

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

Dundigal, Hyderabad -500 043

# **MECHANICAL ENGINEERING**

# **COURSE DESCRIPTOR**

| Course Title      | THERMODYANMICS                        |      |                   |           |            |         |
|-------------------|---------------------------------------|------|-------------------|-----------|------------|---------|
| Course Code       | AMEB                                  | )4   |                   |           |            |         |
| Programme         | B. Tech                               |      |                   |           |            |         |
| Semester          | III                                   | ME   | 2                 |           |            |         |
| Course Type       | Core                                  |      |                   |           |            |         |
| Regulation        | IARE - R18                            |      |                   |           |            |         |
|                   | Theory Practical                      |      |                   |           |            | cal     |
| Course Structure  | Lectu                                 | res  | Tutorials         | Credits   | Laboratory | Credits |
|                   | 3                                     |      | 1                 | 4         | -          | -       |
| Chief Coordinator | Mr. A Venuprasad, Assistant Professor |      |                   |           |            |         |
| Course Faculty    | Dr. P Srinvasa Rao, Professor         |      |                   |           |            |         |
|                   | Mr. A V                               | enu/ | prasad, Assistant | Professor |            |         |

#### I. COURSE OVERVIEW:

Thermodynamics is the science that deals with the relationship between heat and work and those properties of systems that bear relation to heat and work. General laws of energy transformations concerning all types of systems, mechanical, electrical and chemical may fall within the purview of this science. It is a science based on a number of empirical laws formed by experimentation from which all predictions concerning the physical behavior of the system may be deduced by logical reasoning. The findings have been formalized into certain basic laws, which are known as Zeroth, First, Second and Third laws of thermodynamics. Power cycles and refrigeration cycle based on thermodynamic system is studied.

#### II. COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites               | Credits |
|-------|-------------|----------|-----------------------------|---------|
| UG    | AHSB04      | Ι        | Waves and Optics            | 4       |
| UG    | AHSB02      | Ι        | Linear Algebra and Calculus | 4       |

#### **III. MARKS DISTRIBUTION:**

| Subject        | SEE Examination | CIA<br>Examination | Total Marks |
|----------------|-----------------|--------------------|-------------|
| THERMODYNAMICS | 70 Marks        | 30 Marks           | 100         |

#### IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| × | Chalk & Talk           | ~ | Quiz     | ~ | Assignments  | × | MOOCs  |
|---|------------------------|---|----------|---|--------------|---|--------|
| ~ | LCD / PPT              | ~ | Seminars | × | Mini Project | > | Videos |
| × | Open Ended Experiments |   |          |   |              |   |        |

#### V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

**Semester End Examination (SEE):** The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

| 50 % | To test the objectiveness of the concept.                                                    |
|------|----------------------------------------------------------------------------------------------|
| 50 % | To test the analytical skill of the concept OR to test the application skill of the concept. |

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

| Table 1: | Assessment | pattern | for | CIA |
|----------|------------|---------|-----|-----|
|----------|------------|---------|-----|-----|

| Component          |          | Total Marka |     |              |
|--------------------|----------|-------------|-----|--------------|
| Type of Assessment | CIE Exam | Quiz        | AAT | I Utal Marks |
| CIA Marks          | 20       | 05          | 05  | 30           |

#### **Continuous Internal Examination (CIE):**

Two CIE exams shall be conducted at the end of the 8<sup>th</sup> and 16<sup>th</sup> week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### **Quiz - Online Examination**

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

|      | Program Outcomes (POs)                                   | Strength | Proficiency assessed<br>by |
|------|----------------------------------------------------------|----------|----------------------------|
| PO 1 | Engineering knowledge: Apply the knowledge of            | 3        | Presentation on            |
|      | mathematics, science, engineering fundamentals, and      |          | real-world problems        |
|      | an engineering specialization to the solution of         |          |                            |
|      | complex engineering problems.                            |          |                            |
| PO 2 | Problem analysis: Identify, formulate, review research   | 2        | Seminar                    |
|      | literature, and analyze complex engineering problems     |          |                            |
|      | reaching substantiated conclusions using first           |          |                            |
|      | principles of mathematics, natural sciences, and         |          |                            |
|      | engineering sciences                                     |          |                            |
| PO 4 | Conduct investigations of complex problems: Use          | 1        | Term Paper                 |
|      | research-based knowledge and research methods            |          |                            |
|      | including design of experiments, analysis and            |          |                            |
|      | interpretation of data, and synthesis of the information |          |                            |
|      | to provide valid conclusions.                            |          |                            |

#### VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

**3** = High; **2** = Medium; **1** = Low

### VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes (PSOs)                                                                                                                                         | Strength | Proficiency assessed |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| PSO 1 | <b>Professional Skills:</b> To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams.           | 1        | Seminar              |
| PSO 2 | <b>Software Engineering Practices:</b> An ability to adopt<br>and integrate current technologies in the design and<br>manufacturing domain to enhance the employability. | -        | -                    |
| PSO 3 | Successful Career and Entrepreneurship: To build<br>the nation, by imparting technological inputs and<br>managerial skills to become technocrats.                        | -        | -                    |

**3** = **High; 2** = **Medium; 1** = **Low** 

# **VIII. COURSE OBJECTIVES :**

| The cour | The course should enable the students to:                                                                                                                                                               |  |  |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Ι        | Understand the laws of thermodynamics and determine thermodynamic properties, gas laws.                                                                                                                 |  |  |  |  |
| II       | Knowledge of properties during various phases of pure substances, mixtures, usage of steam tables and Mollier chart, psychometric charts.                                                               |  |  |  |  |
| III      | Understand the direction law and concept of increase in entropy of universe.                                                                                                                            |  |  |  |  |
| IV       | Understand the working of ideal air standard, vapor cycles and evaluate their performance in open systems like steam power plants, internal combustion engines, gas turbines and refrigeration systems. |  |  |  |  |

## IX. COURSE OUTCOMES (COs):

| COs  | Course Outcome                                                           | CLOs  | Course Learning Outcome                                                                                                                                                         |
|------|--------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 1 | Describe the basic concepts and first law of                             | CLO 1 | Understand the concepts of conservation of mass, conservation of energy.                                                                                                        |
|      | thermodynamics.                                                          | CLO 2 | Demonstrate knowledge of ability to identify & apply<br>fundamentals to solve problems like system properties,<br>amount of work transfer and heat during various<br>processes. |
|      |                                                                          | CLO 3 | Explore knowledge & ability to design the thermal related components in various fields of energy transfer equipment.                                                            |
|      |                                                                          | CLO 4 | Derive the first law of Thermodynamics from the concept of conservation of energy                                                                                               |
| CO 2 | Describe the second law of thermodynamics and                            | CLO 5 | Discuss the nature of steady and unsteady processes<br>under the influence of time.                                                                                             |
|      | understand the concept of<br>entropy and third law of<br>thermodynamics. | CLO 6 | Determine entropy changes in a wide range of<br>processes and determine the reversibility or<br>irreversibility of a process from such calculations<br>based on Carnot Cycle.   |
|      |                                                                          | CLO 7 | Develop the second law of thermodynamics from the limitations of first law.                                                                                                     |
|      |                                                                          | CLO 8 | Knowledge of the Gibbs and Helmholtz free energies as<br>equilibrium criteria, and the statement of the equilibrium<br>condition for closed and open systems.                   |

| COs  | Course Outcome                                                        | CLOs   | Course Learning Outcome                                                                                                                                         |
|------|-----------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 3 | Understand the Pure<br>Substances various<br>thermodynamic processes. | CLO 9  | Discuss pressure-temperature, volume-temperature,<br>pressure-volume phase diagrams and the steam tables in<br>the analysis of engineering devices and systems. |
|      |                                                                       | CLO 10 | Understand the inter relationship between thermodynamic functions and an ability to use such relationships to solve practical problems.                         |
|      |                                                                       | CLO 11 | Understand the equation of state, specific and universal gas constants, throttling and free expansion processes.                                                |
|      |                                                                       | CLO 12 | Discuss deviations from perfect gas model, Vander Waals equation of state.                                                                                      |
| CO 4 | Understand the concept of Mixtures of perfect gases                   | CLO 13 | Understand mole fraction, mass friction, gravimetric and volumetric analysis, volume fraction.                                                                  |
|      | and psychometric properties,                                          | CLO 14 | Discuss dalton's law of partial pressure, Avogadro's laws of additive volumes, and partial pressure, equivalent gas constant.                                   |
|      |                                                                       | CLO 15 | Understand enthalpy, specific heats and entropy of mixture of perfect gases.                                                                                    |
|      |                                                                       | CLO 16 | Understand the process of psychrometry that are used in<br>the analysis of engineering devices like air conditioning<br>systems.                                |
| CO 5 | Develop the concept<br>power cycle with escription                    | CLO 17 | Develop Otto, Diesel, Dual combustion cycles, description and representation on P-V and T-S diagram.                                                            |
|      | and representation on P-V and T-S diagram.                            | CLO 18 | Discuss thermal efficiency; mean effective pressures on air standard basis.                                                                                     |
|      |                                                                       | CLO 19 | Understand the comparison of various cycles.                                                                                                                    |
|      |                                                                       | CLO 20 | Understand introduction to Brayton cycle and Bell Coleman cycle.                                                                                                |

# X. COURSE LEARNING OUTCOMES (CLOs):

|                                         | arbey the statefit will have  | 103    | Strength of |
|-----------------------------------------|-------------------------------|--------|-------------|
| Code the                                | ability to:                   | Mapped | Mapping     |
| AMEB04.01 CLO 1 Understand the conce    | pts of conservation of mass,  | PO 1   | 3           |
| conservation of energy                  | <i>.</i>                      |        |             |
| AMEB04.02 CLO 2 Demonstrate knowled     | lge of ability to identify &  | PO 2   | 2           |
| apply fundamentals to                   | o solve problems like system  |        |             |
| properties, amount                      | of work transfer and heat     |        |             |
| during various process                  | ses.                          |        |             |
| AMEB04.03 CLO 3 Explore knowledge       | & ability to design the       | PO 1   | 3           |
| thermal related comp                    | onents in various fields of   |        |             |
| energy transfer equipr                  | nent.                         |        |             |
| AMEB04.04 CLO 4 Derive the first law of | of Thermodynamics from the    | PO 1   | 3           |
| concept of conservation                 | on of energy                  |        |             |
| AMEB04.05 CLO 5 Discuss the nature      | of steady and unsteady        | PO 2   | 2           |
| processes under the in                  | fluence of time.              |        |             |
| AMEB04.06 CLO 6 Determine entropy ch    | anges in a wide range of      | PO 2   | 2           |
| processes and determined                | nine the reversibility or     |        |             |
| irreversibility of                      | a process from such           |        |             |
| calculations based on                   | Carnot Cycle.                 |        |             |
| AMEB04.07 CLO 7 Develop the second 1    | aw of thermodynamics from     | PO 1   | 3           |
| the limitations of first                | law.                          |        | _           |
| AMEB04.08 CLO 8 Knowledge of the        | Gibbs and Helmholtz free      | PO 2   | 2           |
| energies as equilibriu                  | m criteria, and the statement |        |             |
| of the equilibrium co                   | ndition for closed and open   |        |             |
| systems.                                |                               | DO 4   | 1           |
| AMEBU4.09 CLO 9 Discuss pressure-temp   | erature, volume-temperature,  | PO 4   | 1           |
| tables in the analysis                  | of angineering devices and    |        |             |
| systems                                 | or engineering devices and    |        |             |
| AMEB04.10 CLO 10 Understand the in      | ter relationship between      | PO 2   | 2           |

|           |        | thermodynamic functions and an ability to use such   |       |   |
|-----------|--------|------------------------------------------------------|-------|---|
|           |        | relationships to solve practical problems.           |       |   |
| AMEB04.11 | CLO 11 | Understand the equation of state, specific and       | PO 2  | 2 |
|           |        | universal gas constants, throttling and free         |       |   |
|           |        | expansion processes.                                 |       |   |
| AMEB04.12 | CLO 12 | Discuss deviations from perfect gas model, Vander    | PO 1  | 3 |
|           |        | Waals equation of state.                             | PO 2  |   |
| AMEB04.13 | CLO 13 | Understand mole fraction, mass friction,             | PO 1  | 3 |
|           |        | gravimetric and volumetric analysis, volume          |       |   |
|           |        | fraction.                                            |       |   |
| AMEB04.14 | CLO 14 | Discuss dalton's law of partial pressure,            | PO 1  | 3 |
|           |        | Avogadro's laws of additive volumes, and partial     |       |   |
|           |        | pressure, equivalent gas constant.                   |       |   |
| AMEB04.15 | CLO 15 | Understand enthalpy, specific heats and entropy of   | PO 1  | 3 |
|           |        | mixture of perfect gases.                            |       |   |
| AMEB04.16 | CLO 16 | Understand the process of psychrometry that are      | PO 1, | 3 |
|           |        | used in the analysis of engineering devices like air | PO 2  |   |
|           |        | conditioning systems                                 |       |   |
| AMEB04.17 | CLO 17 | Develop Otto, Diesel, Dual combustion cycles,        | PO 1, | 3 |
|           |        | description and representation on P-V and T-S        | PO 2  |   |
|           |        | diagram.                                             |       |   |
| AMEB04.18 | CLO 18 | Discuss thermal efficiency; mean effective           | PO 1, | 3 |
|           |        | pressures on air standard basis.                     | PO 2  |   |
| AMEB04.19 | CLO 19 | Understand the comparison of various cycles.         | PO 1  | 3 |
| AMEB04.20 | CLO 20 | Understand introduction to Brayton cycle and Bell    | PO 2  | 2 |
|           |        | Coleman cycle.                                       |       |   |
|           |        |                                                      |       |   |

**3= High; 2 = Medium; 1 = Low** 

# XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

| Course | Program Outcomes (POs) |      |      |      |  |  |  |  |  |
|--------|------------------------|------|------|------|--|--|--|--|--|
| (COs)  | PO 1                   | PO 2 | PO 4 | PSO1 |  |  |  |  |  |
| CO 1   | 3                      | 2    |      | 1    |  |  |  |  |  |
| CO 2   | 3                      | 2    |      |      |  |  |  |  |  |
| CO 3   | 3                      |      | 1    |      |  |  |  |  |  |
| CO 4   |                        | 2    |      | 1    |  |  |  |  |  |
| CO 5   | 3                      | 2    |      | 1    |  |  |  |  |  |

**3= High; 2 = Medium; 1 = Low** 

#### XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course<br>Learning | Program Outcomes (POs) |     |     |     |     |     |     |     |     |      | Program Specific<br>Outcomes (PSOs) |      |      |      |      |
|--------------------|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|-------------------------------------|------|------|------|------|
| Outcomes<br>(CLOs) | PO1                    | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11                                | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 1              | 3                      |     |     |     |     |     |     |     |     |      |                                     |      | 1    |      |      |
| CLO 2              |                        | 2   |     |     |     |     |     |     |     |      |                                     |      |      |      |      |
| CLO 3              | 3                      |     |     |     |     |     |     |     |     |      |                                     |      | 1    |      |      |

| Course             | Program Outcomes (POs) |     |     |     |     |     |     |     |                 | Program Specific |      |      |      |      |      |
|--------------------|------------------------|-----|-----|-----|-----|-----|-----|-----|-----------------|------------------|------|------|------|------|------|
| Learning           |                        |     |     |     |     |     |     |     | Outcomes (PSOs) |                  |      |      |      |      |      |
| Outcomes<br>(CLOs) | PO1                    | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9             | PO10             | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 4              | 3                      |     |     |     |     |     |     |     |                 |                  |      |      | 1    |      |      |
| CLO 5              |                        | 2   |     |     |     |     |     |     |                 |                  |      |      |      |      |      |
| CLO 6              |                        | 2   |     |     |     |     |     |     |                 |                  |      |      |      |      |      |
| CLO 7              | 3                      |     |     |     |     |     |     |     |                 |                  |      |      |      |      |      |
| CLO 8              |                        | 2   |     |     |     |     |     |     |                 |                  |      |      |      |      |      |
| CLO 9              |                        |     |     | 1   |     |     |     |     |                 |                  |      |      |      |      |      |
| CLO 10             |                        | 2   |     |     |     |     |     |     |                 |                  |      |      |      |      |      |
| CLO 11             |                        | 2   |     |     |     |     |     |     |                 |                  |      |      | 1    |      |      |
| CLO 12             | 3                      | 2   |     |     |     |     |     |     |                 |                  |      |      | 1    |      |      |
| CLO 13             | 3                      |     |     |     |     |     |     |     |                 |                  |      |      |      |      |      |
| CLO 14             | 3                      |     |     |     |     |     |     |     |                 |                  |      |      |      |      |      |
| CLO 15             | 3                      |     |     |     |     |     |     |     |                 |                  |      |      |      |      |      |
| CLO 16             | 3                      | 2   |     |     |     |     |     |     |                 |                  |      |      | 1    |      |      |
| CLO 17             | 3                      | 2   |     |     |     |     |     |     |                 |                  |      |      | 1    |      |      |
| CLO 18             | 3                      | 2   |     |     |     |     |     |     |                 |                  |      |      | 1    |      |      |
| CLO 19             | 3                      |     |     |     |     |     |     |     |                 |                  |      |      | 1    |      |      |
| CLO 20             |                        | 2   |     |     |     |     |     |     |                 |                  |      |      | 1    |      |      |

**3 = High; 2 = Medium; 1 = Low** 

# XIII. ASSESSMENT METHODOLOGIES – DIRECT

| CIE Exams               | PO1, PO2,<br>PO4 | SEE<br>Exams    | PO1, PO2,<br>PO4 | Assignments  | - | Seminars      | PO1, PO2,<br>PO4 |
|-------------------------|------------------|-----------------|------------------|--------------|---|---------------|------------------|
| Laboratory<br>Practices | -                | Student<br>Viva | -                | Mini Project | - | Certification | -                |
| Term                    | PO1, PO2,        |                 |                  |              |   |               |                  |
| Paper                   | PO4              |                 |                  |              |   |               |                  |

# XIV. ASSESSMENT METHODOLOGIES - INDIRECT

| ~ | Early Semester Feedback                | ~ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

# XV. SYLLABUS

| Module-I BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| System, control volume, surrounding, boundaries, universe, types of systems, macroscopic and microscopic viewpoints, concept of continuum, thermodynamic equilibrium, state, property, process, cycle, reversibility, quasi static process, irreversible process, causes of irreversibility, various flow and non-flow processes ,energy in state and in transition, types-work and heat, point and path function, Zeroth law of thermodynamics, concept of quality of temperature, Principles of thermometry, reference points, constant volume gas thermometer, ideal gas scale, PMMI Joule's experiments, first law of thermodynamics, corollaries first law applied to a process, applied to a flow system, steady flow energy equation. |  |  |  |  |  |  |  |  |
| Module-II SECOND LAW OF THERMODYNAMICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
| Thermal reservoir, heat engine, heat pump, parameters of performance, second Law of thermodynamics, Kelvin Planck and Clausius statements and their equivalence, Corollaries, PMM of second kind, carnot's principle, Carnot cycle and its specialties, thermodynamic scale of temperature, Clausius inequality, Entropy, principle of Entropy increase, availability and irreversibility, thermodynamic potentials, Gibbs and Helmholtz functions, Maxwell relations, elementary treatment of the Third Law of thermodynamics                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| Module-III PURE SUBSTANCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Phase transformations, T-S and H-S diagrams, P-V-T surfaces, triple point at critical state properties during change of phase, dryness fraction, Mollier charts, various thermodynamic processes and energy transfer, steam calorimeter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |
| Equation of state, specific and universal gas constants, throttling and free expansion processes, deviations from perfect gas model, Vander Waals equation of state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |
| Module-IV MIXTURES OF PERFECT GASES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| Mole fraction, mass friction, gravimetric and volumetric analysis, volume fraction, Dalton's law of partial pressure, Avogadro's laws of additive volumes, and partial pressure, equivalent gas constant, internal energy, enthalpy, specific heats and entropy of mixture of perfect gases; psychometric properties, dry bulb temperature, wet bulb temperature, dew point temperature, thermodynamic wet bulb temperature, specific humidity, relative humidity, saturated air, vapor pressure, degree of saturation, adiabatic saturation, Carrier's equation, Psychometric chart.                                                                                                                                                        |  |  |  |  |  |  |  |  |
| Module-V AIR CONDITIONING SYSTEMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| Otto, Diesel, Dual combustion cycles, description and representation on P-V and T-S diagram, thermal efficiency, mean effective pressures on air standard basis, comparison of cycles, introduction to Brayton cycle and Bell Coleman cycle.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| Text Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| <ol> <li>P. K. Nag, "Engineering Thermodynamics", Tata McGraw Hill, 4<sup>th</sup> Edition, 2008.</li> <li>Yunus Cengel, Michael A. Boles, "Thermodynamics-An Engineering Approach", Tata McGraw Hill, 7<sup>th</sup> Edition, 2011.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
| <ol> <li>J. B. Jones, R. E. Dugan, "Engineering Thermodynamics", Prentice Hall of India Learning, 1<sup>st</sup><br/>Edition,2009.</li> <li>Y. V. C. Rao, "An Introduction to Thermodynamics", Universities Press, 3<sup>rd</sup> Edition, 2013.</li> <li>K. Ramakrishna "Engineering Thermodynamics" Anuradha Publishers 2<sup>nd</sup> Edition, 2011.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |

K. KAHIAKFISHIA, Engineering Thermodynamics", Anuradha Publishers, 2<sup>nu</sup> Edition, 2011.
 Holman, J.P, "Thermodynamics", Tata McGraw Hill, 4<sup>th</sup> Edition, 2013.

# **XVI. COURSE PLAN:**

| Lecture | l opics to be covered                                                               | Course               | Reference          |
|---------|-------------------------------------------------------------------------------------|----------------------|--------------------|
| No      |                                                                                     | Learning<br>Outcomes |                    |
|         | System control volume surrounding hounderies universe types                         | (CLOs)               | T2.2.2             |
| 1       | of systems.                                                                         | CLU I                | 12:2.5             |
| 2       | Macroscopic and microscopic viewpoints, concept of continuum,                       | CLO 1                | R1:2.6             |
| 3       | Thermodynamic equilibrium, state, property, process, cycle, reversibility,          | CLO 2                | T1:2.6             |
| 4       | Quasi static process, irreversible process, causes of irreversibility               | CLO 2                | T2:2.7<br>R1:2.18  |
| 5       | Various flow and non-flow processes ,energy in state and in transition, types-work  | CLO 3                | T2:2.22            |
| 6       | Heat, point and path function, Zeroth law of thermodynamics.                        | CLO 3                | T2:2.25            |
| 7       | Concept of quality of temperature, Principles of thermometry, reference points.     | CLO 3                | T2:2.26<br>R1:2.55 |
| 8       | Constant volume gas thermometer, ideal gas scale, PMMI Joule's experiments,         | CLO 4                | T2:2.16<br>R1:2.61 |
| 9       | First law of thermodynamics, corollaries first law applied to a process             | CLO 4                | T2:2.30<br>R1:2.58 |
| 10      | Applied to a flow system, steady flow energy equation.                              | CLO 4                | T2:3.6<br>R1:4.29  |
| 11      | Thermal reservoir, heat engine, heat pump                                           | CLO 5                | T2:3.14<br>R1:4.31 |
| 12      | Parameters of performance, second Law of thermodynamics                             | CLO 6                | T2:3.14<br>R1:4.33 |
| 13      | Kelvin Planck, Clausius statements and their equivalence                            | CLO 6                | R1:4.36            |
| 14      | Corollaries, PMM of second kind, Carnot's principle                                 | CLO 6                | T2:3.18<br>R1:4.64 |
| 15      | Carnot cycle and its specialties                                                    | CLO 7                | T2:3.22            |
| 16      | thermodynamic scale of temperature, Clausius inequality                             | CLO 7                | T2:3.28<br>R1:4.67 |
| 17      | Entropy, principle of Entropy increase, availability and irreversibility            | CLO 8                | T2:4.2             |
| 18      | Thermodynamic potentials                                                            | CLO 8                | T2:4.3<br>R1:4.71  |
| 19      | Gibbs and Helmholtz functions, Maxwell relations                                    | CLO 8                | T1:4.8<br>R2:4.68  |
| 20-21   | Elementary treatment of the Third Law of thermodynamics                             | CLO 8                | T2:4.15<br>R1:5.74 |
| 22      | Phase transformations, T-S and H-S diagrams, P-V-T surfaces,                        | CLO 8                | T1:4.12<br>R2:5.75 |
| 23-24   | Triple point at critical state properties during change of phase,                   | CLO 9                | T1:4.8<br>R1:5.72  |
| 25      | Dryness fraction, Mollier charts, various thermodynamic processes                   | CLO 9                | T1:5.8<br>R1:5.73  |
| 26-27   | Energy transfer, steam calorimeter.                                                 | CLO 10               | T1:5.14<br>R1:6.78 |
| 28      | Equation of state, specific and universal gas constants.                            | CLO 10               | T2:5.19<br>R1:6.81 |
| 29-30   | Throttling and free expansion processes                                             | CLO 11               | T1:6.4<br>R2:6.8   |
| 31      | Deviations from perfect gas model, Vander Waals equation of state.                  | CLO 11               | T2:7.7<br>R1:7.74  |
| 32-33   | Mole fraction, mass friction, gravimetric and volumetric analysis, volume fraction, | CLO 12               | T1:7.12<br>R2:8.75 |

The course plan is meant as a guideline. Probably there may be changes.

| 3/    | Dalton's law of partial pressure, Avogadro's laws of additive        | CLO 13 | T1:7.8    |
|-------|----------------------------------------------------------------------|--------|-----------|
| 54    | volumes, and partial pressure                                        |        | R1:8.72   |
| 25    | Equivalent gas constant, internal energy, enthalpy, specific heats   | CLO 14 | T1:8.8    |
| 55    |                                                                      |        | R1:8.73   |
| 26    | Entropy of mixture of perfect gases; psychometric properties         | CLO 15 | T1:9.14   |
| 30    |                                                                      |        | R1:10.78  |
| 27.29 | Dry bulb temperature, wet bulb temperature, dew point                | CLO 16 | T2:9.19   |
| 57-38 | temperature,                                                         |        | R1:10.814 |
| 20.40 | Thermodynamic wet bulb temperature, specific humidity, relative      | CLO 17 | T1:10.4   |
| 39-40 | humidity, saturated air                                              |        | R2:11.68  |
| 41.42 | Vapor pressure, degree of saturation, adiabatic aturation, Carrier's | CLO 17 | T2:10.7   |
| 41-45 | equation, Psychometric chart.                                        |        | R1:12.74  |
| 14 45 | Otto, Diesel, Dual combustion cycles,                                | CLO 18 | T1:11.12  |
| 44-43 |                                                                      |        | R2:12.75  |
| 16 17 | Description and representation on P-V and T-S diagram,               | CLO 19 | T1:12.4   |
| 40-47 |                                                                      |        | R2:13.68  |
| 48.40 | Thermal efficiency, mean effective pressures on air standard basis   | CLO 19 | T2:13.7   |
| 40-49 |                                                                      |        | R1:14.74  |
| 50.52 | Comparison of cycles, introduction to Brayton cycle and Bell         | CLO 20 | T1:14.12  |
| 50-52 | Coleman cycle.                                                       |        | R2:15.75  |

# XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S NO | DESCRIPTION                                                                                               | PROPOSED<br>ACTIONS | RELEVANCE<br>WITH POs | RELEVANCE<br>WITH PSOs |
|------|-----------------------------------------------------------------------------------------------------------|---------------------|-----------------------|------------------------|
| 1    | To improve standards and analyze the concepts.                                                            | Seminars            | PO 1                  | PSO 1                  |
| 2    | To understand the technology of<br>thermo-electric refrigeration,<br>solar powered refrigeration, etc.    | Seminars /<br>NPTEL | PO 4                  | PSO 1                  |
| 3    | Encourage students to solve real<br>time applications and prepare<br>towards competitive<br>examinations. | NPTEL               | PO 2                  | PSO 1                  |

# Prepared by:

Mr. A Venuprasad, Assistant Professor

HOD, ME