EMBEDDED SYSTEMS DESIGN

I Semester: ES								
Course code	Category	Hours / Week			Credits	Maximum Marks		
		L	Т	Р	С	CIA	SEE	Total
BESB01	Core	3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil			Total C	Classes: 4	15	

I. COURSE OVERVIEW:

This course is allows the students to learn the fundamentals of embedded system hardware and firmware design. It focuses on basics of embedded systems, embedded firmware design approaches, development languages and system design. The knowledge acquired from this course will enable the students to implement embedded hardware projects and models for engineering and scientific applications.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. The difference between embedded systems and general purpose systems.
- II. The hardware designs of custom single-purpose processors.
- III. How to compare different approaches in optimizing general-purpose processors.
- IV. The different peripheral interfaces to embedded systems.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO1	Demonstrate the concepts of embedded systems and formalisms for	Understand
	System design	
CO2	Apply the suitable memory technology and other components fordifferent	Apply
	applications to meet the ever growing needs of the embedded applications.	
CO3	Choose the fundamental components that make up an embedded board	Apply
	to implement an Instruction Set Architecture's features in a processor	
CO4	Categorize the embedded firmware design approaches and	Analyze
	development languages used for programming embedded devices.	5
CO5	Make use of the memory hierarchy to minimize the access time in	Apply
	embedded architecture design.	11 2
CO6	Identify the hardware software co- design issues pertaining to design of	Apply
	an embedded system using low power microcontrollers.	11 2

IV. SYLLABUS:

UNIT-I INTRODUCTION TO EMBEDDED SYSTEMS

Classes: 09

Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.

UNIT-II TYPICAL EMBEDDED SYSTEM

Classes: 09

Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

UNIT-III EMBEDDED FIRMWARE	Classes: 09					
Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer,						
Embedded Firmware Design Approaches and Development Languages.						
UNIT-IV RTOS BASED EMBEDDED SYSTEM DESIGN						
Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.						
UNIT-V TASK COMMUNICATION						
Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.						
Text Books:						
1. Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley Publications, 3 rd Edition, 20	06.					
Reference Books:						
 Raj Kamal, "Embedded Systems", TMH, 2nd Edition, 2008. Shibu K.V, "Introduction to Embedded Systems, McGraw Hill, 3rd Edition, 2012. Lu "Enclosed and Statem", Proceedings, 2nd Edition, 2012. 						
3. Lyla, "Embedded Systems", Pearson Education, 2 ⁴⁴ Edition, 2013.						

MICROCONTROLLERS AND PROGRAMMABLE DIGITAL SIGNAL PROCESSING

I Semester: ES								
Course code	Category	Hours / Week			Credits	Maximum Marks		
BESB02	Core	L	Т	Р	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil			es: Nil	Т	otal Clas	ses: 45

I. COURSE OVERVIEW:

This course is intended to provide fundamentals of ARM Cortex-M3 Processor and LPC 17XX Micro- controller architectures and their features. It includes the architectures of the Cortex-M3, instruction set summary, Programmable DSP processor. It is used in the applications of microcontrollers pro- gramming models and programmable digital signal processors.

II. COURSE OBJECTIVES:

The students will try to learn:

- I. Compare and select ARM processor core based SoC with several features/peripherals based on requirements of embedded applications.
- II. Identify and characterize architecture of Programmable DSP Processors
- III. Develop small applications by utilizing the ARM processor core and DSP processor based platform.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Illustrate the Internal architecture and memory operations of ARM Cortex M3 processor for interfacing microprocessor applications			
CO 2	Analyze Exceptions handler mechanism to minimize interrupt latency using Nested Vectored Interrupt Controller	Analyze		
CO 3	Construct the high level of integration in embedded applications using LPC 17XX Microcontroller	Apply		
CO 4	Demonstrate various computational building blocks of programmable DSP architectures using interfacing of memory and I/O peripherals	Understand		
CO 5	Identify the CPU architecture, peripherals, and development tools for the TMS320C6000 digital signal processors	Apply		
CO 6	Develop the application for digital signal processing using code composer studio tool	Apply		

IV. SYLLABUS:

UNIT-I ARM CORTEX-M3 PROCESSOR

Classes: 09

ARM Cortex-M3 processor: Applications, Programming model – Registers, Operation modes, Exceptions and Interrupts, Reset Sequence Instruction Set, Unified Assembler Language, Memory Maps, Memory Access Attributes, Permissions, Bit-Band Operations, Unaligned and Exclusive Transfers. Pipeline, Bus Interfaces.

UNIT-II EXCEPTIONS AND INTERRUPT

Classes: 09

Exceptions, Types, Priority, Vector Tables, Interrupt Inputs and Pending behaviour, Fault Exceptions, Supervisor and Pendable Service Call, Nested Vectored Interrupt Controller, Basic Configuration, SYSTICK Timer, Interrupt Sequences, Exits, Tail Chaining, Interrupt Latency.