FLUID MECHANICS AND MACHINES

IV Semester: ME								
Course Code	Category	Hours / Week		Credits	Maximum Marks			
AMEB08	Core	L	Т	Р	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: N			es: Nil	Total Classes: 60		
L COUDSE OVEDVI								

I. COURSE OVERVIEW:

The aim of this course is to introduce basic principles of fluid mechanics and it is further extended to cover the application of fluid mechanics by the inclusion of fluid machinery. Nowadays the principles of fluid mechanics find wide applications in many situations. The course deals with the fluid machinery, like turbines, pumps in general and in power stations. This course also deals with the large variety of fluids such as air, water, steam, etc; however, themajor emphasis is given for the study of water.

II. OBJECTIVES:

The course should enable the students to:

- I. Learn about the application of mass and momentum conservation laws for fluid flows.
- II. Understand the importance of dimensional analysis.
- III. Obtain the velocity and pressure variations in various types of simple flows.
- IV. Analyse the flow in water pumps and turbines.

III. COURSE OUTCOMES (COs):

COs Course Outcome

- CO1 Discuss the basic concepts and methodologies of fluid statics
- CO2 Understand various laws for fluidkinematics and dynamics
- CO3 Understand the concepts of boundary layer theory and closed conduit flow
- CO4 Explore the design, working and performance of turbines
- CO5 Analyse the design, working, performance of pumps and dimensionality laws

IV. SYLLABUS:

MODULE-I	FLUID STATICS	Classes: 09			
Definition of fluid, Newton's law of viscosity, Units and dimensions-Properties of fluids, mass density,					
specific volume, specific gravity, viscosity, compressibility and surface tension, Control volume-					
application of continuity equation and momentum equation, Incompressible flow.					
MODULE-II	FLUID KINEMATICS AND DYNAMICS	Classes: 09			
Fluid Kinematics: Kinematics of fluid flow- Eulerian and Lagrange descriptions, Stream line, path line,					
streak line and stream tube, classification and description of flows for one and three dimensions.					
Fluid Dynamics: Euler's equation of motion, Bernoulli equation for flow along a stream line and					
applications, Measurement of flow.					

MODULE-III	BOUNDARY LAYER CONCEPTS AND CLOSED CONDUIT FLOW	Classes: 09
	dary layer – Definition, characteristics along thin plate, laminar, transit separation of boundary layer, measures of boundary layer thickness.	ion and turbulent
diagram. Exact f	flow: – Darcy Weisbach equation, friction factor, Head loss in pipelow solutions in channels and ducts, Couette and Poisuielle flow, lami and circular annuli.	
MODULE-IV	FLUID MACHINES	Classes: 09
turbines- Pelton	water turbines, heads and efficiencies, velocity triangles- Axial, radia wheel, Francis turbine and Kaplan turbines, working principles – dra ities, performance curves for turbines – governing of turbines.	
MODULE-V	DIMENSIONAL ANALYSIS AND PUMPS	Classes: 09
Pumps: Theory o the rotor, veloc performance curv	nensionless parameters–application of dimensionless parameters, Model f Roto dynamic machines, various efficiencies, velocity components at ity triangles, Centrifugal pumps, working principle, work done ves – Cavitation in pumps- Reciprocating pump–working principle.	t entry and exit of
V. Text Books:		
 H Modi, Seth Edition, 2013 M. White, Fl 	d Mechanics and Hydraulic Machines", S.Chand & Co, 6 th Edition, 199 n, "Hydraulics, Fluid Mechanics and Hydraulic Machinery", Rajsons Pu 3. uid Mechanics, 8th Edition, Tata McGraw Hill, 2016. d S. K. Gupta, Fundamentals of Fluid Mechanics, 4 th Edition, New Ag	blications, 20 th
5. W. L. McCa	be, J. C. Smith and P. Harriot, Unit Operations of Chemical Engineeri International Edition 2005.	ng, 7 th Edition,
	luid Mechanics for Chemical Engineers, Prentice Hall of India, 2005. P. J. Pritchard and A. T. McDonald, Introduction to Fluid Mechanic 2010.	cs, 7 th Edition,
•	E. Wicks, R. E. Wilson, G. Rorrer, Fundamentals of Momentum, I Edition, 2007.	Heat and Mass
VI. Reference B		
2. Dr. R K Ban Edition, 2015		i Publications, 9th
4. R. L. Panton,	n, D. F. Young, T. H. Okiishi and W. W. Huebsch, Wiley-India, 6 th Edit Incompressible Flow, , Wiley-India, 3rd Edition, 2005.	
	W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd Edition	on, wiley- India
VII. Web Refere		
1. https://nptel	ac.in/courses/112105171/	
VIII. E-Book:		
1. https://vscht	.cz/uchi/ped/hydroteplo/materialy/introduction.fluid.mech.pdf	