DIGITAL COMMUNICATIONS

V Semester: ECE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AEC009	Core	L	T	P	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 60		

I. COURSE OVERVIEW:

This course provides the constructional features of digital communication systems, coding and decoding algorithms. It intended to provide the various digital modulation and demodulation techniques for wired and wireless data transmission. Analytical skills to configure secure digital communications for signal and image processing applications.

II. OBJECTIVES:

The course should enable the students to:

- I The building blocks of digital communication systems such as source coding, channel coding and modulators.
- II The error performance of digital communication system in the presence of noise and other interferences.
- III The applications of spread spectrum techniques in secured digital communication systems.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO 1 Outline the concepts of pulse modulation techniques for binarycodeword data. Understand
- CO 2 **Identify** the pass band data transmission model for digital modulation and Apply demodulation techniques.
- CO 3 Summarize pulse shaping of line codes to mitigate inter symbol interference, Understand cross talk.
- CO 4 Apply information theory and source coding techniques to increase coding Apply efficiency.
- CO 5 Analyze encoding and decoding algorithms for error detection and error Analyze corrections in digital communications.
- CO 6 **Build** convolution encoders by using time domain approach and graphical Apply approach.

Classes: 08

Classes: 09

IV. SYLLABUS:

UNIT-I PULSE DIGITAL MODULATION

Pulse Modulation: Analog pulse modulation, Types of pulse modulation; PAM (Single polarity, double polarity); Generation & demodulation of PWM; Generation and demodulation of PPM; Introduction: Elements of digital communication systems, advantages and disadvantages of digital communication systems, applications; Pulse Digital Modulation: Elements of PCM; Sampling, quantization and coding; Quantization error, non-uniform quantization and companding; Differential PCM (DPCM); Adaptive DPCM; Delta modulation and its drawbacks; Adaptive delta modulation; Comparison of PCM and DM systems; Noise in PCM and DM systems.

UNIT-II DIGITAL MODULATION TECHNIQUES

Digital Modulation Techniques: Introduction, ASK modulator, coherent ASK detector, non-coherent ASK detector, FSK, bandwidth and frequency spectrum of FSK, non-coherent FSK detector, coherent FSK detector; BPSK, coherent BPSK detection; QPSK; DPSK, DEPSK; Optimal reception of digital signal: Baseband signal receiver; Probability of error; Optimum filter; matched filter, probability of error

using matched filter; Probability of error for various line encoding formats; Correlation receiver; Calculation of probability of error for ASK, FSK, BPSK.

UNIT-III BASE BAND TRANSMISSION AND PULSE SHAPING

Base Band Transmission: Requirements of a line encoding format, Various line encoding formats: Unipolar, Polar, Bipolar; Scrambling techniques: BZ8S, HDB3, computation of power spectral densities of various line encoding formats.

Classes: 09

Classes: 10

Classes: 09

Pulse Shaping: Inter symbol interference; pulse shaping to reduce ISI; Nyquist's criterion; Raised cosine filter; Equalization; Correlative level coding; Duo-binary encoding, modified duo –binary coding; Eye diagrams for ASK,PSK,FSK; Cross Talk

UNIT-IV INFORMATION THEORY AND SOURCE CODING

Information Theory: Information, entropy, conditional entropy; Mutual information; Channel capacity; Various mathematical modeling of communication channels and their capacities; Hartley Shannon law; Tradeoff between bandwidth and S/N ratio; Source coding: Fixed length and variable length Source Coding Schemes, Huffman coding; Source coding to increase average information per bit; Lossy source coding; Spread spectrum modulation: Use of spread spectrum; Direct sequence spread spectrum (DSSS); Code division multiple access using DSSS, frequency hopping spread spectrum; PN-Sequences: Generation and characteristics; Synchronization in spread spectrum systems.

UNIT-V LINEAR BLOCK CODES AND CONVOLUTIONAL CODES

Linear Block Codes: Introduction to error control coding; Matrix description of linear block codes, error detection and error correction capabilities of linear block codes; Hamming code; Binary cyclic codes algebraic structure, encoding, syndrome calculation and decoding; Convolution Codes: Introduction, Encoding of convolution codes; Time Domain Approach; Transform Domain Approach; General approach; State, Tree And Trellis Diagram; Decoding using Viterbi Algorithm; Burst Error Correction: Block Interleaving and convolution interleaving.

Text Books:

- 1. Herbert Taub, Donald L. Schilling, "Principles of Communication Systems", TMH, 3rd edition, 2008
- 2. K. Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley & Sons, 2nd Edition, 2005.
- 3. Simon Haykin, "Digital communications", John Wiley, 3rd Edition, 2005.

Reference Books:

- 1. John Proakis, "Digital Communications", TMH, 2nd Edition 1983.
- 2. B.P.Lathi, "Modern Analog and Digital Communication", Oxford reprint, 3rd Edition, 2004
- 3. Singh, Sapre, "Communication Systems Analog and Digital", TMH, 2nd Edition, 2004.

Web References:

- 1. http://nptel.ac.in/courses/117101051/
- 2. https://ocw.mit.edu/courses/electrical.../6...digital-communications.../lecture-notes
- 3. https://everythingvtu.wordpress.com
- 4. http://www.iare.ac.in

E-Text Books:

- 1. http://www.www.jntubook.com
- 2. http://www.bookboon.com/en/communication-ebook
- 3. www.e-booksdirectory.com > Engineering
- 4. www.wiley.com > ... > General Communication Technology

Course Home Page: