ELECTRONIC CIRCUIT AND PULSE CIRCUITS LABORATORY

IV Semester: ECE										
Course Code	Category	Hours /Week			Credits	Maximum Marks				
AEC102	Core	L	T	P	C	CIA	SEE	Total		
		_	-	3	2	30	70	100		
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 36 Total Classes: 36								

I. COURSE OVERVIEW:

The objective of this course is to meet the requirements of practical work meant for circuit designing, analysis and provides hands-on experience by examining the pulse circuits and measuring instru- ments. This lab covers the analysis of the linear, non-linear wave shaping circuits, oscillators and multivibrators. Students will proficiency with the capability to use simulation tools for performing analysis of various amplifier circuits, wave shaping circuits and multivibrator applications.

II. OBJECTIVES:

The course should enable the students to:

- I The basic amplifier circuits using common emitter and common baseconfigurations.
- II The multivibrator circuits using transistors for real time applications.
- III The principle of oscillation and design of oscillators.
- IV The response of linear and non linear wave shaping circuits for sinusoidal, pulseand ramp inputs.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO 1 Analyze the single stage and multistage Bipolar Junction Transistor (BJT) Analyze amplifiers for determining the voltage gain andbandwidth.
- CO 2 **Build** linear and non-linear wave shaping circuits to obtain the response for sine and Apply square wave inputs.
- CO 3 Analyze Make use of voltage series and current shunt feedback amplifier circuits for Analyze determining amplifier characteristics.
- CO 4 Apply the barkhausen criteria to oscillators for generating sinewave. Apply
- CO 5 **Examine** Identify the suitable multivibrator to generate non-sinusoidal waveforms for Apply real time applications.
- CO 6 **Examine** the frequency response of class-A power amplifiers and single tuned voltage Analyze amplifier circuits using Bipolar Junction Transistor (BJT).

IV. SYLLABUS:

LIST OF EXPERIMENTS

WEEK-1 BASIC AMPLIFIERS/ LINEAR WAVESHAPING

- a. Simulate frequency response of common emitter amplifier and common base amplifier.
- b. Design RC low pass and high pass circuit for different time constants.

WEEK -2 BASIC AMPLIFIERS/ LINEAR WAVESHAPING

- a. Design RC low pass and high pass circuit for different time constants
- b. Simulate frequency response of common emitter amplifier and common base amplifier.

WEEK -3 TWO STAGE RC COUPLED AMPLIFIER/ NON-LINEAR WAVESHAPING				
a. Simulate frequency response of two stage RC coupled amplifier.b. Design transfer characteristics of clippers and clampers				
WEEK - 4 TWO STAGE RC COUPLED AMPLIFIER/ NON-LINEAR WAVESHAPING				
a. Design transfer characteristics of clippers and clampers.b. Simulate frequency response of two stage RC coupled amplifier.				
WEEK -5 SINGLE TUNED AMPLIFIERS/ TRANSISTOR AS A SWITCH				
a. Simulate a single tuned amplifier.b. Design of transistor as a switch.				
WEEK-6 SINGLE TUNED AMPLIFIERS/ TRANSISTOR AS A SWITCH				
a. Design of transistor as a switch.b. Simulate a single tuned amplifier.				
WEEK -7 FEEDBACK AMPLIFIERS/ COMPARATOR				
a. Simulate voltage series feedback amplifier and current shunt feedback amplifier.b. Design of comparator circuit.				
WEEK -8 FEEDBACK AMPLIFIERS/ COMPARATOR				
a. Design of comparator circuit.b. Simulate voltage series feedback amplifier and current shunt feedback amplifier				
WEEK -9 RC PHASE SHIFT OSCILLATOR USING TRANSISTOR/ MULTIVIBRATORS				
a. Simulate sine wave generated for a particular frequency by an RC phase shift oscillator.b. Design different types of multivibrators and plot its waveforms.				
WEEK 10 RC PHASE SHIFT OSCILLATOR USING TRANSISTOR/ MULTIVIBRATORS				
a. Design different types of multivibrators and plot its waveforms.b. Simulate sine wave generated for a particular frequency by an RC phase shift oscillator.				
WEEK 11 OSCILLATORS/ SCHMIT TRIGGER				
a. Simulate sine wave generated for a particular frequency by Colpitts and Hartley oscillator.b. Design a Schmitt trigger circuit.				
WEEK12 OSCILLATORS/ SCHMIT TRIGGER				
a. Design a Schmitt trigger circuit.b. Simulate sine wave generated for a particular frequency by Colpitts and Hartley oscillator.				
WEEK13 POWER AMPLIFIERS/ UJT AS A RELAXATION OSCILLATOR				
a. Simulate class A power amplifier (transformer less) and class B power amplifier.b. Design of UJT as a relaxation oscillator.				
WEEK14 POWER AMPLIFIERS/ UJT AS A RELAXATION OSCILLATOR				
a. Design of UJT as a relaxation oscillator.				

b. Simulate class A power amplifier (transformer less) and class B power amplifier.

Reference Books:

- 1. Jacob Millman, Herbert Taub, Mothiki S. PrakashRao, "Pulse Digital and Switching Waveforms", Tata McGraw-Hill, 3rd Edition, 2008.
- 2. David A. Bell, "Solid State Pulse Circuits", PHI, 4th Edition, 2002.
- 3. J. Millman, C. C. Halkias, "Integrated Electronics", Tata McGraw-Hill. 1st Edition, 2008.
- 4. B. P. Singh, Rekha Singh, "Electronic Devices and Circuits", Pearson, 1st Edition, 2006.
- 5. Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw-Hill, 1st Edition, 2002.

Web References:

1. http://www.tedpavlic.com/teaching/osu/ece327/

Course Home Page:

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 36 STUDENTS

HARDWARE: Desktop Computer Systems 18 nos

SOFTWARE: NI Multisim

LIST OF EQUIPMENT REQUIRED FOR A BATCH OF 36 STUDENTS

S. No	Name of the Equipment	Range				
1	Dual Dc Regulated Power Supply	0-30V DC				
2	Cathode Ray Oscilloscope	0-20 MHz				
3	Function Generator	0-10 MHz				
4	Semiconductor Kits	0-15 V				
5	Resistors	100Ω,150 Ω,820 Ω,1k Ω,1.5k Ω 2.2k Ω,10k Ω,22k Ω,47k Ω				
6	Capacitors	0.1μF,0.001μF,0.022μF,0.0022μF 0.0033μF,100pF,1000μF,22μF				
7	Diode	1N4007,4148				
8	UJT	2N2646				
9	Transistors	BC107,2N2222				
10	Inductors	1mH,5mH				
12	Probes/ Connecting wires					