ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

IV Semester: ECE								
Course Code	Category	Hours / Week		Credits	Maximum Marks			
AEC007	Foundation	L 3	T	P -	<u>С</u> 4	CIA 30	SEE 70	Total 100
Contact Classes: 45	Tutorial Classes: 15	Practical Classe			s: Nil	Total Classes: 60		: 60

I. COURSE OVERVIEW:

This course gives the necessary information about the formation of magnetic fields when electric current flows and structures to conduct electromagnetic waves. It covers the fundamental concepts of electro-magnetic wave theory and introduces the basic laws of electromagnetic fields, time varying Maxwell's equations, wave propagation and transmission lines. It provides a platform for advanced courses such as antennas and wave propagation, microwave engineering, transmission via wired links, radio channels and optical fiber networks.

II. OBJECTIVES:

The course should enable the students to:

- I The basic concepts required to understand various engineering applications involving electromagnetic fields.
- II The wave propagation characteristics of electromagnetic wave in bounded and unbounded media.
- III The basic theory of transmission lines, appropriate tools (smith chart) to analyzetransmission lines.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO 1 **Describe** fundamental laws (Coulomb's and Gauss's) of electrostatic fields to Understand evaluate the field intensity and flux density of continuous charge distributions.
- CO 2 **Demonstrate** Biot-Savart's law and Ampere's circuit law to determine forces Understand due to magnetic fields.
- CO 3 Apply Maxwell's equations and their applications to time varying fields and Apply boundary conditions.
- CO 4 **Construct** the wave equations for both conducting and dielectric media to derive Apply the relation between electric and magnetic field intensities.
- CO 5 **Understand** the propagation of electromagnetic waves through different media using Understand the concept of uniform plane waves.
- CO 6 Make use of the smith chart as a graphical tool to solve impedance matching Apply issues in transmission lines.

IV. SYLLABUS:

UNIT-I	ELECTROSTATICS	Classes: 10	
density, Gau and dielect homogeneou Poisson's ar	Electrostatics: Coulomb's law, electric field intensity, fields due to different charge distributions; Electric flu density, Gauss law and its applications; Scalar electric potential; Energy density, illustrative problems; Conductor and dielectrics-characterization; Convection and conduction currents; Dielectric constant, isotropic an homogeneous dielectrics; Continuity equation and relaxation time, conductivity, power absorbed in conductor Poisson's and Laplace's equations; Capacitance: Parallel plate, co axial, spherical capacitors; Method of images Illustrative problems.		
UNIT-II	MAGNETOSTATICS	Classes: 10	
Magneto statics: Biot-savart law; Ampere's circuital law and applications; Magnetic flux density; Magnetic scalar and vector potentials; Forces due to magnetic fields; Ampere's force law; Boundary conditions: Dielectric-			

and vector potentials; Forces due to magnetic fields; Ampere's force law; Boundary conditions: Dielectricdielectric, dielectric conductor interfaces; Inductances and magnetic energy; Illustrative problems; Maxwell's equations (Time varying fields): Faraday's law; Inconsistency of ampere's law for time varying fields and definition for displacement current density; Maxwell's equations in differential form, integral form and word Statements.

Uniform n	UNIFORM PLANE WAVES	Classes: 08
-	ane waves: Wave equations for conducting and perfect dielectric media; Relation bet agation in lossless and conducting media;; Loss tangent, Intrinsic impedance; Skin dep problems.	
oblique ir	refraction of plane waves: Reflection and refraction at normal incidence, reflection a cidence; Standing waves; Brewster angle, critical angle, total internal reflection, surfactor and poynting theorem-applications; Power loss in plane conductor; Illustrative probl	face impedance;
UNIT-IV	TRANSMISSION LINE CHARACTERISTICS	Classes: 09
impedance, transmissio	on line characteristics: Types; Transmission line parameters; Transmission line equations propagation constant; Phase and group velocities; Infinite line concepts, Loss 1 n line characterization; condition for distortion less and minimum attenuation in transpess of loading; Illustrative problems.	ess /low loss
UNIT-V	UHF TRANSMISSION LINES AND APPLICATIONS	Classes: 08
VSWR; UI	mission lines and applications: Input impedance relations; SC and OC lines; Reflect IF lines as circuit elements, $\lambda/4$, $\lambda/2$ and $\lambda/8$ lines, impedance transformations, significal chart: Configuration and applications; Single and double stub matching; Illustrative prob	ance of Z_{min} and
Text Book	s:	
2. E.C. Joi	v N.O. Sadiku, "Elements of Electromagnetic", Oxford University Press, 4 th Edition, 200 dan, K.G. Balmain, "Electromagnetic waves and Radiating Systems", PHI learning, 2 nd E Sinha, Satya Prakashan, "Transmission lines and Networks", Tech India Publications, 1 st	Edition, 2000.
		,
Reference	Books:	,
 Nathan William G. Sash 	Ida, "Engineering Electromagnetic", Springer (India) Pvt. Ltd, 2 nd Edition, 2005 H. Hayt Jr., John A. Buck, "Engineering electromagnetic", Tata McGraw Hill, 7 th Editio ibushana Rao, "Electromagnetic Field theory and Transmission Lines, Wiley India, 2013.	n, 2006.
 Nathan William G. Sash 	Ida, "Engineering Electromagnetic", Springer (India) Pvt. Ltd, 2 nd Edition, 2005 H. Hayt Jr., John A. Buck, "Engineering electromagnetic", Tata McGraw Hill, 7 th Editio ibushana Rao, "Electromagnetic Field theory and Transmission Lines, Wiley India, 2013. Ryder, "Networks, Lines and Fields", PHI learning, 2 nd Edition, 1999.	n, 2006.
 Nathan William G. Sash John D. Web Refer http:// w http:// w http:// w http:// w http:// w 	Ida, "Engineering Electromagnetic", Springer (India) Pvt. Ltd, 2 nd Edition, 2005 h. H. Hayt Jr., John A. Buck, "Engineering electromagnetic", Tata McGraw Hill, 7 th Editio ibushana Rao, "Electromagnetic Field theory and Transmission Lines, Wiley India, 2013. Ryder, "Networks, Lines and Fields", PHI learning, 2 nd Edition, 1999. ences: //eb.stanford.edu/class ww.electronicagroup.com ww.cpri.in/about-us/departmentsunits/library-and-information-centre/digital-library-links otel.ac.in/courses/antennas	n, 2006.
 Nathan William G. Sash John D. Web Refer http:// w http:// w http:// w http:// w http:// w 	Ida, "Engineering Electromagnetic", Springer (India) Pvt. Ltd, 2 nd Edition, 2005 ¹ H. Hayt Jr., John A. Buck, "Engineering electromagnetic", Tata McGraw Hill, 7 th Editio ibushana Rao, "Electromagnetic Field theory and Transmission Lines, Wiley India, 2013. Ryder, "Networks, Lines and Fields", PHI learning, 2 nd Edition, 1999. ences: ² / ² /	n, 2006.