HEAT TRANSFER LABORATORY

VI Semester: ME								
Course Code	Category		Hours / Week		Credits	Maximum Marks		
AMEB24	Core	L	Т	Р	C	CIA	SEE	Total
		-	-	2	1	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil		Practical Classe		Practical Classes: 24 Total Cla		tal Classes	s: 24

I. COURSE OVERVIEW:

Heat transfer laboratory is intended to enhance the learning experience of the student about the flow of thermal energy due to temperature difference and the subsequent temperature distribution changes. This laboratory focuses on heat transfer modes, boundary conditions, one dimensional steady and unsteady state condition and heat exchangers applied to modern electric and electronic plants require efficient dissipation of thermal losses. Students are expected to gain experience in hands on training aswell as knowledge to model heat exchangers, heat treatment of fins and complex mechanical systems.

II. OBJECTIVES:

The courses should enable the students to:

- I The information for validating heat transfer parameters during internal and external flows based on nondimensional numbers and convective mode heattransfer.
- **II** Enhance the performance and analysis of heat exchangers for real-time applications using logarithmic mean temperature difference and number of transferunit methods.
- **III** Compare experimental results with theoretical to improve the design for improving the efficiency of heat transfer rate.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Identify the steps involved with different surfaces and geometries for which the temperature distribution and heat flow rates are calculated for automotive industry componentslike radiators, engine blocks.	Apply
CO 2	Examine the principles associated with convective heat transfer to formulate and calculate the dynamics of temperature field in fluid flow for real time applications.	Analyze
CO 3	Select the appropriate convection equations for solving heattransfer rate in cylinders and spheres.	Apply
CO 4	Build the phenomena of boiling and condensation to give various correlations applied to heat exchangers, boilers, heatengines, etc.	Evaluate
CO 5	Select the appropriate expression for overall heat transfer coefficient for modeling heat exchanger to achieve defect/error free components.	Evaluate
CO 6	Identify the appropriate parameters for enhancing heat transfer rates in heat exchangers.	Apply
	List of Experiments	
71-1		

Week-1	Composite slab apparatus-Overall heat transfer coefficient
--------	--

Calculating the overall heat transfer coefficient for a composite slab

	-	
Week-2	Heat transfer through lage	red nine
	ficat transfer through taga	scu pipe

Determination of thermal conductivity.

week-5 Heat transfer through concentric spher	ere
---	-----

Determination of thermal conductivity.

Week-4	Thermal	conductivity	of	given	metal	rod
		•				

Determination of thermal conductivity.				
Week-5	Heat transfer in Pin fin apparatus			
Calculate the effectiveness and efficiency of pin fin.				
Week-6	Experiment on transient heat conduction			
Determination of thermal conductivity in transient mode.				
Week-7	Heat transfer in forced convection apparatus			
Calculating c	onvective heat transfer coefficient			
Week-8	Heat transfer in natural convection apparatus			
Calculating c	onvective heat transfer coefficient.			
Week-9	Parallel an counter flow heat exchangers			
Calculate the	effectiveness both experimental and theoretical method			
Week-10	Emissivity apparatus			
Determination of emissivity of grey and blackbody.				
WeeK-11	Stefan Botlzman apparatus			
Determination of Stefan Botlzmanconstant and compare its value.				
Week-12	Critical heat flux apparatus			
Evaluate the critical heat flux value by studying different zones of boiling.				
Week-13	Week-13 Study of heat pipe			
Demonstratio	on of heat pipe			
Week-14	Week-14 Film and drop wise condensation apparatus			
Understanding different methods of condensation				
Text Books:				
 Yunus A. Cengel, "Heat Transfer a Practical Approach", Tata McGraw hill education (P) Ltd, New Delhi, 4th Edition, 2012. R. C. Sachdeva, "Fundamentals of Engineering, Heat and Mass Transfer", New Age, New Delhi, India, 3rd Edition, 2012. 				
Web References:				
1. https://en.v	1. https://en.wikipedia.org/wiki/Heat Transfer			

2. https://en.wikipedia.org/wiki/Heat and Mass Transfer