COMPUTATIONAL STRUCTURAL ANALYSIS LABORATORY

VII Semester: AE									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AAE111	Core	L	Т	Р	С	CIE	SEE	Total	
		-	-	3	2	30	70	100	
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 36 Total Classes: 36			es: 36				

I. COURSE OVERVIEW:

Computational Structural Analysis Laboratory sessions focus on the creation of geometry, meshing (Discretization) and the physics behind the stress strain variation on a continuum. It will also cover the different solvers available in a FEA package and their applications based on the problem type. This course offers a wide range of applications in aircraft structural analysis such as deflection of truss, frames, beams, stress and strain distributions in a plate as well as a solid continuum. Apart from these, it will also address the nonlinear stress problems alongside vibration and flutter analysis.

II. OBJECTIVES:

The course should enable the students to:

- I. Make the student familiar with latest computational techniques and software used for structural analysis.
- II. Enable the student get a feeling of how real-life structures behavior for static and dynamics loads.
- III. Become familiar with professional and contemporary issues in the design and fabrication.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO 1 **Explain** the computational methods and Software's that are used in aerospace Understand fields to simulate the complex problems through ANSYS.
- CO 2 **Solve** the parameters like deflections, stress, strain and bending moment by using Apply ANSYS for the linear and non-linear problems that occur in aircraft structural components (beams, bars etc.).
- CO 3 **Calculate** the numerical solution of static structural problems using discretization Analyze methods and convergence criteria to minimize the errors.
- CO 4 Select the appropriate heat transfer mechanism using ANSYS thermal Analyze workbench for efficient cooling of on board avionics system.
- CO 5 **Predict** the suitable appropriate results using governing equations for vibration Evaluate problems that occur in aircraft structural components (beams, spring-mass system)
- CO 6 **Determine** the nature of stress-strain distribution by using appropriate governing Evaluate equations for an aircraft structural components such as wings, fuselage and landing gear.

IV. SYLLABUS:

LIST OF EXPERIMENTS

Week-I INTRODUCTION AND BASIC FUCTIONS

- a. Starting up of ANSYS/Nastran
- b. Description of user interface

Week-2	STATIC ANALYSIS:	TRUSS AND FRAME STRUCTURES
--------	-------------------------	----------------------------

- a. 2-D truss structures
- b. 3-D truss structures

Week-3	STATIC ANALYSIS: BEAMS					
a. Straight beamsb. Tapered beams						
Week-4	ek-4 STATIC ANALYSIS: TWO DIMENSIONAL PROBLEMS					
 a. 2-D structure with various loadings b. 2-D structures with different materials c. Plate with hole 						
Week-5	DYNAMIC ANALYSIS: MODAL AND TRANSIENT ANALYSES					
Week-6	THERMAL ANALYSIS					
a. Bars and beamsb. 2D structures						
Week-7	NON LINEAR ANALYSIS					
Week-8	HARMONIC RESPONSE ANALYSIS					
a. Random Vibration Analysis of a Deep Simply-Supported Beamb. Harmonic Response of a Spring-Mass System						
Week-9	ANALYSIS OF AIRCARFT STRUCTURE: WING					
Week-10	ANALYSIS OF AIRCARFT STRUCTURE: FUSELAGE					
a. Static analysis of Aircraft Semi monoque fuselage structureb. Modal analysis of aircraft Semi monoque fuselage structure						
Week-11	ANALYSIS OF AIRCARFT STRUCTURE:LANDING GEAR					
a. Static analysis of main landing gearb. Modal analysis of main landing gear						
Week-12	ANALYSIS OF COMPOSITE STRUCTURES					
a. Static analysis of composite bar and beamb. Static analysis of composite plate						
Reference Books:						
 Huei-Huang Lee, "Finite Element Simulations with ANSYS Workbench 16", SDC publications, 2nd Edition, 2016. Anderson, William J "MSC/Nastran: Interactive Training Program" Wiley 1st Edition 2015. 						
Web Reference:						
http://www	v.iare.ac.in					

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 36 STUDENTS:

SOFTWARE: ANSYS 16 or MSC Nastran

HARDWARE: Desktop Computers with 4 GB RAM 36 nos