ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

IV Semester: ECE								
Course Code	Category	Hours / Week		Credits	Maximum Marks			
AEC007	Foundation	L	Т	Р	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 60		

OBJECTIVES:

The course should enable the students to:

- I. Understand the 3D vector co-ordinate systems and electromagnetic field concepts.
- II. Analyze the importance of Maxwell's equations in electromagnetic theory and wave propagation.
- III. Study the propagation characteristics of electromagnetic waves at boundary.
- IV. Demonstrate the ability to compute various parameters for transmission lines using smith chart and classical theory.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand the different types of 3D co-ordinate systems, scalars and vectors, physical significance of divergence, curl and gradient.
- 2. Illustrate the concepts of coloumb's law and gauss's law to different charge distributions like point charge, line charge, surface charge and volume charge. Analyze its applications.
- 3. Understand the applications of Laplace's and Poisson's equations to solve problems on capacitance of different charge distributions.
- 4. Illustrate the physical significance of Biot-Savart's law and Ampere's Circuit law for different current distributions and analyze its applications.
- 5. Evaluate the physical interpretation of Maxwell's equations and applications for various fields like antennas and wave guides.
- 6. Derive the boundary conditions between different media like dielectric to conductor, conductor to free space.
- 7. Analyze and apply the Maxwell's equations to derive electromagnetic wave equations for different media.
- 8. Understand the behavior of electromagnetic waves incident on the interface between two different media.
- 9. Formulate and analyze problems in different media such as lossy, lossless with boundaries using uniform plane waves.
- 10. Understand the significance of transmission lines and its types, derive their primary constants and secondary constants.
- 11. Understand the concept of attenuation, loading, and analyze the loading technique to the transmission lines.
- 12. Understand the design of various transmission lines with respect to distortion, loss, impedance matching, and VSWR and reflection coefficient.
- 13. Summarize the impedance transformation for different lengths such as $\lambda/4$, $\lambda/2$, $\lambda/8$ transmission lines.
- 14. Understand the design of ultra high frequency transmission lines for different applications by using single and double stub matching techniques.
- 15. Formulate and analyze the smith chart to estimate impedance, VSWR, reflection coefficient, OC and SC lines.
- 16. Apply the concept of electromagnetic fields to understand and analyze land mobile communications.
- 17. Acquire the knowledge and develop capability to succeed national and international level competitive examinations.

-						
		[
Unit-I	ELECTROSTATICS	Classes-09				
Coulomb's law, electric field intensity, fields due to different charge distributions; Electric flux density, gauss law and its applications; Scalar electric potential; Energy density, illustrative problems; Convection and conduction currents; Dielectric constant, isotropic and homogeneous dielectrics; Continuity equation and relaxation time, conductivity, power absorbed in conductor, Poisson's and laplace's equations; Capacitance; Method of images; Illustrative problems.						
Unit-II	MAGNETOSTATICS	Classes-09				
Magneto statics: Biot-savart law; Ampere's circuital law and applications; Magnetic flux density; Magnetic scalar and vector potentials; Forces due to magnetic fields; Ampere's force law; Magnetic boundary conditions; Inductances and magnetic energy; Illustrative problems. Maxwell's Equations (Time Varying Fields): Faraday's law; Inconsistency of ampere's law for Time Varying Fields and definition for Displacement Current density; Maxwell's equations in differential form, integral form and word Statements; Conductors and dielectrics-characterization; Loss Tangent						
Unit-III	UNIFRORM PLANE WAVES	Classes-09				
Uniform Plane Waves: Wave equations for conducting and perfect dielectric media; Relation between E and H; Wave propagation in lossless and conducting media; Intrinsic Impedance; Skin Depth; Polarization, Illustrative Problems. Reflection/Refraction of Plane Waves: Reflection and refraction at normal incidence, reflection and refraction at oblique incidence; Standing waves; Brewster angle, critical Angle, total internal reflection, surface impedance; Poynting vector& poynting theorem-applications; Power Loss in plane conductor; Illustrative problems						
Unit-IV	TRANSMISSION LINES CHARACTERISTICS	Classes-09				
Transmission lines characteristics: Types; Transmission line Parameters; Transmission line Equations; Characteristic Impedance, propagation constant; Phase and group velocities; Infinite line concepts, Loss less /low loss transmission line characterization; condition for distortion less and minimum attenuation in transmission lines; Loading- types of loading; Illustrative problems.						
Unit-V	UHF TRANSMISSION LINES AND APPLICATIONS	Classes-09				
UHF Transmission Lines& Applications: Input impedance relations; SC and OC Lines; Reflection coefficient, VSWR; UHF Lines as Circuit Elements, $\lambda/4$, $\lambda/2$ and $\lambda/8$ Lines- impedance transformations, significance of Zmin and Zmax; Smith chart-configuration and applications; Single and double stub matching; Illustrative problems.						
Text Books:						
 Matthew N.O. Sadiku, - Elements of Electromagnetics, Oxford University Press, 4th Edition. E.C. Jordan and K.G. Balmain, - Electromagnetic Waves and Radiating Systems, 2nd Edition, PHI, 2004.2. Umesh Sinha, Satya Prakasan, - Transmission Lines and Networks, 2nd Edition, 2001. 						
Reference Books:						
 Nathan Ida - Engineering Electromagnetic, Springer India Pvt. Ltd, 2nd Edition, 2005. William H. Hayt Jr. and John A. Buck, - Engineering Electromagnetic, TMH, 7th Edition, 2016. G.Sashibushana Rao -Electromagnetic Field theory and Transmission Lines, Wiley India, 2013. John D. Ryder,-Networks, Lines and Fields, PHI, 2nd Edition, 1999. 						

Web References:

- 1. http:// web.stanford.edu/class
- 2. http://www.electronicagroup.com
- 3. http://www.cpri.in/about-us/departmentsunits/library-and-information-centre/digital-library-links.html
- 4. http://nptel.ac.in/courses/antennas
- 5. http://www.tutorialspoint.com/discrete_mathematics

E-Text Books:

- 1. http://www.bookboon.com/en/concepts-in-electrostatics-ebook
- 2. http://www.www.jntubook.com
- 3. http://www.allaboutcircuits.com
- 4. http://www.archive.org