INTERNET OF THINGS LABORATORY

I	S	em	es	te	r:	ES

Course Code	Category	Hours / Week		Credits	Maximum Marks			
BESB20	Core	L	T	P	C	CIA	SEE	Total
DESD20		-	-	4	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	(il Practical Classes: 30		36	Total Classes: 36			

I. COURSE OVERVIEW:

This course outlines the design and implementation of embedded systems using suitable hardware(ARM and PSOC) and Keil Embedded C software tools. The instruction set, Embedded C programming for I/O and memory interfacing techniques are covered. The hands-on experience acquired by the stu- dent's during the course makes them to carry out processor/controller based projects and extend their knowledge on the latest trends and technologies in the field of embedded system.

II. COUSRE OBJECTIVES:

The students will try to learn:

- I. The IoT using Arduino programming
- II. The interfacing of data I/O devices with Arduino.
- III. The design steps using Rasberry Pi.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO1	Understand the concept of Internet of Things for implementation of digital measuring devices	Understand	
CO2	Develop the Arduino programming for controlling lightning appliances.	Apply	
CO3	Analyze the characteristics of bluetooth modules for controlling the performance of appliances.	Analyze	
CO4	Make use of direct and alternating type of electrical instruments using arduino	Analyze	
CO5	Categorize the protection schemes of induction motor against over current and under voltage.	Analyze	
CO6	Build a relay model for protection of home appliances from over and under voltages.	Apply	

LIST OF EXPERIMENTS

Week-1 IOT WITH ARDUINO PROGRAMMING

Introduction to Internet of Things (IoT) using Arduino programming

Week-2 CONROLLING RGB LED

Programming for Controlling RGB LED using Arduino and Wi-Fi Module

Week-3 IOT TO CONTROL REMOTE LED

Programming for Internet of things with Android and Arduino. Build an Arduino IoT to control a remote LED

Week-4 INTERFACING BLUETOOTH MODULE

Programming for how to interface HC-05 Bluetooth Module with Arduino UNO for various application

Week-5 INTERFACING TO TEMPERATURE SENSOR

Programming to Interface Tempaetaure sensor and Monitoring using IoT with Arduino Uno and display digital value on LCD.

Week-6 INTERFCAING IR SENSOR

Programming to Interface IR sensors and Blue tooth for detecting obstacle using Arduino with android Application.

Week-7 TRACK LOCATION

Programming for Node MCU for track location without using GPS module

Week-8 SEND DATA FROM ARDUINO TO WEB PAGE

Programming for how to send data from Arduino to Webpage using Wi-Fi module

Week-9 IOT WITH RASBERRY PI

Introduction to Internet of things (IoT) by using a Raspberry Pi to connect devices.

Week-10 SETUP WI-FI ON RASBERRY PI USING USB

Programming for how to Setup Wi-Fi on Raspberry Pi 2 using USB Dongle

Week-11 INTERFACE TO MOTION SENSOR

Programming to interface a motion sensor to use GPIO pins with a Raspberry Pi.

Week-12 INTERFACE TO GAS SENSOR

Programming to interface Gas sensor for detection and monitoring using Arduino and IoT

Reference Books:

- 1. Mark torvalds, "Arduino Programming: Step-by-step guide to mastering arduino hardware and software (Arduino, Arduino projects, Arduino uno, Arduino starter kit, Arduino ide, Arduino yun, Arduino mega, Arduino nano) Kindle Edition
- 2. Michael J. Pont, "Embedded C", Pearson Education, 2nd Edition, 2008.

SOFTWARE AND HARDWARE REQUIREMENTS FOR 18 STUDENTS

SOFTWARE:

System Software: Microsoft windows/ Linux Programming Languages: Python and Embedded C.

HARDWARE:

18 numbers of Intel Desktop Computers with 2 GB RAM

Dot matrix Printers: 02