
1 | P a g e

COMPILER DESIGN

 V Semester: CSE / IT

Course Code Category Hours / WEEK Credits Maximum Marks

AIT004 Core
L T P C CIA SEE Total

3 1 - 4 30 70 100

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

I. COURSE OVERVIEW:

This course describes the basic techniques for compiler construction and tools that can be used to perform

syntax-directed translation of a high-level programming language into an executable code. It will provide

deeper insights into the more advanced semantics aspects of programming languages, machine independent

optimizations and code generation.

II. OBJECTIVES:

The course should enable the students to:

I The process of translating a high-level language to machine code required for compiler construction.

II The Software tools and techniques used in compiler construction such as lexical analyzer and parser
generators.

III The data structures used in compiler construction such as abstract syntax trees, symbol tables, three-
address code, and stack machines.

IV The deeper insights into the syntax and semantic aspects of programming languages, dynamic memory
allocation and code generation.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1 Summarize phases of a compiler in the construction of language processors. Understand

CO 2 Make use of finite automata for designing a lexical analyzer for a specific

programming language constructs.

Apply

CO 3 Choose top down, bottom up parsing methods for developing a parser with

representation of a parse table or tree.

Apply

CO 4 Outline syntax directed translations, intermediate forms for performing semantic

analysis along with code generation.

Understand

CO 5 Relate symbol table, type checking and storage allocation strategies used in run-

time environment.

Understand

CO 6 Select code optimization techniques on intermediate code form for generating target

code.

Apply

IV. SYLLABUS:

UNIT-I INTRODUCTION TO COMPILERS AND PARSING Classes: 08

Introduction to compilers: Definition of compiler, interpreter and its differences, the phases of a compiler, role of

lexical analyzer, regular expressions, finite automata, from regular expressions to finite automata, pass and phases of

translation, bootstrapping, LEX-lexical analyzer generator; Parsing: Parsing, role of parser, context free grammar,

derivations, parse trees, ambiguity, elimination of left recursion, left factoring, eliminating ambiguity from dangling-

else grammar, classes of parsing, top-down parsing: backtracking, recursive-descent parsing, predictive parsers,

LL(1) grammars.

UNIT-II BOTTOM-UP PARSING Classes: 09

Bottom-up parsing: Definition of bottom-up parsing, handles, handle pruning, stack implementation of shift-reduce

parsing, conflicts during shift-reduce parsing, LR grammars, LR parsers-simple LR, canonical LR and Look Ahead

LR parsers, error recovery in parsing, parsing ambiguous grammars, YACC-automatic parser generator.

2 | P a g e

UNIT-III
SYNTAX-DIRECTED TRANSLATION AND INTERMEDIATE CODE

GENERATION
Classes: 10

Syntax-directed translation: Syntax directed definition, construction of syntax trees, S-attributed and L-attributed

definitions, translation schemes, emitting a translation.

Intermediate code generation: Intermediate forms of source programs– abstract syntax tree, polish notation and three

address code, types of three address statements and its implementation, syntax directed translation into three-address

code, translation of simple statements, Boolean expressions and flow-of-control statements.

UNIT-IV TYPE CHECKING AND RUN TIME ENVIRONMENT Classes: 09

Type checking: Definition of type checking, type expressions, type systems, static and dynamic checking of types,

specification of a simple type checker, equivalence of type expressions, type conversions, overloading of functions

and operators; Run time environments: Source language issues, Storage organization, storage-allocation strategies,

access to nonlocal names, parameter passing, symbol tables, and language facilities for dynamic storage allocation.

UNIT-V CODE OPTIMIZATION AND CODE GENERATOR Classes: 09

Code optimization: The principle sources of optimization, optimization of basic blocks, loops in flow graphs,

peophole optimization; Code generator: Issues in the design of a code generator, the target machine, runtime storage

management, basic blocks and flow graphs, a simple code generator, register allocation and assignment, DAG

representation of basic blocks.

Text Book:

Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, “Compilers–Principles, Techniques and Tools”, Pearson

Education, Low Price Edition, 2004.

Reference Books:

1. Kenneth C. Louden, Thomson, “Compiler Construction– Principles and Practice”, PWS Publishing,

1
st
 Edition, 1997.

2. Andrew W. Appel, “Modern Compiler Implementation C”, Cambridge University Press, Revised Edition,

2004.

Web References:

1. www.vssut.ac.in/lecture_notes/lecture1422914957.pdf

2. http://csenote.weebly.com/principles-of-compiler-design.html

3. http://www.faadooengineers.com/threads/32857-Compiler-Design-Notes-full-book-pdf-download

4. https://www.vidyarthiplus.com/vp/thread-37033.html#.WF0PhlMrLDc

E-Text Books:

1. http://www.e-booksdirectory.com/details.php?ebook=10166

2. http://www.e-booksdirectory.com/details.php?ebook=7400re

Course Home Page:

