APPLIED THERMODYNAMICS - II

V Semester: ME								
Course Code	Category	Hours / Week		Credits	Maximum Marks			
AMEB18	Core	L	Т	P	С	CIA	SEE	Total
		2	1	-	3	30	70	100
Contact Classes: 30	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 45		

I. COURSE OVERVIEW:

Thermal Engineering is the applications of thermodynamics. The objective of the course is to introduce the mechanical engineering students an understanding of the performance of Rankine cycle, parameters to improve the performance like reheating, regenerating and also Gas turbines and rocket engines and their performance. The knowledge of thermal engineering helps us in improving and designing the various parts of machine elements. The course content is designed in such a way that efficiencies of different turbines could be achieved by the calculation of different empirical values.

II. OBJECTIVES:

The course should enable the students to:

- I. Apply the concepts of basic thermodynamics to analyses the performance parameters of steam Gas power cycles.
- II. Contrast between various steam generator operating principles to evaluate best possible devices for specific application.
- III. Analyze various thermal systems to create futuristic designs.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Explain the thermodynamic processes, working and analyses of combustion, vapor and gas power cycles for producing electrical and mechanical power.	Understand
CO 2	Apply the basic thermodynamic, stoichiometric and fluid dynamics laws for detailed analyses of vapor and gas power cycles thermal turbomachinery combustion and rocket propulsion.	Apply
CO 3	Illustrate the schematic and technical diagrams for the representation of vapor and gas power cycles related to by understanding appropriate parametric assumptions and limitations.	Understand
CO 4	Identify and obtain values of performance parameters of chemical rocket engine and relationship between them based on rocket thrust equations related to different practical scenarios.	Analyze
CO 5	Categorize different configurations and modified methods of vapor and gas power cycles for enhancement of the performance during the production of electrical/mechanical power	Analyze
CO 6	Describe the principles of operation, classification, working, accessories and mountings of various steam generators and condensers.	Understand
CO 7	Illustrate the schematic diagrams of various steam generators and condensers for depicting and visualizing the flow of the working fluids.	Understand
CO 8	Interpret various concepts, principles of operation, theories and phenomena related to the thermal turbomachinery and nozzles.	Understand
CO 9	Illustrate the velocity diagrams for the representation of various blade configurations in the designing and solution process of practical turbomachinery problems.	Understand
CO 10	Discuss the methodologies, variations in the configurations of thermal gas turbomachinery and rocket propulsion based on theavailability of resources.	Understand

vapo	nine several properties and parameters across various stages of the r and gas power cycles related to different practical scenarios of thermal machinery and rocket propulsion.	Apply			
IV. SYLLABU	S:				
MODULE-I	BASIC CONCEPTS OF RANKINE CYCLE and FUELS & COMBUSTION	Classes : 09			
improve cycle j	hematic layout, thermodynamic analysis, concept of mean temperature of heat add performance, regeneration and reheating. Combustion: fuels and combustion, chiometry, exhaust gas analysis.				
MODULE-II	BOILERS AND STEAM NOZZLES	Classes : 09			
Basics of compre normal shocks-ic	cation, working principles with sketches, boilers mountings and accessories, wo essible flow, Isentropic flow of a perfect gas through nozzle, subsonic, supersonic leal gas tables for isentropic and normal shock flow, flow of steam and refrigerant analysis of nozzle.	and choked flow-			
MODULE-III	STEAM TURBINES AND CONDENSERS	Classes: 09			
	Classification, Impulse turbine-velocity diagrams, pressure and velocity compo of operation, thermodynamic analysis of a stage, degree of reaction, velocity diag	0			
Steam Condense different types.	rs: Requirements of steam condensing plant, classification of condensers, wor	king principle of			
MODULE-IV	GAS TURBINES	Classes: 09			
regeneration, int	nple gas turbine plant, ideal cycle, essential components, parameters of performa er cooling and reheating, closed and Semi-closed cycles, merits and demerits, abers of gas turbine plant.				
MODULE-V	JET POPULSION AND ROCKETS	Classes : 09			
Jet propulsion: Principle of operation, classification of jet propulsive engines, working Principles with schematic diagrams and representation on T-S diagram, thrust, thrust power and propulsion efficiency, turbo jet engines, needs and demands met by turbo jet, schematic diagram, thermodynamic cycle, performance evaluation; Rockets: Application, working Principle, classification, propellant type, thrust, propulsive efficiency, specific impulse, solid and liquid propellant rocket engines.					
V. Text Books:					
	'Thermal Engineering'', Lakshmi Publications, 8 th Edition, 2015. Gas turbines'', Tata McGraw-Hill, 3 rd Edition, 2010.				
VI. Reference B	ooks:				
2. Ballaney, "The	P Dubey, "Gas Turbines and Propulsive systems", Dhanpat Rai Publishers., 1 st Edermal Engineering", Khanna Publishers, 1 st Edition, 2012.	lition, 2012.			

R. Yadav, "Thermodynamics and Heat Engines", Central Book Depot, 1st Edition, 2002.
P.K Nag, "Engineering Thermodynamics", Tata McGraw-Hill publishing Co. Ltd.

VII. Web References:

http://www.newworldencyclopedia.org/entry/Internal_combustion_engine
http://www.livescience.com/50776-thermalengineering.html

VIII. E-Text Book:

1. http://www.ebookdownloadz.net/2014/08/ Thermal engineering -by-R.K Rajput.html