DIGITAL LOGIC DESIGN

III Semester: CSE / IT								
Course Code	Category	Hours / Week		Credit	Maximum Marks			
AEC020	Foundation	L	Т	Р	С	CIA	SEE	Tota
ALCOZO		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: N			es: Nil	Total Classes: 60		

I. COURSE OVERVIEW:

This course intended to logic gates, various logic families. Design of digital circuits using logic gates, combinational circuits and sequential circuits. Apply op-amp characteristics to design analog to digital converters and digital to analog converters. Classification and characteristics of memories such as Read-only memory, Random access memory and programmable logic devices such as programmable logic array and programmable array logic.

II. OBJECTIVES:

The course should enable the students to:

- I Simplification of the logic functions using Boolean algebraic theorems and techniques.
- II Implementation of conventional combinational and sequential circuits including conversions of flipflops
- III The exploration of the logic families and semiconductor memories.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO 1 Understand the different forms of number representations and binary codes in digital Understand logic circuits.
- CO 2 Make use of Boolean postulates, theorems and k-map for obtaining minimized Remember Boolean expressions.
- CO 3 **Implement** the combinational logic circuits using the logic gates. Apply
- CO 4 Utilize the functionality and characteristics of flip-flops and latches for designing Apply sequential circuits
- CO 5 **Construct** the synchronous and asynchronous modules using flip flops used for Apply memory storing applications.
- CO 6 **Extend** the knowledge of memories and programmable logic devices for Apply understanding the architectural blocks of FPGA.

IV. SYLLABUS:

UNIT-I	NUMBERS SYSTEMS AND CODES	Classes: 09
--------	---------------------------	-------------

Review of number systems, number base conversion; Binary arithmetic: Binary weighted and nonweighted codes; Complements: Signed binary numbers; Error detection and correcting codes; Binary logic.

UNIT-II	BOOLEAN ALGEBRA AND GATE LEVEL MINIMIZATION	Classes: 09
---------	---	-------------

Postulates and theorems; representation of switching functions; SOP and POS forms; Canonical forms; Digital logic gates; Karnaugh Maps: Minimization using three variable; four variable; five variable K-Maps; Don't Care Conditions; NAND and NOR implementation; Other Two-level implementation; Exclusive –OR function.

UNIT-III	DESIGN OF COMBINATIONAL CIRCUITS	Classes: 09				
Combinational circuits: Analysis and design procedure; Binary adder and subtractors; Carry look-a- head adder; Binary multiplier. Magnitude comparator; BCD adder; Decoders; Encoders; Multiplexers; Demultiplexer.						
UNIT-IV	DESIGN OF SEQUENTIAL CIRCUITS	Classes: 10				
Combination flop, Master flop; Shift re reduction an	Combinational vs sequential circuits ; Latches, flip flops: RS flip flop, JK flip flop, T flip flop, D flip flop, Master-Slave flip flop, flip flops excitation functions; Conversion of one flip flop to another flip flop; Shift registers; Design of asynchronous and synchronous circuits; State table, state diagram, state reduction and state assignment for mealy and moore machines.					
UNIT-V	MEMORY	Classes: 08				
Random acc memory; Ca access time.	Random access memory; Types of ROM; Memory decoding; Address and data bus; Sequential memory; Cache memory; Programmable logic arrays; Memory hierarchy in terms of capacity and access time.					
Text Book:						
1. M. Morri	s Mano, "Digital Design", Pearson Education/PHI, 3 rd Edition, 2001.					
Reference H	Books:					
 Charles H. Roth Jr, "Fundamentals of Logic Design", Thomson Brooks/Cole, 5th Edition, 2004. C. V. S. Rao, "Switching Theory and Logic Design, Pearson Education, 1st Edition, 2005. M. Rafiquzzaman, "Fundamentals of Digital Logic and Micro Computer Design", John Wiley, 5th Edition, 2005. Zvi. Kohavi, "Switching and Finite Automata Theory", Tata McGraw Hill, 2nd Edition, 1991. 						
Web Refere	ences:					
 http://www.american.cs.ucdavis.edu/academic/ecs154a.sum14/postscript/cosc205.pdf http://www.engrcs.com/courses/engr250/engr250lecture.pdf http://www.ece.rutgers.edu/~marsic/Teaching/DLD/slides/lec-1.pdf http://www.iare.ac.in 						
E-Text Boo	ks :					
 https://drive.google.com/file/d/0B4ChICvNGHIfN2NmODE1NjAtZWI5Zi00MmU0LWIyMmQtOT U3ZGUyMzAwODc1/view https://accessengineeringlibrary.com/browse/digital-logic-design-and-computer-organization-with- computer-architecture-for-security http://www.ece.rutgers.edu/~marsic/Teaching/DLD/syllabus.html 						
Course Hor	ne Page:					