.	The number of cells in 4 variables K-map is sixteen, since the number of variables is four. There is only one possibility of grouping 16 adjacent min terms.	Remember	CLO15	AECB05.15
4	Define 3-variable k- map.	The number of cells in 3 variable K-map is eight, since the number of variables is three. The following figure shows 3 variable K-Map. There is only one possibility of grouping 8 adjacent min terms.	Remember	CLO15	AECB05.15
5	Define Hazards.	A dynamic hazard is the possibility of an output changing more than once as a result of a single input change.	Understand	CLO18	AECB05.18
6	What is static hazard?	static hazard takes place when change in an input causes the output to change momentarily before stabilizing to its correct	Understand	CLO18	AECB05.18
7	What is dynamic hazard?	A dynamic hazard is the possibility of an output changing more than once as a result of a single input change. Dynamic hazards often occur in larger logic circuits where there are different routes to the output (from the input).	Understand	CLO18	AECB05.18
8	What is select line?	A multiplexer (or mux) is a device that selects one of several analog or digital input signals and forwards the selected input into a single line. A multiplexer of 2 n inputs has n select lines, which are used to select which input line to send to the output.	Understand	CLO18	AECB05.18
9	Define data selector.	Data Selector take one data input and a number of selection inputs, and they have several outputs. They forward the data input to one of the outputs depending on the values of the selection inputs.	Understand	CLO18	AECB05.18
10	Define decoder.	A decoder is a circuit that changes a code into a set of signals. It is called a decoder because it does the reverse of encoding, but we will begin our study of encoders and decoders with decoders because they are simpler to design.	Understand	CLO18	AECB05.18
11	Define an encoder.	The n output lines generate the binary code for the possible 2n input lines. Let us take an example of an octal-to-binary encoder.	Understand	CLO18	AECB05.18

12	Define priority encoder.	Binary Encoders generally have a number of inputs that must be mutually exclusive i.e. only one of the inputs can be active atany one time. The encoder then produces a binary code on the output pins, which changes in response to the input that has been activated.	Understand	CLO18	AECB05.18
13	What is Enable?	Enable pin in multiplexers, de multiplexer, decoder and encoder ensures the functioning of the hardware i.e. "enables" the function of the logic circuit.	Understand	CLO18	AECB05.18
14	Define k-map.	Karnaugh introduced a method for simplification of Boolean functions in an easy way. This method is known as Karnaugh map method or K-map method. It is a graphical method, which consists of 2n cells for 'n' variables. The adjacent cells are differed only in single bit position.	Understand	CLO15	AECB05.15
15	Define Prim implicant and Essential prime implicant.	Each grouping will give either a literal or one product term. It is known as prime implicant. The prime implicant is said to be essential prime implicant, if at least single '1' is not covered with any other groupings but only that grouping covers.	Remember	CLO16	AECB05.16
16	What is don't care condition?	If outputs are not defined for some combination of inputs, then those output values will be represented with don't care symbol 'x'. That means, we can consider them as either '0' or '1'.	Understand	CLO16	AECB05.16
17	Define tabular method.	Quine-McClukey tabular method is a tabular method based on the concept of prime implicants. We know that prime implicant is a product (or sum) term, which can't be further reduced by combining with any other product (or sum) terms of the given Boolean function.	Understand	CLO16	AECB05.16
18	Define combinational circuit.	Combinational circuits consist of Logic gates. These circuits operate with binary values. The output(s) of combinational circuit depends on the combination of present inputs.	Understand	CLO17	AECB05.17
19	Define half adder.	Half adder is a combinational circuit, which performs the addition of two binary numbers A and B are of single bit. It produces two outputs sum, S &carry, C.	Understand	CLO17	AECB05.17
20	What is binary adder?	The most basic arithmetic operation is addition. The circuit, which performs the addition of two binary numbers, is known as Binary adder.	Understand	CLO17	AECB05.17
21	Define full adder.	Full adder is a combinational circuit, which performs the addition of three bits A, B and Cin. Where, A & B are the two parallel significant bits and Cin is the carry bit, which is generated from previous stage.	Understand	CLO17	AECB05.17
22	Define multiplexer.	Multiplexer is a combinational circuit that has maximum of 2n data inputs, 'n' selection lines and single output line. One of these data inputs will be connected to the output based on the values of selection lines.	Understand	CLO18	AECB05.18
23	Define Demultiplexer	De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer. It has single input, 'n' selection lines and maximum of 2n outputs. The input will be connected to one of these outputs based on the	Understand	CLO18	AECB05.18

24	Define comparator.	values of selection lines. Digital Comparator. A magnitude digital	Understand	CLO18	AECB05.18
24	Denne comparator.	comparator is a combinational circuit that compares two digital or binary numbers (consider A and B) and determines their relative magnitudes in order to find out whether one number is equal, less than or greater than the other digital number.	Understand	CLOI8	AECD05.18
25	What is code converter?	Codes and code converters Coding is the process of translating the input information which can be understandable by the machine or a particular device. Coding can be used for security purpose to protect the information from steeling or interrupting.	Remember	CLO18	AECB05.18
26	What is parallel adder?	A parallel adder is an arithmetic combinational logic circuit that is used to add more than one bit of data simultaneously.	Understand	CLO17	AECB05.17
27	What are the applications of multiplexer and de- multiplexer	Multiplexer is used in communication systems to carry out the process of data transmission.	Remember	CLO18	AECB05.18
28	What are the limitations of karnaugh map.	The K map does not necessarily "fail" for higher dimensions. The problem is that it is so difficult to visualize for more than five variables. A 4 variable K-map is 2 dimensional and easy to visualize.	Remember	CLO16	AECB05.16
29	What is meant by Karnaugh map	The Karnaugh map, also known as the K-map, is a method to simplify boolean algebra expressions.	Understand	CLO15	AECB05.15
30	What are the applications of full adders?	It is used in ALU in processor chip to perform arithmetic and logical operations.	Remember	CLO17	AECB05.17
31	What are the Advantages of Karnaugh map	 Minimizes Boolean expressions without the need using various Boolean theorems & computations. Minimizes number of Logical gates used. 	Remember	CLO16	AECB05.16
32	What are the disadvantages of Karnaugh map	It is not suitable for computer reduction. It is not suitable when the number of variables involved exceed four. Care must be taken to field in every cell with the relevant entry, such as a 0, 1 (or) don't care terms.	Remember	CLO16	AECB05.16
33	Define Karnaugh map	A Karnaugh map (K-map) is a pictorial method used to minimize Boolean expressions without having to use Boolean algebra theorems and equation manipulations.	Understand	CLO15	AECB05.15
34	What is Magnitude comparator –	A magnitude comparator is a digital comparator which has three output terminals, one each for equality, $a = b$ greater than, $a > b$ and less than a < b	Understand	CLO16	AECB05.16
35	What are the applications of encoder	Encoders are used to translate rotary or linear motion into a digital signal. Usually this is for the purpose of monitoring or controlling motion parameters such as speed, rate, direction, distance or position.	Remember	CLO18	AECB05.18
36	What are the applications of decoder	Used in electronic circuits to convert instructions into CPU control signals. They mainly used in logical circuits, data transfer.	Remember	CLO18	AECB05.18
37	Define Structure of k-map	The structure of a Karnaugh map is grid shaped. The two most typical sizes used for instruction	Understand	CLO15	AECB05.15

39	What are the	or for small projects is the three variable (a 2x4 grid or 4x2 depending on the user) and the four variable map (4x4 grid) Digital Comparator are used widely in	Remember	CLO16	AECB05.16
	Applications of digital comparator	Analogue-to-Digital converters, (ADC) and Arithmetic Logic MODULEs, (ALU) to perform a variety of arithmetic operations.			
40	What is digital comparator	The Digital Comparator is another very useful combinational logic circuit used to compare the value of two binary digits.	Remember	CLO16	AECB05.16
	T	MODULE V			
1	What is a counter?	Counts those pulses which are driven by a clock.	Understand	CLO19	AECB05.19
2	What are the categories of Counters?	(i) Asynchronous and Synchronous counters. (ii) Single and multi mode counters. (iii) Modulus counters.	Understand	CLO19	AECB05.19
3	What is a multimode counter?	If the same counter circuit can be operated in both the UP and DOWN modes, it is called a multimode counters.	Remember	CLO19	AECB05.19
4	What is a Asynchronous Counters?	Each flip flop is triggered by the previous flip flop.	Remember	CLO19	AECB05.19
5	What is a Ripple Counter?	A ripple counter is an asynchronous counter where only the first flip-flop is clocked by an external clock	Understand	CLO20	AECB05.20
6	Where the ripple counter is used explain?	It can also be used for Frequency divider, time measurement, frequency Measurement, distance measurement and also for generating square waveforms.	Remember	CLO20	AECB05.20
7	What is the difference between ripple counter and Synchronous counter?	In a synchronous counter however, the external event is used to produce a pulse that is synchronized with the internal clock.	Remember	CLO20	AECB05.20
8	What is the major Disadvantage of asynchronous counters?	Disadvantages of Asynchronous Counters:An extra "re-synchronizing" output flip-flop may be required.	Understand	CLO20	AECB05.20
9	What is a Johnson counter?	A Johnson counter is a modified ring counter, where the inverted output from the last flip flop is connected to the input to the first. The register cycles through a sequence of bit-patterns.	Understand	CLO20	AECB05.20
10	What is a ring counter?	A ring counter is a type of counter composed of flip-flops connected into a shift register, with the output of the last flip-flop fed to the input of the first, making a "circular" or "ring" structure.	Remember	CLO20	AECB05.20
12	What is the purpose of a shift register?	When a bit is input on the right, all the bits move one place to the left, and the leftmost bit disappears. Shift registers are commonly used in converters that translate parallel data to serial data, or vice-versa. Shift registers can also function as delay circuits and digital pulse extenders.	Remember	CLO20	AECB05.20
13	What are universal shift registers?	A Universal shift register is a register which has both the right shift and leftshift with parallel load capabilities. Universal shift registers are used as memory elements in computers.	Understand	CLO20	AECB05.20

	XX71 / 1		D 1	CI O20	AECD05 00
14	What is the difference between register and shift register?	Both shift registers and counters are made of flip-flops. A shift register is simply a chain of FFs where the Q output of one FF connects to the D input of the next. A shift register will transfer data from one FF to the next on each clock event	Remember	CLO20	AECB05.20
15	What is bidirectional shift register?	A bidirectional shift register is one in which the data can be shifted either left or right. It can be implemented by using gate logic that enables the	Remember	CLO20	AECB05.20
16	What is a dynamic shift register?	A dynamic shift register circuit comprises an input terminal and an output terminal. The logic circuit is made operative by an output signal of the signal follower circuit and produces an inverter function at the output terminal, in response to an output signal of the second transfer gate circuit.	Remember	CLO20	AECB05.20
17	Define Sequential circuits.	Sequential circuit has memory so output can vary based on input. This type of circuits uses previous input, output, clock and a memory element.	Understand	CLO21	AECB05.20
18	Define flip-flop.	A flip-flop is a circuit that has two stable states and can be used to store state information. The circuit can be made to change state by signals applied to one or more control inputs and will have one or two outputs. It is the basic storage element in sequential logic. flip flop has a clock signal,	Remember	CLO21	AECB05.21
19	Define latch.	The output of the latch depends on its input. It continuously checks its inputs and changes its output correspondingly. It is not depending on clock.	Understand	CLO21	AECB05.21
20	What is jk flip- flop?	The JK Flip Flop is basically a gated RS flip flop with the addition of the clock input circuitry. When both the inputs S and R are equal to logic "1", the invalid condition takes place. Thus to prevent this invalid condition, a clock circuit is introduced	Remember	CLO21	AECB05.21
21	What is master slave jk flip- flop?	Master slave JK FF is a cascade of two S-R FF with feedback from the output of second to input of first. Master is a positive level triggered. But due to the presence of the inverter in the clock line, the slave will respond to the negative level. Master-slave flip flop is designed using two separate flip flops.	Remember	CLO21	AECB05.21
22	Define T flip-flop.	The T or "toggle" flip-flop changes its output on each clock edge, giving an output which is half the frequency of the signal to the T input	Understand	CLO21	AECB05.21
23	What is clock?	A clock signal is a particular type of signal that oscillates between a high and a low state	Understand	CLO21	AECB05.21
24	What is memory cell?	The memory cell is an electronic circuit that stores one bit of binary information and it must be set to store a logic 1 (high voltage level) and reset to store a logic 0 (low voltage level). Its value is maintained/stored until it is changed by the set/reset process.	Understand	CLO21	AECB05.21
25	What is Binary cell?	An elementary MODULE of computer storage that can have one or the other of two stable states and can thus store one bit of information.	Understand	CLO21	AECB05.21

26	Define clock skew.	Clock skew is a phenomenon in synchronous	Understand	CLO20	AECB05.20
		digital circuit systems in which the same sourced clock signal arrives at different components at different times i.e. the instantaneous difference between the readings of any two clocks is called their skew.			
27	What is sequential machine?	It has inputs and outputs that can each take on any value from a finite set and are of interest only at certain instants of time, and in which the output depends on previous inputs as well as the concurrent input.	Understand	CLO20	AECB05.20
28	What is JK Flip- flop characteristic Equation	Q(t+1) = K'(t)Q(t) + J(t)Q'(t)	Remember	CLO20	AECB05.20
29	What is serial shift register?	The Shift Register Serial-in to Parallel-out (SIPO) - the register is loaded with serial data, one bit at a time, with the stored data being available at the output in parallel form.	Understand	CLO20	AECB05.20
30	Define parallel shift register?	For parallel in – parallel out shift registers, all data bits appear on the parallel output immediately following the simultaneous entry of the data bits. The following circuit is a four- bit parallel in – parallel out shift register.	Understand	CLO20	AECB05.20
31	What is Triggering?	The output of a flip flop can be changed by a small change in the input signal. This small change can be brought with the help of a clock pulse or commonly known as a trigger pulse. When such a trigger pulse is applied to the input, the output changes and thus the flip flop is said to be triggered.	Understand	CLO21	AECB05.21
32	Define Level Triggering?	We can have a negative level triggering in which the circuit is active when the clock signal is low or a positive level triggering in which the circuit is active when the clock signal is high	Remember	CLO21	AECB05.21
33	Define Edge Triggering?	Edge triggering the circuit becomes active at negative or positive edge of the clock signal.	Remember	CLO21	AECB05.21
34	What is Excitation Table?	An excitation table shows the minimum inputs that are necessary to generate a particular next state (in other words, to "excite" it to the next state) when the current state is known. They are similar to truth tables and state tables.	Understand	CLO21	AECB05.21
35	What is SR Flipflop?	An SR Flip Flop is an arrangement of logic gates that maintains a stable output even after the inputs are turned off. This simple flip flop circuit has a set input (S) and a reset input (R). The set input causes the output of 0 (top output) and 1 (bottom output).	Understand	CLO21	AECB05.21
36	What is D Flipflop?	A D-type flip-flop is a clocked flip-flop which has two stable states. A D-type flip-flop operates with a delay in input by one clock cycle A D- type flip-flop is also known as a D flip-flop or delay flip-flop.	Understand	CLO21	AECB05.21

37	Define Positive Edge Triggering?	In edge triggering the circuit becomes active at negative or positive edge of the clock signal. For example if the circuit is positive edge triggered, it will take input at exactly the time in which the clock signal goes from low to high.	Understand	CLO21	AECB05.21
38	Define Negative EdgeTriggering?	Negative-Edge-Triggered Describing a circuit or component that changes its state only when an input signal becomes low.	Understand	CLO21	AECB05.21
39	What is Timing diagram?	A timing diagram is the graphical representation of input and output signals as functions of time. Since the inputs and outputs can only take the values 0 or 1, their graphical representations are series of square pulses with a variety of time lengths.	Understand	CLO21	AECB05.21
40	What is SR Flip- flop characteristic Equation	Q(t+1) = R'(t)Q(t) + S(t)	Remember	CLO21	AECB05.21

Prepared by: Ms. M Saritha, Assistant Professor

HOD, IT