CLOUD COMPUTING

VII Semester: IT								
Course Code	Category	Hours / Week Credits			Maximum Marks			
AITB15	Core	L	T	P	С	CIE	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil				To	tal Class	es: 45

I. COURSE OVERVIEW:

Cloud Computing is a large-scale distributed computing paradigm which has become a driving force for information technology over the past several years. The exponential growth data size in scientific instrumentation/simulation and social media has triggered the wider use of cloud computing services. We will explore solutions and learn design principles for building large network-based systems to support both compute and data intensive computing across geographically distributed infrastructure

II. OBJECTIVES:

The course should enable the students to:

- I. Provide students a sound foundation of the Cloud Computing so that they are able to start using and adopting Cloud Computing services and tools in their real-life scenarios.
- II. Enable students exploring some important cloud computing driven commercial systems such as Google Apps, Microsoft Azure and Amazon Web Services and other businesses cloud applications.
- III. Expose the students to frontier areas of Cloud Computing and information systems, while providing sufficient foundations to enable further study and research.
- IV. Understand the importance of virtualization in distributed computing and how this has enabled the development of Cloud Computing.

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

After successful completion of the course, students should be able to:				
CO 1	Outline the concept of cloud computing, its evolution for on-demand network access to a shared pool of configurable computing resources over the internet	Understand		
CO 2	Explain distributed and cloud computing system models using Multi-core CPUs and Multithreading Technologies to handle diversifiedtasks in Network based Systems	Understand		
CO 3	Illustrate the benefits and drawbacks of cloud software environments for distributed systems that help multiple computers to host different software components to accomplish a common goal	Understand		
CO 4	List the cloud security providers and their impact for obtaining power requirements of high-performance computing (HPC)/ high density applications	Remember		
CO 5	Outline the architectural design for running applications, storingdata, files and performing backups of compute and storage clouds	Understand		
CO 6	Relate the various layers in the cloud building blocks for differentiating cloud service models which satisfy a unique set ofindustry requirements	Analyze		
CO 7	Distinguish various threats and techniques used in cloud security for accurate access control between cloud providers and their customers	Understand		

CO 8	Illustrate the reasons for full virtualization and para virtualization	Understand
	techniques used in CPUs to enhance resource sharing and improve	
	computer performance	

- CO 9 Compare classical OS virtual memory and system memory Analyze virtualization for CPU and I/O devices communication and management
- CO 10 **Identify** the need for policies, mechanisms and techniques for automation, orchestration of resources and key scheduling in a cloud.
- CO 11 **Explain** the fundamental aspects of parallel and distributed Understand programming models for implementing Inter-Process Communication in Cloud and Grid platforms
- CO 12 Compare Amazon AWS, MS Azure and Google cloud used in programming large clusters of servers that store many terabytes and petabytes of information
- CO 13 Analyze different cloud programming models to obtain solutions for Apply cloud problems such as storage and design to meet exact needs.

IV.SYLLABUS:

MODULE-I SYSTEM MODELING, CLUSTERING AND VIRTUALIZATION

Classes:09

Scalable computing over the Internet, Technologies for network-based systems, System models for distributed and cloud computing, Software environments for distributed systems and clouds, Performance, security and energy efficiency.

MODULE-II VIRTUAL MACHINES AND VIRTUALIZATION OF CLUSTERS AND DATA CENTERS

Implementation levels of virtualization, Virtualization tools, structures and mechanisms, Virtualization of CPU, Memory and I/O devices, Virtual clusters and resource management, Virtualization for data center automation.

MODULE-III CLOUD PLATFORM ARCHITECTURE

Classes: 09

Classes: 09

Cloud computing and service models, Architectural design of compute and storage clouds, Public cloud platforms, Inter-cloud resource management.

Cloud security and trust management, Service Oriented Architecture (SOA), Message-oriented middleware architecture.

MODULE-IV | CLOUD PROGRAMMING AND SOFTWARE ENVIRONMENTS | Classes: 09

Features of Cloud and grid platforms, Parallel and distributed programming paradigms, Programming support of Google App Engine, Programming on Amazon AWS and MS Azure, Emerging cloud software environments.

MODULE-V CLOUD RESOURCE MANAGEMENT AND SCHEDULING Classes: 09

Policies and mechanisms for resource management applications of control theory to task scheduling in a cloud, Stability of a two-level resource allocation architecture, Feedback controls based on dynamic thresholds, Coordination of specialized autonomic performance managers, Resource Bundling.

V. Textbooks:

- 1. Rajkumar Buyya, James Broberg and Andrzej, M.Goscinski, "Cloud computing: Principles and Paradigms" Wiley, 2011.
- 2. Kai Hwang, Geofferyu C.Fox, Jack J.dongarra, "Distributed and Cloud Computing", Elsevier, 2012.

- 3. Dan Marinescu, "Cloud Computing Theory and Practice", Elsevier, 3rd Edition, 2012.
- 4. Arshadeep Bagra and Vijay Madisetti, "Cloud Computing, A Hands-On Approach", University Press, 3rd Edition, 2012.

VI. Reference Books:

- 1. Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, "Cloud Computing: A Practical Approach", Tata McGraw Hill, 2011.
- 2. Gautam Shroff, "Enterprise Cloud Computing", Cambridge University Press, 2010.
- 3. John W .Ritting house ,James F. Ransom, "Cloud Computing: Implementation, Management and Security" CRC press, 2012.
- 4. George Reese, "Cloud Applications Architectures: Building Applications and Infrastructure in the Cloud", O Reilly, SPD, 2011.
- 5. im Mather, Subra Kumaraswamy, Shahed Latif, Oreilly, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance", SPD, 2011.

VII. Web References:

- 1. http://searchcloudcomputing.techtarget.com/definition/cloud-computing.
- 2. http://in.pcmag.com/networking-communications-software/38970/feature/what-is-cloud-computing.

VIII. E-Text Books:

- 1. http://www.pds.ewi.tudelft.nl/, http://csrc.nist.gov/publications/nistpubs.
- 2. http://cloudipedia.com/wp-content/uploads/2009/11/cloud computing made easy.pdf.

IX. MOOC Course:

- 1. http://www.edx.org/course/introduction-cloud-computing-ieeex-cloudintro-x-1
- 2. http://www.coursera.org/specialization/cloud-computing