DIGITAL COMMUNICATIONS LABORATORY

V Semester: ECE										
Course Code	Category	Hours / Week			Credits	Maximum Marks				
AEC105	Core	L	Т	Р	С	CIA	SEE	Total		
		-	-	3	2	30	70	100		
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 36 Total Classes: 36				s: 36				

I. COURSE OVERVIEW:

This lab course gives the hands on experience in elements of digital communication systems. The design of various coding techniques, pulse analog and digital modulations to analyse signal to noise ratio, bit error rate, power and bandwidth for digital communication systems. This lab is useful in the digital signal processors in secured communication systems, multimedia communications and datastorage applications.

II. OBJECTIVES:

The course should enable the students to:

- I The Elements of digital communication systems to convert continuous time signals into discrete time signals.
- II The pulse analog modulation techniques, generation and detection of digitalmodulation techniques.
- III The time and frequency domain analysis of the signals in communication system by using MATLAB tools.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO 1 Examine sampling theorem for processing of different signals such as low pass Analyze signals, band-limited signals and band pass signals.
- CO 2 **Classify** the pulse modulation and demodulation methods forencoded data in analog Analyze to digital conversion.
- CO 3 Apply the concept of pulse code modulation and demodulation for the equivalent Analyze sequence of binary code word data.
- CO 4 **Categorize** the digital modulation techniques used for transfer a digital bit stream Analyze over an analog channel at a high frequency.
- CO 5 **Determine** bit rate in delta modulation and demodulation processfor the no. of bits Apply per sample are transmitted.
- CO 6 **Develop** frequency domain description of different digital modulation techniques for Apply spectral characteristics analysis.

IV. SYLLABUS:

LIST OF EXPERIMENTS

Week-l	SAMPLING THEOREM – VERIFICATION		
Verification of sampling theorem for under, perfect, over sampling cases			
Week-2	PULSE AMPLITUDE MODULATION AND DEMODULATION		
Generation of Pulse Amplitude modulation and demodulation using hardware and matlab			
Week-3	PULSE WIDTH MODULATION AND DEMODULATION		
Generation of Pulse width modulation and demodulation using hardware and matlab			

Week-4	PULSE POSITION MODULATION AND DEMODULATION.				
Generation of pulse position modulation and demodulation using hardware and matlab					
Week-5	Week-5 PULSE CODE MODULATION				
Generation of pulse code modulation and demodulation using hardware and understanding the concept analog to digital conversion					
Week-6	DIFFERENTIAL PULSE CODE MODULATION				
Generation of	f differential pulse code modulation and demodulation using hardware				
Week-7	DELTA MODULATION.				
Generation o DM	f delta modulation and demodulation using hardware .Understanding difference between PCM and				
Week-8	FREQUENCY SHIFT KEYING				
Generation of	f Frequency shift keying modulation and demodulation using hardware				
Week-9	PHASE SHIFT KEYING.				
Generation of	f Phase shift keying modulation and demodulation using hardware				
Week-l0	DIFFERENTIAL PHASE SHIFT KEYING				
Generation of	f Differential Phase shift keying modulation and demodulation using hardware				
Week-l1	AMPLITUDE SHIFT KEY(ASK)				
Generation of	f Amplitude Shift Key modulation and demodulation using hardware				
Week-l2	STUDY OF THE SPECTRAL CHARACTERISTICS OF PAM AND QAM				
Understand f	requency domain description of PAM and QAM				
Week-l3	QUADRATURE PHASE SHIFT KEYING				
Generation of	f QPSK modulation and demodulation using hardware				
Week-l4	MATLAB for QPSK & DPSK .				
Understand f	requency domain description of amplitude modulation and frequency modulation				
Reference B	ooks:				
1. K. Sam	Shanmugam, "Digital and Analog Communication Systems", John Wiley & Sons, 2 nd Edition, 2005.				
 B.P.Lathi, "Modern Analog and Digital Communication", Oxford reprint, 3rd Edition, 2004. Singh Sanza, "Communication Systems Analog and Digital", TMH, 2nd Edition, 2004. 					
Web References:					
1. https://ocw.mit.edu/courses/electrical/6digital-communications/lecture-notes					
2. https://everythingvtu.wordpress.com					
3. http://www.iare.ac.in					
Course mone 1 age.					
SOFTWARE AND HARDWARE REQUIRED FOR A BATCH OF 36 STUDENTS					
HARDWARE: Desktop Computer Systems 18 nos					
SOFTWAR	E: MATLAB				

S.No	Name of the Equipment	Range
1	Cathode Ray Oscilloscope	0-25 MHz
2	RF Generator,	0-300 MHz
3	Function Generator	0-1 MHz
4	Function Generator	0-2 MHz
5	Sampling Theorem	
6	Pulse Amplitude Modulation	
7	Pulse Width Modulation	
8	Pulse Position Modulation	
9	Pulse Code Modulation	
10	Pulse Shift Keying	
11	Frequency Shift Keying	
12	D-Phase Shift Keying	
13	D-Pulse Code Modulation	
14	Delta Modulation	
15	Amplitude Shift Keying	
16	Q-Phase Shift Keying	
17	Spectrum Analyzer	0-500 MHz

LIST OF EQUIPMENT REQUIRED FOR A BATCH OF 36 STUDENTS