

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	ROBOTICS							
Course Code	AME533	AME533						
Programme	B.Tech.	B.Tech.						
Semester	VI	VI ME						
Course Type	PROFESSIONAL ELECTIVE							
Regulation	IARE - F	R16						
			Theory		Practio	al		
Course Structure	Lecture	es	Tutorials	Credits	Laboratory	Credits		
	4 - 3							
Chief Coordinator	Mr. A Anudeep Kumar, Assistant Professor							
Course Faculty	Mr. A A	nud	eep Kumar, Ass	istant Professor	•			

I. COURSE OVERVIEW:

This course introduces fundamental concepts in robotics. Students will be exposed to a broad range of topics in robotics with emphasis on basics of manipulators, coordinate transformation and kinematics, trajectory planning, control techniques, sensors and robot applications.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
UG	AHS003	II	Computational Mathematics and Integral Calculus
UG	AME002	II	Engineering Mechanics

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Robotics	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	'	Quiz	'	Assignments	×	MOOCs
~	LCD / PPT	'	Seminars	×	Mini Project	>	Videos

\mathbf{V} . **EVALUATION METHODOLOGY:**

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component Theory Total Marks Type of Assessment CIE Exam Quiz / AAT 05 **CIA Marks** 25 30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part-A shall have five compulsory questions of one mark each. In Part-B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT)

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four).

Marks shall be awarded considering the average of two quiz examinations for every course. The

AAT may include seminars, assignments, term paper, open ended experiments, five minutes video, MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
			by
PO 1	Engineering knowledge: Capability to apply the	3	Presentation on
	knowledge of Mathematics, science and Engineering in		real-world problems
	the field of Mechanical Engineering.		
PO 2	Problem analysis: An Ability to analyze complex	2	Seminar
	engineering problems to arrive at relevant conclusions		
	using knowledge of Mathematics, Science and		
	Engineering.		
PO4	Conduct investigations of complex problems: To design and conduct research-oriented experiments as well as to analyze and implement data using research methodologies.	1	Term Paper

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	ProfessionalSkills:Toproduceengineeringprofessionalcapableofsynthesizingandanalyzingmechanicalsystemsincludingalliedengineeringstreams.	3	Presentation on real-world problems
PSO 2	Software Engineering Practices: An ability to adopt	-	-
	and integrate current technologies in the design and		
	manufacturing domain to enhance the employability.		
PSO 3	Successful Career and Entrepreneurship: To build the nation, by imparting technological inputs and managerial skills to become technocrats.	-	-

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The cour	The course should enable the students to:					
I	Develop the knowledge in various robot structures and their workspace.					
II	Develop the skills in performing kinematics analysis of robot systems.					
III	Provide the knowledge of the dynamics associated with the operation of robotic systems.					
IV	Provide the knowledge and analysis skills associated with trajectory planning.					
V	Understand material handling and robot applications in industries.					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understand characteristic	CLO 1	Differentiate between automation and robotics.

1	features of robots and	CLO 2	Classify robots and describe its anatomy.
	usage of different grippers	CLO 3	Specify various types of industrial sensors.
	for industrial applications.	CLO 4	Classify various grippers.
CO 2	Understand direct and	CLO 5	Discuss about motion analysis of robot.
	inverse kinematics of	CLO 6	Understand methods for calculating the kinematics
	robot structure.		and inverse kinematics of a robot manipulator.
		CLO 7	Deduce D-H notations, joint coordinates and. world coordinates.
		CLO 8	Discuss about homogeneous transformation.
CO 3	Illustrate Differential	CLO 9	Describe the differential kinematics of planar
	Kinematics of planar and		manipulators.
	spherical manipulators.	CLO 10	Illustrate Lagrange-Euler formulation.
		CLO 11	Discuss jacobian and robot dynamics.
		CLO 12	Illustrate Newton-Euler formulation.
CO 4	Understand classification	CLO 13	Describe Joint space scheme.
	of robot actuators and	CLO 14	Illustrate cubic polynomial fit.
	trajectory planning.	CLO 15	Classify types of motion.
		CLO 16	Explain actuators and classify them.
CO 5	Remember material	CLO 17	Illustrate various robot applications in manufacturing.
	handling and applications		Discuss the role of robots in material handling.
	in manufacturing.	CLO 19	Explain work cell design.
		CLO 20	Discuss the role of robots in assembly and inspection,

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AME533.01	CLO 1	Differentiate between automation and robotics.	PO1	3
AME533.02	CLO 2	Classify robots and describe its anatomy.	PO2	2
AME533.03	CLO 3	Specify various types of industrial sensors.	PO1	3
AME533.04	CLO 4	Classify various grippers.	PO1	3
AME533.05	CLO 5	Discuss about motion analysis of robot.	PO1	2
AME533.06	CLO 6	Understand methods for calculating the kinematics and inverse kinematics of a robot manipulator.	PO2	2
AME533.07	CLO 7	Describe D-H notations, joint coordinates and. world coordinates.	PO2	2
AME533.08	CLO 8	Discuss about homogeneous transformation.	PO2	2
AME533.09	CLO 9	Describe the differential kinematics of planar manipulators.	PO4	1
AME533.10	CLO 10	Illustrate Lagrange-Euler formulation.	PO4	1
		Discuss jacobian and robot dynamics.	PO2	2
AME533.12	CLO 12	Illustrate Newton-Euler formulation.	PO2	2
AME533.13	CLO 13	Describe Joint space scheme.	PO1	3
		Illustrate cubic polynomial fit.	PO1	3
		Classify types of motion.	PO1	3
AME533.16	CLO 16	Explain actuators and classify them.	PO1	3
	CLO 17	manufacturing.	PO2	3
AME533.18	CLO 18	Discuss the role of robots in material handling.	PO1	3
AME533.19	CLO 19	Explain work cell design.	PO2	3
		Discuss the role of robots in assembly and inspection,	PO2	3

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes (COs)	Program Outcomes (POs)						
	PO 1	PO 2	PO 4	PSO1			
CO 1	2	1		1			
CO 2		2					
CO 3		1	1	1			
CO 4	3			1			
CO 5	1	2		1			

3= High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)									Program Specific Outcomes (PSOs)				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
(CLOs)	101	102	100	10.	100	100		100	10)	1010	1011	1012	1001	1502	1000
CLO 1	3												1		
CLO 2		2													
CLO 3	3												1		
CLO 4	3												1		
CLO 5		2													
CLO 6		2													
CLO 7		2													
CLO 8		2													
CLO 9				1											
CLO 10				1											
CLO 11		2											1		
CLO 12		2											1		
CLO 13	3														
CLO 14	3														
CLO 15	3														
CLO 16	3												1		
CLO 17		3											1		
CLO 18	3												1		

Course Learning	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 19		3											1		
CLO 20		3											1		

^{3 =} High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO1,PO2, PO4, PSO1	SEE Exams	PO1, PO2, PO4, PSO1	Assignments	-	Seminars	PO1, PO2, PO4, PSO1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO4, PS01						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit-I INTRODUCTION TO ROBOTICS

Introduction: Automation and robotic, an over view of robotics, classification by coordinate system and control systems; Components of the industrial robotics: Degrees of freedom, end effectors: Mechanical gripper, magnetic, vacuum cup and other types of grippers, general consideration on gripper selection and design, robot actuator and sensors.

Unit-II MOTION ANALYSIS

Motion analysis: Basic rotation matrices, composite rotation matrices, Euler angles, equivalent angle and axis, homogeneous transformation, problems; Manipulator kinematics: D-H notations, joint coordinates and world coordinates, forward and inverse kinematics, problems.

Unit-III DIFFERENTIAL KINEMATICS

Differential kinematics: Differential kinematics of planar and spherical manipulators, Jacobians, problems.

Robot dynamics: Lagrange, Euler formulations, Newton-Euler formulations, problems on planar two link manipulators.

Unit-IV TRAJECTORY PLANNING

Trajectory planning: Joint space scheme, cubic polynomial fit, avoidance of obstacles, types of motion: Slew motion, joint interpolated motion, straight line motion, problems, Robot actuators and feedback components; Actuators: pneumatic.

Unit-V ROBOTIC APPLICATIONS

Robot application in manufacturing, material handling, assembly and inspection, work cell design.

Text Books:

- 1. M. P. Groover, Industrial Robotics, Pearson, 2nd Edition, 2012.
- 2. J.J Criag, Introduction to Robotic Mechanics and Controll, Pearson, 3rd Edition, 2013.

Reference Books:

- 1. K.S Fu, Robotics, McGraw-Hill, 1st Edition, 2013.
- 2. Richard, D. Klafter, Thomas A Chmielewski, Miachael Neigen, "Robotic Engineering An Integrated Approach, Prentice Hall", 1st Edition, 2013.
- 3. Asada, Slotine, "Robot Analysis and Itelligence", Wiley, 1st Edition, 2013. 4. Mark W. Spong, M. Vidyasagar, I.John, "Robot Dynamics & Control", John Wiley & Sons, 1st Edition, 2013.
- 5. R. K. Mittal, I.J. Nagrath, "Robotics and Controll", Tata McGraw-Hill, 1st Edition, 2011.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Introduction of robots in chronological order.	CLO 1	T1:1.1
2-3	Classification of robots by co-ordinate and control system.	CLO 1	T1:1.2
4	Description of components of robotics.	CLO 2	T1:1.3
5	Need for the automation and robotics in manufacture.	CLO 2	T1:1.4
6	Description of various robots with degrees of freedom	CLO 2	T1:1.5
7	Description of various types of end effectors	CLO 4	T1:1.6
8-10	Illustration of gripper mechanism course analysis	CLO 4	T1:1.7
11-13	Requirement of gripper selection features	CLO 4	T1:1.7
14-15	Description and function of various types of sensors.	CLO 4	T1:1.8
16-18	Derivation of transformation matrix about X Y and Z axis. Composite rotation matrix.	CLO 5	T1:2.1
19-21	Derivation of matrix using Euler angles,	CLO 6	T1:2.2
22-23	Problem related to transformation in various axis.	CLO 6	T1:2.3
24-25	Description of D-H Variables, Describe procedure for forward kinematic motion analysis.	CLO 7	T1:2.4
26-28	Derivation of transformation matrix for small; incremental motion and problems.	CLO 7	T1:2.5
29-30	Problems on differential motion derivation of jacobian matrix for various configuration	CLO 7	T1:3.1
31-32	Derivation of Lagrange-Euler equation and solution of problems different configuration of robots	CLO 10	T1:3.2
33-34	Derivation of Newton-Euler equation and solution of problems different configuration of robots	CLO 10	T1:3.3
35-36	Illustration of Joint space motion for both straight line and point to point	CLO 13	T1:4.1
37	Illustration of slew motion and interpolated motion.	CLO 14	T1:4.2
39-40	Explanation of polynomial equation for various types of motion and solution of Problems in various types of trajectories.	CLO 15	T1:4.3
41	Description of functional aspects of each actuator and application	CLO 14	T1:4.4
42	Function wise description of various configuration of robots for different application.	CLO 17	T1:5.1
43	Role of robots in material handling.	CLO 18	T1:5.2
44	Applications of robots in manufacturing.	CLO 17	T1:5.3
45	Description of robot work cell design.	CLO 19	T1:5.4

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
	To introduce coding and analyze the concepts.	Seminars	PO 1	PSO 1

2	Introduction of artificial intelligence	Seminars / NPTEL	PO 4	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 2	PSO 1

Prepared by: Mr. A Anudeep Kumar, Assistant Professor

HOD, ME