
COMPILER DESIGN

V Semester: CSE / IT

Course Code Category Hours / WEEK Credits Maximum Marks

ACSB11 Core
L T P C CIA SEE Total

2 1 - 3 30 70 100

Contact Classes: 30 Tutorial Classes: 15 Practical Classes: Nil Total Classes:45

 I. COURSE OVERVIEW:
This course describes the basic techniques for compiler construction and tools that can be used to perform

syntax-directed translation of a high-level programming language into an executable code. It will provide

deeper insights into the more advanced semantics aspects of programming languages, machine independent

optimizations and code generation.

 II. OBJECTIVES:

 The course should enable the students to:
I The process of translating a high-level language to machine code required for compiler construction.

II The Software tools and techniques used in compiler construction such as lexical analyzer and parser

generators.

III The data structures used in compiler construction such as abstract syntax trees, symbol tables, three-

address code, and stack machines.

IV The deeper insights into the syntax and semantic aspects of programming languages, dynamic

memory allocation and code generation.

 III. COURSE OUTCOMES:
After successful completion of the course, students should be able to:

CO 1 Summarize phases of a compiler in the construction of language processors. Understand

CO 2 Make use of finite automata for designing a lexical analyzer for a specific

programming language constructs.

Apply

CO 3 Choose top down, bottom up parsing methods for developing a parser with

representation of a parse table or tree.

Apply

CO 4 Outline syntax directed translations, intermediate forms for performing semantic

analysis along with code generation.

Understand

CO 5 Relate symbol table, type checking and storage allocation strategies used

in run-time environment.

Understand

CO 6 Select code optimization techniques on intermediate code form for generating target

code.

Apply

 IV. SYLLABUS:

MODULE-I INTRODUCTION TO COMPILERS Classes: 08

Introduction to compilers: Definition of compiler, interpreter and its differences, the phases of a compiler;

Lexical Analysis: Role of lexical analyzer, input buffering, recognition of tokens, finite automata, regular

Expressions, from regular expressions to finite automata, pass and phases of translation, bootstrapping,

LEX-lexical analyzer generator.

MODULE-II SYNTAX ANALYSIS Classes: 09

Syntax Analysis: Parsing, role of parser, context free grammar, derivations, parse trees, ambiguity,

elimination of left recursion, left factoring, eliminating ambiguity from dangling-else grammar; Types of

parsing: Top-down parsing, backtracking, recursive-descent parsing, predictive parsers, LL (1) grammars.

Bottom-up parsing: Definition of bottom-up parsing, handles, handle pruning, stack implementation of

shift-reduce parsing, conflicts during shift-reduce parsing, LR grammars, LR parsers-simple LR, canonical

LR and Look Ahead LR parsers, YACC-automatic parser generator.

MODULE-III
SYNTAX-DIRECTED TRANSLATION AND INTERMEDIATE

CODE GENERATION
Classes: 10

Syntax-Directed Translation: Syntax directed definitions, construction of syntax trees, S-attributed and L-

attributed definitions; Syntax Directed Translation schemes.

Intermediate code generation: Intermediate forms of source programs– abstract syntax tree, polish notation

and three address code, types of three address statements and its implementation, syntax directed

translation into three-address code, translation of simple statements, Boolean expressions and flow-of-

Control statements.

MODULE-IV TYPE CHECKING ANDRUN TIME ENVIRONMENT Classes: 09

Type checking: Definition of type checking, type expressions, type systems, static and dynamic checking

of types, specification of a simple type checker; Run time environments: Source language issues, Storage

organization, storage-allocation strategies, access to nonlocal data on the stack, garbage collection, symbol

tables.

MODULE-V CODE OPTIMIZATION AND CODE GENERATION Classes: 09

Code optimization: The principle sources of optimization, optimization of basic blocks, loops in flow

graphs, peephole optimization; Code Generation: Issues in the Design of a Code Generator, The Target

Language, addressesin the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, A

Simple Code Generator, register allocation and assignment, DAG representation of basic blocks.

 Text Book:

1. Alfred V.Aho, Ravi Sethi, Jeffrey D, Ullman, “Compilers–Principles ,Techniques and Tools”, Pearson
 Education, 2

nd
Edition, 2006.

 Reference Books:

1. Kenneth C.Louden,Thomson, “Compiler Construction–Principles and Practice”, PWS Publishing,
1

st
 Edition, 1997.

2. Andrew W. Appel, “Modern Compiler Implementation C”, Cambridge University Press, Revised

Edition, 2004.

 Web References:

1. www.vssut.ac.in/lecture_notes/lecture1422914957.pdf
2. http://csenote.weebly.com/principles-of-compiler-design.html
3. http://www.faadooengineers.com/threads/32857-Compiler-Design-Notes-full-book-pdf-download

4. https://www.vidyarthiplus.com/vp/thread-37033.html#.WF0PhlMrLDc

 E-Text Books:

1. http://www.e-booksdirectory.com/details.php?ebook=10166
2. http://www.e-booksdirectory.com/details.php?ebook=7400re

http://www.vssut.ac.in/lecture_notes/lecture1422914957.pdf
http://csenote.weebly.com/principles-of-compiler-design.html
http://www.faadooengineers.com/threads/32857-Compiler-Design-Notes-full-book-pdf-download
http://www.vidyarthiplus.com/vp/thread-37033.html#.WF0PhlMrLDc
http://www.e-booksdirectory.com/details.php?ebook=10166
http://www.e-booksdirectory.com/details.php?ebook=7400re

