CLOUD COMPUTING

VII Semester: IT								
Course Code	Category	Hours / Week Credits Maximum Mark			n Marks			
AITB15	Core	L	Т	Р	С	CIE	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil				Total Classes: 45		

I. COURSE OVERVIEW:

Cloud Computing is a large-scale distributed computing paradigm which has become a driving force for information technology over the past several years. The exponential growth data size in scientific instrumentation/simulation and social media has triggered the wider use of cloud computing services. We will explore solutions and learn design principles for building large network-based systems to support both compute and data intensive computing across geographically distributed infrastructure

II. OBJECTIVES:

The course should enable the students to:

- I. Provide students a sound foundation of the Cloud Computing so that they are able to start using and adopting Cloud Computing services and tools in their real-life scenarios.
- II. Enable students exploring some important cloud computing driven commercial systems such as Google Apps, Microsoft Azure and Amazon Web Services and other businesses cloud applications.
- III. Expose the students to frontier areas of Cloud Computing and information systems, while providing sufficient foundations to enable further study and research.
- IV. Understand the importance of virtualization in distributed computing and how this has enabled the development of Cloud Computing.

COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Outline the concept of cloud computing, its evolution for on-demand network access to a shared pool of configurable computing resources over the internet	Understand
CO 2	Explain distributed and cloud computing system models using Multi-core CPUs and Multithreading Technologies to handle diversifiedtasks in Network based Systems	Understand
CO 3	Illustrate the benefits and drawbacks of cloud software environments for distributed systems that help multiple computers to host different software components to accomplish a common goal	Understand
CO 4	List the cloud security providers and their impact for obtaining power requirements of high-performance computing (HPC)/ high density applications	Remember
CO 5	Outline the architectural design for running applications, storing data, files and performing backups of compute and storage clouds	Understand
CO 6	Relate the various layers in the cloud building blocks for differentiating cloud service models which satisfy a unique set of industry requirements	Analyze
CO 7	Distinguish various threats and techniques used in cloud security for accurate access control between cloud providers and their customers	Understand

tec	Illustrate the reasons for full virtualization and para virtualization Understand techniques used in CPUs to enhance resource sharing and improve						
CO 9 Co vir	computer performance Compare classical OS virtual memory and system memory Analyze virtualization for CPU and I/O devices communication and management						
CO 10 Ide	CO 10 Identify the need for policies, mechanisms and techniques for automation, Apply orchestration of resources and key scheduling in a cloud.						
pro	programming models for implementing Inter-Process Communication						
in Cloud and Grid platforms CO 12 Compare Amazon AWS, MS Azure and Google cloud used in Evaluate programming large clusters of servers that store many terabytes and							
CO 13 Analyze different cloud programming models to obtain solutions for Apply cloud problems such as storage and design to meet exact needs.							
IV.SYLLABUS	:						
MODULE-I	SYSTEM MODELING, CLUSTERING AND VIRTUALIZATION	Classes:09					
Scalable computing over the Internet, Technologies for network-based systems, System models for distributed and cloud computing, Software environments for distributed systems and clouds, Performance, security and energy efficiency.							
MODULE-II	VIPTUAL MACHINES AND VIPTUAL IZATION OF CLUSTEDS						
Implementation levels of virtualization, Virtualization tools, structures and mechanisms, Virtualization of CPU, Memory and I/O devices, Virtual clusters and resource management, Virtualization for data center automation.							
MODULE-III	CLOUD PLATFORM ARCHITECTURE	Classes: 09					
	g and service models, Architectural design of compute and storage cloud cloud resource management.	s, Public cloud					
Cloud security a architecture.	and trust management, Service Oriented Architecture (SOA), Message-orien	ted middleware					
MODULE-IV	CLOUD PROGRAMMING AND SOFTWARE ENVIRONMENTS	Classes: 09					
Features of Cloud and grid platforms, Parallel and distributed programming paradigms, Programming support of Google App Engine, Programming on Amazon AWS and MS Azure, Emerging cloud software environments.							
MODULE-V	CLOUD RESOURCE MANAGEMENT AND SCHEDULING	Classes: 09					
Policies and mechanisms for resource management applications of control theory to task scheduling in a cloud, Stability of a two-level resource allocation architecture, Feedback controls based on dynamic thresholds, Coordination of specialized autonomic performance managers, Resource Bundling.							
V. Textbooks:							
1. Rajkumar Buyya, James Broberg and Andrzej, M.Goscinski, "Cloud computing: Principles and Paradigms" Wiley, 2011.							
2. Kai Hwang,	Geofferyu C.Fox, Jack J.dongarra, "Distributed and Cloud Computing", Els	evier, 2012.					

- 3. Dan Marinescu, "Cloud Computing Theory and Practice", Elsevier, 3rd Edition, 2012.
- 4. Arshadeep Bagra and Vijay Madisetti, "Cloud Computing, A Hands-On Approach", University Press, 3rd Edition, 2012.

VI. Reference Books:

- 1. Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, "Cloud Computing: A Practical Approach", Tata McGraw Hill, 2011.
- 2. Gautam Shroff, "Enterprise Cloud Computing", Cambridge University Press, 2010.
- 3. John W .Ritting house ,James F. Ransom, "Cloud Computing: Implementation, Management and Security" CRC press, 2012.
- 4. George Reese, "Cloud Applications Architectures: Building Applications and Infrastructure in the Cloud", O Reilly, SPD, 2011.
- 5. im Mather, Subra Kumaraswamy, Shahed Latif, Oreilly, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance", SPD, 2011.

VII. Web References:

- 1. http://searchcloudcomputing.techtarget.com/definition/cloud-computing.
- 2. http://in.pcmag.com/networking-communications-software/38970/feature/what-is-cloud-computing.

VIII. E-Text Books:

- 1. http://www.pds.ewi.tudelft.nl/, http://csrc.nist.gov/publications/nistpubs.
- 2. http://cloudipedia.com/wp-content/uploads/2009/11/cloud_computing_made_easy.pdf.

IX. MOOC Course:

- 1. http://www.edx.org/course/introduction-cloud-computing-ieeex-cloudintro-x-1
- 2. http://www.coursera.org/specialization/cloud-computing