

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE DESCRIPTOR

Course Title	SOFTW	SOFTWARE PROCESS AND PROJECT MANAGEMENT					
Course Code	AIT512						
Programme	B.Tech						
Semester	VI I	VI IT					
Course Type	Elective						
Regulation	IARE - R16						
	Theory Practical						
Course Structure	Lecture	es	Tutorials	Credits	Laboratory	Credits	
	3		-	3	-	-	
Chief Coordinator	Mr. E. Sunil Reddy, Assistant Professor						
Course Faculty	Mr. E. Su	Mr. E. Sunil Reddy, Assistant Professor					

I. COURSE OVERVIEW:

The course focuses on more advanced Software Engineering topics which provide the overall software development life cycle and adopt suitable processes required. The course includes Analyze, prioritize, and manage requirements, Estimate efforts required, plan, and track the plans, configuration and quality management techniques.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACS008	IV	Software Engineering	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIAExamination	Total Marks
Software Process and Project Management	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	>	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	~	Videos
×	Open Ended Experi	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Theory	Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part—A shall have five compulsory questions of one mark each. In part—B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT)

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may

includeseminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
PO 1	Engineering knowledge: Apply the knowledge of	1	by Term Paper
101	mathematics, science, engineeringfundamentals, and an	1	Term Taper
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis : Identify, formulate, review research	2	Seminar
	literature, and analyze complexengineering problems		
	reaching substantiated conclusions using first		
	principles of mathematics, natural sciences, and		
	engineering sciences		
PO 9	Individual and team work: Function effectively as an	2	Presentation on
	individual, and as a member or leader in diverse teams,		real-world problems
	and in multidisciplinary settings.		
PO11	Project management and finance: Demonstrate	3	Seminar
	knowledge and understanding of the engineering and		
	management principles and apply these to one's own		
	work, as a member and leader in a team, to manage		
	projects and in multidisciplinary environments.		

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering	1	Seminar
	professional capable of synthesizing and analyzing		
	mechanical systems including allied engineering		
	streams.		
PSO 2	Software Engineering Practices: An ability to adopt	3	Presentation on
	and integrate current technologies in the design and		real-world problems
	manufacturing domain to enhance the employability.		
PSO 3	Successful Career and Entrepreneurship: To build	1	Seminar
	the nation, by imparting technological inputs and		
	managerial skills to become technocrats.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The cour	The course should enable the students to:					
I	Understand overall software development life cycle and adopt suitable processes					
II	Analyze, prioritize, and manage both functional and quality requirements.					
III	Estimate efforts required, plan, and track the plans.					
IV	Understand and apply configuration and quality management techniques.					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome			
CO 1	Describe the concept of Software Development	CLO 1	Describe the basic concepts of Software Development Life Cycle.			
	Life Cycleand analyze the concepts of processes,	CLO 2	Summarize the concept of processes.			
	TSP, PSP.	CLO 3	Analyze the concepts of Personal Software Process (PSP), Team Software Process (TSP).			
		CLO 4	Use the concept of agile processes in real-world problems.			
CO 2	Determine the functional requirements, elicitation	CLO 5	Determine the Functional requirements and quality attributes,.			
	techniques and Quality Attribute workshop,	CLO 6	Understand elicitation techniques, Quality Attribute Workshop (QAW).			
	ACDM, documentation, and specification, change	CLO 7	Determine the analysis, prioritization, and trade off			
	management and traceability of	CLO 8	Use Architecture Centric Development Method (ACDM).			
	requirements	CLO 9	Illustrate the documentation, and specification.			
		CLO 10	Describe the change management and traceability or requirements.			
CO 3	Understand Estimation, Planning, And Tracking					
	<i>S</i> , <i>S</i>	CLO 12	Understand the concept of function points, COCOMO II, estimations			
		CLO 13	Understand the Work break down structure, macro and micro plans			
		CLO 14	Understand theplanning poker ,wideband Delphi			
		CLO 15	Summarize the tracking the plan ,Earned Value Method (EVM)			
CO 4	Explore the concept of Configuration And	CLO 16	Identifying articrafts to be configured, naming conventions			
	Quality Management.	CLO 17	Understand the version control, configuration control, quality assurance techniques.			
		CLO 18	Summarize the concept of peer reviews, Fagan inspection			
		CLO 19	Apply testing of unit, registration, system, and acceptance, test data and test cases			
		CLO 20	Understand the bug tracking, casual analysis.			
CO 5	Use of Software Process DefinitionAnd	CLO 21	Use Process elements, process architecture.			
	Management.	CLO 22	Usage of Process relationship between elements, process modeling.			
		CLO 23	Use of the process definition techniques ETVX, CMMI, sixsigma.			

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AIT512.01	CLO 1	Describe the basic concepts of Software	PO 1	1
		Development Life Cycle.		
AIT512.02	CLO 2	Summarize the concept of processes.	PO 2	2

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AIT512.03	CLO 3	Analyze the concepts of Personal Software Process (PSP), Team Software Process (TSP).	PO 11	3
AIT512.04	CLO 4	Use the concept of agile processes in real-world problems.	PO 11	3
AIT512.05	CLO 5	Determine the Functional requirements and quality attributes,.	PO 2	2
AIT512.06	CLO 6	Understand elicitation techniques, Quality Attribute Workshop (QAW).	PO 2	2
AIT512.07	CLO 7	Determine the analysis, prioritization, and trade off	PO 2	2
AIT512.08	CLO 8	Use Architecture Centric Development Method (ACDM).	PO 2	2
AIT512.09	CLO 9	Illustrate the documentation, and specification.	PO 9	2
AIT512.10	CLO 10	Describe the change management and traceability of requirements.	PO 9	2
AIT512.11	CLO 11	Explain software risks.	PO 2	2
AIT512.12		Understand the concept of function points, COCOMO II, estimations	PO 2	2
AIT512.13	CLO 13	Understand the Work break down structure, macro and micro plans	PO 9	2
AIT512.14	CLO 14	Understand theplanning poker ,wideband Delphi	PO 1	1
AIT512.15	CLO 15	Summarize the tracking the plan ,Earned Value Method (EVM)	PO 1	1
AIT512.16	CLO 16	Identifying articrafts to be configured, naming conventions	PO 1, PO 2	2
AIT512.17	CLO 17	Understand the version control, configuration control, quality assurance techniques.	PO 1, PO 2	2
AIT512.18	CLO 18	Summarize the concept of peer reviews, Fagan inspection	PO 1, PO 2	2
AIT512.19	CLO 19	Apply testing of unit, registration, system, and acceptance, test data and test cases	PO 9, PO 11	3
AIT512.20	CLO 20	Understand the bug tracking, casual analysis.	PO 9, PO 11	3
AIT512.21	CLO 21	Use Process elements, process architecture.	PO 11	3
AIT512.22	CLO 22	Usage of Process relationship between elements, process modeling.	PO 11	3
AIT512.23	CLO 23		PO 11	3

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course				I	Program Outcome	es (POs)	
Outcomes (COs)	PO 1	PO 2	PO 9	PO11	PSO1	PSO2	PSO3
CO 1	1	2	-	3	1	-	1
CO 2	-	2	2	3	-	-	-
CO 3	1	2	2	_	1	3	-

Course	Program Outcomes (POs)									
Outcomes (COs)	PO 1	PO 2	PO 9	PO11 PSO1		PSO2	PSO3			
CO 4	2	2	3	3	1	-	-			
CO 5	-	-	1	3	-	-	-			

3 = High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)											ram Sp comes (1			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	1												1		1
CLO 2		2													
CLO 3											3		1	3	
CLO 4											3		1		
CLO 5		2													
CLO 6		2													
CLO 7		2													1
CLO 8		2													
CLO 9									2					3	
CLO 10									2						
CLO 11		2											1		1
CLO 12		2											1		
CLO 13									2						
CLO 14	1														1
CLO 15	1														
CLO 16	2	2											1		
CLO 17	2	2											1		
CLO 18	2	2											1		
CLO 19									3		3		1		
CLO 20									3		3		1	3	_

Course Learning	Program Outcomes (POs)											ram Sp comes (1			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 21											3				
CLO 22											3				1
CLO 23											3				

^{3 =} High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	POLLPSOL	SEE Evame	PO1, PO2,PO9 PO11,PSO1, PSO2,PSO3	Assignme nts	-	Seminars	PO1, PO2, PO9,PSO1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO9,PSO1						

XIV. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit-I	DEVELOPMENT LIFE CYCLE PROCESSES
	Software Development Life Cycle, introduction to processes, Personal Software Team Software Process(TSP), unified processes, agile processes, choosing the right
Unit-II	REQUIREMENTS MANAGEMENT
(QAW), analy	quirements and quality attributes, elicitation techniques, Quality Attribute Workshop vsis, prioritization, and trade off, Architecture Centric Development Method (ACDM), documentation, and specification, change management, traceability of requirements.
Unit-III	ESTIMATION, PLANNING, AND TRACKING
Identifying an	d prioritizing risks, risk mitigation plans, estimation techniques, use case points, function

Identifying and prioritizing risks, risk mitigation plans, estimation techniques, use case points, function points, COCOMO II, top down estimation, bottom up estimation. Work break down structure, macro and micro plans, planning poker, wideband Delphi, documenting the plan, tracking the plan, Earned Value Method (EVM).

Unit-IV CONFIGURATION AND QUALITY MANAGEMENT

Identifying articrafts to be configured, naming conventions and version control, configuration control, quality assurance techniques, peer reviews, Fegan inspection, unit, registration, system, and acceptance testing, test data and test cases, bug tracking, casual analysis

Unit-V SOFTWARE PROCESS DEFINITION AND MANAGEMENT

Process elements, process architecture, relationship between elements, process modeling, process definition techniques, ETVX (Entry-Task-Validation-exit), process baselining, process assessment and improvement, CMMI, six sigma.

Text Books:

- 1. Pankaj Jalote, "Software Process Management in Practice", Pearson, Illustrated, 2002.
- 2. Walker Royce, "Software Project Management A Unified Framework", Pearson Education, 1st Edition, 2002.

Reference Books:

- 1. Watts S.Humphrey, "PSP: A Self Improvement Process for Software Engineers", Addison Wesley, 1st Edition, 2005.
- 2. Chris F. Kemerer, "Software Project Management- Readings and Cases", McGraw-Hill, Illustrated Edition, 1997.
- 3. Watts S. Humphrey, "Introduction to the Team Software Process", Addison-Wesley, Illustrated Reprint, 2000

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Describe the basic concepts of Software Development Life Cycle.	CLO 1	T1
2-3	Summarize the concept of processes.	CLO 2	T1
4-5	Analyze the concepts of Personal Software Process (PSP), Team Software Process (TSP).	CLO 2	T1
6-7	Use the concept of agile processes in real-world problems.	CLO 3	T1
8-9	Determine the Functional requirements and quality attributes.	CLO 3	T2
10-11	Understand elicitation techniques, Quality Attribute Workshop (QAW).	CLO 3	T2
12-13	Determine the analysis, prioritization, and trade off	CLO 5	T2
14-15	Use Architecture Centric Development Method (ACDM).	CLO 7	T2
16-18	Illustrate the documentation, and specification.	CLO 9	T2
19-20	Describe the change management and traceability of requirements.	CLO 13	T2
21-22	Explain software risks.	CLO 13	T2
23	Understand the concept of function points, COCOMO II, estimations	CLO 15	T2
24-25	Understand the Work break down structure, macro and micro plans	CLO 15	T2
26-27	Understand theplanning poker, wideband Delphi	CLO 11	T2
28	Summarize the tracking the plan ,Earned Value Method (EVM)	CLO 16	T2
29	Identifying articrafts to be configured, naming conventions	CLO 16	T2
30	Understand the version control, configuration control, quality assurance techniques.	CLO 16	T2
31-33	Summarize the concept of peer reviews, Fagan inspection	CLO 16	T2
34	Apply testing of unit, registration, system, and acceptance, test data and test cases	CLO 17	T2

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
35	Understand the bug tracking, casual analysis.	CLO 17	T2
36	Use Process elements, process architecture.	CLO 19	T1
37	Usage of Process relationship between elements, process modeling.	CLO 19	T1
38	Use of the process definition techniques ETVX,CMMI,six sigma.	CLO 20	T1
39	Describe the basic concepts of Software Development Life Cycle.	CLO 20	T1
40-41	Summarize the concept of processes.	CLO 21	T1
42	Analyze the concepts of Personal Software Process (PSP), Team Software Process (TSP).	CLO 22	T1
43	Use the concept of agile processes in real-world problems.	CLO 23	T1
44-45	Determine the Functional requirements and quality attributes.	CLO 23	T1

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With Pos	Relevance With Psos
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	software project management best practices	Seminars / NPTEL	PO 9	PSO 1
3	Encourage students to apply real time applications and CMM levels.	NPTEL	PO 2	PSO 1

Prepared by: Mr. E. Sunil Reddy, Assistant Professor

HOD, IT