DESIGN AND ANALYSIS OF ALGORITHMS

III Semester: CSE / IT								
Course Code	Category	Hours / Week		Credits	Maximum Marks			
AIT001	Core	L	Т	Р	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil			s: Nil	Total Classes: 45		

I. COURSE OVERVIEW:

The primary objective of this course is to introduce the concept of algorithm as a precise mathematical concept, and study how to design algorithms, establish their correctness, study their efficiency and memory needs. The course consists of a strong mathematical component in addition to the design of various algorithms.

II. OBJECTIVES:

The course should enable the students to:

- I Calculate performance of algorithms with respect to time and space complexity.
- II Illustrate the graph traversals and tree traversals to solve the problems
- III Demonstrate the concepts greedy method and dynamic programming for several applications like knapsack problem, job sequencing with deadlines, and optimal binary search tree, TSP.
- IV Illustrating the methods of backtracking and branch bound techniques to solve theproblems like n-queens problem, graph colorings and TSP respectively

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Find the (worst case, randomized, amortized) running time and space complexity of given algorithms using techniques such as recurrences and properties of	Remember
CO 2	Apply divide and conquer algorithms for solving sorting, searching and matrix multiplication.	Apply

- CO 3 Make Use of appropriate tree traversal techniques for findingshortest path.
- CO 4 **Identify** suitable problem solving techniques for a given problem and finding Remember optimized solutions using Greedy and Dynamic Programming techniques

Apply

- CO 5 **Utilize** backtracking and branch and bound techniques to deal with traceable and Apply in-traceable problems.
- CO 6 **Describe** the classes P, NP, NP-Hard, NP-complete for solving deterministic and Understand non deterministic problems.

IV. SYLLABUS:

UNIT-I	INTRODUCTION	Classes: 9		
Algorithm:	Pseudo code for expressing algorithms; Performance analysis: Space c	omplexity, time		
complexity;	Asymptotic notations: Big O notation, omega notation, theta notation and	little o notation,		
probabilistic analysis, amortized complexity; Divide and Conquer: General method, binary search, quick				
sort, merge sort, Strassen's matrix multiplication.				

UNIT-II	SEARCHING AND TRAVERSAL TECHNIQUES	Classes: 8		
Disjoint se	t operations, union and find algorithms; Efficient non recursive binary	y tree traversal		
algorithms,	spanning trees; Graph traversals: Breadth first search, depth first sea	arch, connected		
components, disconnected components.				

UNIT-III	GREEDY METHOD AND DYNAMIC PROGRAMMING	Classes: 10	
Greedy met spanning tre	hod: The general method, job sequencing with deadlines, knapsack problem ees, single source shortest paths.	n, minimum cost	
Dynamic programming: The general method, matrix chain multiplication optimal binary search trees, 0/1 knapsack problem, single source shortest paths, all pairs shortest paths problem, the travelling salesperson problem.			
UNIT-IV	BACKTRACKING AND BRANCH AND BOUND	Classes: 9	
Backtracking: The general method, the 8 queens problem, sum of subsets problem, graph coloring, Hamiltonian cycles; Branch and bound: The general method, 0/1 knapsack problem, least cost branch and bound solution, first in first out branch and bound solution, travelling salesperson problem.			
UNIT-V	NP-HARD AND NP-COMPLETE PROBLEMS	Classes: 9	
Basic conce decision pro	epts: Non-deterministic algorithms, the classes NP - Hard and NP, NP Hard oblem, chromatic number decision problem, Cook's theorem.	problems, clique	
Text Books	:		
 Ellis Horowitz, Satraj Sahni, Sanguthevar Rajasekharan, "Fundamentals of Computer Algorithms", Universities Press, 2nd Edition, 2008. Alfred V. Aho, John E. Hopcroft, Jeffrey D, "The Design And Analysis Of Computer Algorithms", Pearson India, 1st Edition, 2013. 			
Reference	Books:		
 Levitin A, "Introduction to the Design and Analysis of Algorithms", Pearson Education, 3rd Edition, 2012. Goodrich, M. T. R Tamassia, "Algorithm Design Foundations Analysis and Internet Examples", John Wileyn and Sons, 1st Edition, 2001. Base Sara Allen Vangelder, "Computer Algorithms Introduction to Design and Analysis", Pearson, 3rd Edition, 1999. 			
Web References:			
 http://www.personal.kent.edu/~rmuhamma/Algorithms/algorithm.html http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=IntroToAlgorithms http://www.facweb.iitkgp.ernet.in/~sourav/daa.html 			
E-Text Books:			
 http://ebook/com/item/introduction_to_the_design_and_analysis_of_algorithms_3rd_edition_anany_le vitin/ https://drive.google.com/file/d/0B_Y1VbyboEDBTDVxVXpVbnk4TVE/edit?pref=2&pli=1 http://www.amazon.com/Computer-Algorithms-Introduction-Design-Analysis/dp/0201612445 			
MOOC Courses:			
1.https://www.coursera.org/learn/algorithm-design-analysis 2.http://www.online.stanford.edu/course/algorithms-design-and-analysis-part-1 3.https://www.onlinecourses.nptel.ac.in/noc16_cs04/preview			
Course Home Page:			