

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY COURSE DESCRIPTOR

Course Title	Theory Of Computation					
Course Code	AITBO	3				
Programme	B.Tech	l				
Semester	IV	CSE	IT			
Course Type	Foundation					
Regulation	IARE - R18					
	Theory Practical					
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits
Course Structure	3		1	4	-	-
Chief Coordinator	Dr. K Srinivasa Reddy, Associate Professor					
Course Faculty	Dr. K Srinivasa Reddy, Associate Professor					

I. COURSE OVERVIEW:

Introduction to the theory of computation, including models of computation such as Turing machines; theory of programming languages, including grammars, parsing, syntax and semantics. This course is reached to student by power point presentations, lecture notes, and assignment questions ,previous model question papers, multiple choice questions and question bank of long and short answers.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACSB03	III	Data Structures	4
UG	ACSB04	III	Discrete Mathematical Structures	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Theory Of Computation	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

x	Chalk & Talk	~	Quiz	~	Assignments	~	MOOCs
•	LCD / PPT	>	Seminars	×	Mini Project	~	Videos
×	Open Ended Experi	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question. The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component	Theory			Total Marks	
Type of Assessment	CIE Exam	Quiz	AAT	i otai wiarks	
CIA Marks	20	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Page | 3 Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool(AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Lectures, Assignments
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Assignments
PO 4	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	3	Guest Lettuces
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Seminars

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to	2	Lectures, Assignments
	algorithms, system software, multimedia, web design, big data		Assignments
	analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.		
PSO 2	Software Engineering Practices: The ability to apply	-	_
	standard practices and strategies in software service		
	management using open-ended programming environments		
	with agility to deliver a quality service for business success.		
PSO 3	Successful Career and Entrepreneurship: The ability to	1	Guest Lectures
	employ modern computer languages, environments, and		
	platforms in creating innovative career paths, to be an		
	entrepreneur, and a zest for higher studies.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES :

The course a	The course should enable the students to:				
Ι	Comprehend abstract, mathematical models of computation and use them to solve computational problems.				
II	Interpret the relationship between formal languages in Chomsky's hierarchy and different Machines.				
III	Analyze and explain the behavior of push-down automata.				
IV	Understand the limits and capacities of Turing,,s machines to recognize languages.				

IX. COURSE LEARNING OUTCOMES (CLOs):

Students, who comple	te the course, will have	e demonstrated the abilit	v to do the following:
Students, who comple	te the course, whi have	actions in acca the astin	

S.No.	Description
AITB03.01	Able to show the importance of alphabets, strings and languages to construct finite automata
AITB03.02	Demonstrate the behavior of deterministic finite automata
AITB03.03	Able to understand the functionality of non- deterministic finite automata
AITB03.04	Show the differences between the deterministic finite automata and non- deterministic finite automata
AITB03.05	Able to understand the Regular sets, regular expressions, identity rules
AITB03.06	Analyze the construction of finite automata for a given regular expressions
AITB03.07	Able to understand the conversion of finite automata to regular expressions
AITB03.08	Able to understand the pumping lemma of regular sets, regular grammars, right linear and left linear grammars
AITB03.09	Able to create right most and leftmost derivation trees for given strings
AITB03.10	Analyze the Ambiguity in context free grammars
AITB03.11	Able to understand the minimization process of context free grammars
AITB03.12	Apply the push down automata for acceptance of context free languages
AITB03.13	Apply the Chomsky normal form and Greibach normal forms to eliminate the Ambiguity in context free grammars
AITB03.14	Able to construct the push down automata for given context free languages
AITB03.15	Able to construct the deterministic push down automata to accept the context free languages
AITB03.16	Show the difference between deterministic push down automata and non- deterministic push down automata
AITB03.17	Able to understand the functionality of Turing machine
AITB03.18	Able to understand the recursively enumerable languages and Church's hypothesis
AITB03.19	Analyze the functionality of different types of Turing machines
AITB03.20	Apply the linear bounded automata and context sensitive language.

3 = High; 2 = Medium; 1 = Low

X. COURSE LEARNING OUTCOMES(CLOs)

СО			At the end of the course, the	PO"s	Strength
Number	Course Outcome	CLO"s	student will have the ability to:	Mapped	of
ivuilloei					Mapping
CO 1	Understand the functionality of	CLO 1	Able to show the importance	PO 1	3
	deterministic finite automata and		of alphabets, strings and		
	Non-deterministic finite		languages to construct finite		
	automata		automata		
		CLO 2	Demonstrate the behavior of	PO 1	3
			deterministic finite automata		
		CLO 3	Able to understand the	PO 1	3
			functionality of		
			non- deterministic		
			finite automata		
		CLO 4	Show the differences between	PO 1	3
			the deterministic finite		
			automata and non-		
			deterministic finite automata		
CO 2	Apply the regular languages,	CLO 5	Able to understand the Regular	PO 2	3
	regular expressions to construct		sets, regular expressions,		
			identity rules		

	finite automata				
		CLO 6	Analyze the construction of finite automata for a given regular expressions	PO 2	3
		CLO 7	Able to understand the conversion of finite automata to regular expressions	PO 2	3
		CLO 8	Able to understand the pumping lemma of regular sets, regular grammars, right linear and left linear grammars	PO 2	3
CO 3	Apply the context free grammars to construct derivation trees and the accept various strings	CLO 9	Able to create right most and leftmost derivation trees for given strings	PO 3	3
		CLO 10	Analyze the Ambiguity in context free grammar	PO 3	3
		CLO 11		PO 3	3
		CLO 12	Apply the Chomsky normal form and Greibach normal forms to eliminate the Ambiguity in context free grammars	PO 3	3
CO 4	Compare the functionality of push down automata with deterministic finite automata	CLO13	Apply the push down automata for acceptance of context free languages	PO 4	3
		CLO14	Able to construct the push down automata for given context free languages	PO 4	3
		CLO15		PO 4	3
		CLO16		PO 4	3
CO 5	Apply the concept of Turing machines to solve the complex	CLO17	Able to understand the functionality of Turing machine	PO 5	3
	functions	CLO18	Able to understand the recursively enumerable languages and Church's hypothesis	PO 5	3
		CLO19	Analyze the functionality of different types of Turing machines	PO 5	3
		CLO 20	Apply the linear bounded automata and context sensitive language	PO 5	3

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

COs	Program Outcomes (POs)												Program Specif Outcomes (PSO		
005	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12								PSO1	PSO2	PSO3				
CO 1	3	3												3	
CO 2	3	3	3											3	
CO 3	3	3		3	3								3		
CO 4	3	2	3	3										3	
CO 5	2	3	3	3										3	

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CLOs)					Progr	am Oı	itcom	es (PO	s)	-			Program Specific Outcomes (PSOs)		
(CLOS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	3												3	
CLO 2	3	3	3											3	
CLO 3	3	3		3	3								3		
CLO 4	3	3	3	3										3	
CLO 5	3	3	3	3										3	
CLO 6		3	3										3		
CLO 7				3									3		
CLO 8	3	3			3									3	
CLO 9		3	3											3	
CLO 10		3												3	
CLO 11	3	3	3										3	3	3
CLO 12		3		3									3	3	
CLO 13	3	3	3										3	3	
CLO 14		3		3	3									3	
CLO 15	2	3											3	3	
CLO 16	3	3		3	3									3	
CLO 17	3			3										3	
CLO 18	3			3									3	3	
CLO 19	3	3			3									3	

		Program Outcomes (POs)									Program Specific Outcomes (PSOs)				
(CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 20					3								3		3

3 = **High; 2** = **Medium; 1** = **Low**

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO3, PO4, PO5,PSO, PSO2, PSO3	SEE Exams	PO1, PO2, PO3, PO4, PO5	Assignments	PO1, PO2 PO3, PO4, PO5	Seminars	-
Laboratory Practices	-	-	-	Mini Project	-	Certification	-
Term Paper	-						

XIV.ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts	×	Chalk And Talk

XV. SYLLABUS

Module-I	Finite Automata							
concepts of a	s: Alphabet, strings, language, operations; Introduction to finite automata: The central utomata theory, deterministic finite automata, nondeterministic finite automata, an f finite automata, finite automata with epsilon transitions.							
Module-II	Regular Languages							
Regular sets, regular expressions, identity rules, constructing finite automata for a given regular expressions, conversion of finite automata to regular expressions, pumping lemma of regular sets, closure properties of regular sets (proofs not required), regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and finite automata, inter conversion.								
Module-III	Context Free Grammars							
Context free grammars and languages: Context free grammar, derivation trees, sentential forms, right most and leftmost derivation of strings, applications. Ambiguity in context free grammars, minimization of context free grammars, Chomsky normal form, Greibach normal form, pumping lemma for context free languages, enumeration of properties of context free language (proofs omitted).								
Module-IV	Pushdown Automata							
and acceptan automata, int	tomata, definition, model, acceptance of context free language, acceptance by final state ce by empty stack and its equivalence, equivalence of context free language and pushdown er conversion;(Proofs not required);Introduction to deterministic context free languages and pushdown automata.							
Module-V	Turing Machine							
Turing machine: Turing machine, definition, model, design of Turing machine, computable functions, recursively enumerable languages, Church's hypothesis, counter machine, types of Turing machines (proofs not required), linear bounded automata and context sensitive language, Chomsky hierarchy of languages.								
Text Books:								

1. John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman, —Introduction to Automata, Theory, Languages and Computation, Pearson Education, 3rd Edition, 2007.

Reference Books:

- 1. John C Martin, —Introduction to Languages and Automata Theory, Tata McGraw-Hill, 3rdEdition, 2007.
- 2. Daniel I.A. Cohen, —Introduction to Computer Theory, John Wiley & Sons, 2nd Edition, 2004.

XVI.COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Alphabet, strings, language, operations	CLO 1	T1: 1.5-1.6
2	Introduction to finite automata: The central concepts of automata theory	CLO 1	T1: 2.1-2.2
3	Deterministic finite automata	CLO 3	T1: 2.2-2.3
4-5	Nondeterministic finite automata	CLO 3	T1: 2.3-2.4
6	An application of finite automata	CLO 4	T1: 2.4-2.5
7	Finite automata with epsilon transitions	CLO 2	T1: 2.5-2.6
8-9	Finite Automata with output: Moore and Melay Machines	CLO 3	T1: 2.7-2.9
10	Regular sets, regular expressions, identity rules	CLO 5	T1: 3.1-3.2
11	Constructing finite automata for a given regular expressions	CLO 5	T1: 3.1-3.2
12-13	Conversion of finite automata to regular expressions	CLO 5	T1: 3.1-3.2
14	Pumping lemma of regular sets	CLO 5	T1: 4.1-4.2
15	Closure properties of regular sets (proofs not required)	CLO 6	T1: 4.1-4.2
16-17	Regular grammars-right linear and left linear grammars	CLO 7	T1: 4.4-4.5
18	Equivalence between regular linear grammar and finite automata, inter conversion.	CLO 7	T1: 4.4-4.5
19	Context free grammar	CLO 8	T1: 5.1-5.2
20-22	derivation trees, sentential forms, right most and leftmost derivation of strings	CLO 9	T1: 5.1-5.2
23	Ambiguity in context free grammars	CLO 10	T1: 5.4-5.5
24-25	Minimization of context free grammars	CLO 11	T1: 7.4-7.5
26-27	Chomsky normal form, Greibach normal form	CLO 12	T1: 7.4-7.5
28-29	Pumping lemma for context free languages, properties	CLO 13	T1: 7.2-7.3
30	Pushdown automata, definition, model	CLO 14	T1: 6.1-6.2
31-33	Acceptance by final state and acceptance by empty stack and its equivalence	CLO 14	T1: 6.2
34-35	Equivalence of context free language and pushdown automata, inter conversion.	CLO 15	T1: 6.3
36	Deterministic context free languages and deterministic push down automata	CLO 16	T1: 6.4
37-38	Turing machine: Turing machine, definition, model	CLO 17	T1: 8.1-8.2
39-40	Design of Turing machine, computable functions,	CLO 18	T1: 8.1-8.2
41-43	Recursively enumerable languages, Types of Turing machines and Church's hypothesis.	CLO 19	T1: 8.2-8.6
44-45	Linear bounded automata and context sensitive language, Chomsky hierarchy of languages.	CLO 20	T1: 9.1- 9.8

GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS: XVII.

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Finite automata with output	Seminars / Guest Lectures / NPTEL	PO 1, PO 2, PO 3	PSO 1, PSO 2
2	Deterministic Pushdown Automata	Seminars / Guest Lectures / NPTEL	PO 2, PO 3	PSO 1
3	JFLAP Automation Tool	Assignments / Laboratory Practices	PO 1, PO 3, PO 4	PSO 2

Prepared by: Dr. K Srinivasa Reddy, Associate Professor

HOD, CSE