THEORY OF COMPUTATION

IV Semester: CSE / IT								
Course Code	Category	Hours / Week		Credits	Maximum Marks			
AITB03	Core	L	Т	Р	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	P	ractic	al Class	es: Nil	Total Classes: 60		
I COUDSE OVEDVI	F W/.	•				•		

I. COURSE OVERVIEW:

This course focuses on infinite languages in finite ways, and classifies machines by their power to recognize. It includes finite automata, regular grammar, push down automata, context free grammars, and Turing machines It is applicable in designing phrasing and lexical analysis of a compiler, genetic programming and recursively enumerable languages

II. OBJECTIVES:

The course should enable the students to:

- I The fundamental knowledge of automata theory which is used to solvecomputational problems
- II The reorganization of context free language for processing infinite information using push down automata.
- **III** The computer based algorithms with the help of an abstract machine to solve recursively Enumerable problems

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

- CO 1 Make use of deterministic finite automata and non deterministic finite automata for Apply modeling lexical analysis and text editors.
- CO 2 Extend regular expressions and regular grammars for parsing and designing Understand programming languages.
- CO 3 **Illusrate** the pumping lemma on regular and context free languages for perform Understand negative test.
- CO 4 **Demonstrate** context free grammars, normal forms for generating patterns of strings and Understand minimize the ambiguity in parsing the given strings.
- CO 5 **Construct** push down automata for context free languages for developing parsing Apply phase of a compiler.
- CO 6 Apply Turing machines and Linear bounded automata for recognizing the languages, Apply complex problems.

IV. SYLLABUS:

MODULE -I	FINITE AUTOMATA	Classes: 10				
Fundamentals: Alphabet, strings, language, operations; Introduction to finite automata: The central concepts of automata theory, deterministic finite automata, nondeterministic finite automata, an application of finite automata, finite automata with epsilon transitions.						
MODULE -II	REGULAR LANGUAGES	Classes: 9				
Regular sets, regular expressions, identity rules, constructing finite automata for a given regular expressions, conversion of finite automata to regular expressions, pumping lemma of regular sets, closure properties of regular sets (proofs not required), regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and finite automata, inter conversion.						
MODULE -III	CONTEXT FREE GRAMMARS	Classes: 8				
Context free grammars and languages: Context free grammar, derivation trees, sentential forms, right most and leftmost derivation of strings, applications.						

	ntext free grammars, minimization of context free grammars, Chomsky form, pumping lemma for context free languages, enumeration of prope oofs omitted).	
	PUSHDOWN AUTOMATA	Classes: 9
acceptance by e automata, inter c	ata, definition, model, acceptance of context free language, acceptance by mpty stack and its equivalence, equivalence of context free language onversion; (Proofs not required); Introduction to deterministic context free hdown automata.	and pushdown
MODULE -V	TURING MACHINE	Classes: 10
recursively enun	Turing machine, definition, model, design of Turing machine, compu- nerable languages, Church's hypothesis, counter machine, types of T ired), linear bounded automata and context sensitive language, Chomsl	uring machines
Text Books:		
	, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata, Theory, Pearson Education, 3 rd Edition, 2007.	Languages and
Reference Book	is:	
2017.	n, "Introduction to Languages and Automata Theory", Tata McGraw-Hill, ohen, "Introduction to Computer Theory", John Wiley & Sons, 2 nd Edition	
Web Reference		,
*	utorialspoint.com/automata_theory/index.htm itg.ernet.in/dgoswami/Flat-Notes.pdf	
E-Text Books:		
1. https://freefun	ndkenotes.files.wordpress.com/2014/02/toc-klp-mishra.pdf	
MOOC Course		
2. http://nptel.ac	.in/courses/111103016/ .in/courses/106106049/ ideolecture.com/?course_id=1312	

- http://onlinevideolecture.com/?course_id=1312
 http://www.nptelvideos.in/2012/11/theory-of-computation.html