
 

COURSE CONTENT 

DATA MINING AND KNOLEDGE DISCOVERY LABORATORY 

VI Semester: CSE (CS)  

Course Code Category Hours / Week Credits Maximum Marks 

ACIC08 Core 
L T P C CIA SEE Total 

1 0 2 2 30 70 100 

Contact Classes: 12 Tutorial Classes: NIL Practical Classes: 33 Total Classes: 45 

Prerequisite: There are no prerequisites to take this course. 

I. COURSE OVERVIEW:  

This course helps the students to practically understand a data warehouse, techniques and methods for data 

gathering and data pre-processing using different tools. The different data mining models and techniques 

will be discussed in this course. The main objective of this lab is to impart the knowledge on how to 

implement classical models and algorithms in data warehousing and data mining and to characterize the 

kinds of patterns that can be discovered by association rule mining, classification and clustering. 

 
II. COURSE OBJECTIVES: 

The students will try to learn:  

I. The Data Object Exploration and visualization  

II. The pre-processing on new and existing datasets.  

III. Frequent item set generation and association rules on transactional data.  

IV. The data model creation by using various classification and clustering algorithms.  

V. The data models accuracy analysis by varying the sample size. 

III. COURSE OUTCOMES: 

     At the end of the course students should be able to: 

 
CO 1 Analyze the knowledge generated from data objects, matrix operations using Numpy. 

CO 2 Demonstrate Numpy module methods to categorize and correlate the raw data. 

CO 3 Select appropriate pre-processing techniques to manage the missing values of data. 

CO 4 Apply Apriori Algorithm and logistic regression for classification of data mining. 

CO 5 Identify Classification technique from Decision Tree, Bayesian Network and Support Vector 

Machines to mine knowledge from pre-processed data. 

CO 6 Examine Clustering algorithms to build predication model for solving real world problem. 

 

 

 

 

 

 

 

 



 

 
IV.COURSE CONTENT: 

 

EXERCISES FOR DATA MINING AND KNOWLEDGE DISCOVERY 

LABORATORY 
 

Note: Students are encouraged to bring their own laptops for laboratory 

practice sessions. 

 
 

1.  Getting Started Exercises 

Introduction:  

The Data Mining Lab with Python is designed to introduce students and professionals to the 

practical aspects of data mining, leveraging Python's rich ecosystem of data analysis and machine 

learning libraries. Python, being one of the most popular programming languages in the data 

science community, provides a comprehensive environment for data manipulation, visualization, 

and analysis. 

 

Software: 
   Anaconda Distribution, combined with tools like Jupyter Notebook or IDEs like PyCharm or VS Code, 

   provides a robust environment for tackling data mining tasks with Python and its libraries. 

REFERENCE BOOKS:  

   1. Robert Layton, “Learning Data Mining with Python”,Packt Publishing, 2015.  

     

  Web References: 

I. https://www.dataquest.io/blog/sci-kit-learn-tutorial/  

II. https://archive.ics.uci.edu/ml/datasets.php/  

III. https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python 

  NUMPY: 

   NumPy stands for Numerical Python which is a Python library used for working with arrays. It provides 

   an efficient interface to store and operate on dense data buffers. NumPy arrays provide much more 

   efficient storage and data operations as the arrays grow larger in size. NumPy arrays form the core of  

   nearly the entire ecosystem of data science tools in Python. It also has functions for working in domain  

   of linear algebra, fourier transform and matrices. The array object in NumPy is called ndarray 

 

https://www.dataquest.io/blog/sci-kit-learn-tutorial/
https://archive.ics.uci.edu/ml/datasets.php/
https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python


 

1.1 Implement Multidimensional 2-D and 3-D arrays using Numpy 

Multidimensional arrays are arrays that have more than one dimension. They can be thought of 

as arrays of arrays. Commonly used multidimensional arrays include 2D arrays (matrices) and 3D 

arrays. Create multidimensional arrays and find its shape and dimension . 

Input: array_2d = np.array ([[1, 2, 3], 

                            [4, 5, 6], 

                                             [7, 8, 9]])  

Output: 2D Array : 

               Shape: (3, 3) 

   Dimension: 2 

Explanation: The “shape” attribute returns a tuple representing the array's “dimensions”, and ndim returns 

the number of dimensions. 

Input: array_3d = np.array ([[[1, 2], [3, 4]], 

                           [[5, 6], [7, 8]], 

                  [[9, 10], [11, 12]]]) 

Output: 3D Array: 

               Shape: (3, 2, 2) 

   Dimension: 3 

Import numpy as np 
 
a=np.array([[1,2,3],[2,3,4],[3,4,5]]) 
 
b=a.shape 
print("shape:",a.shape) 
 
c=a.ndim 
print("dimensions:",a.ndim) 
     # Write code here 
     … 

      

 

1.2 Implement a matrix full of zeros and ones using Numpy 

NumPy can create matrices filled with zeros or ones using the np.zeros and np.ones functions, respectively. 

Input: matrix_zeros = np.zeros((3, 4)) 

Output: Matrix full of zeros: 

[[0. 0. 0. 0.] 

 [0. 0. 0. 0.] 

 [0. 0. 0. 0.]] 

Input: matrix_ones = np.ones((2, 3)) 

Output: Matrix full of ones: 



[[1. 1. 1.] 

 [1. 1. 1.]] 

Input: z=np.zeros((2,2)) 

Output: [[0. 0.] 

    [0. 0.]] 

 

import numpy as np 

matrix_zeros = np.zeros((3, 4)) 
 
print("Matrix full of zeros:") 
print(matrix_zeros) 
 
matrix_ones = np.ones((2, 3)) 
 
print("Matrix full of ones:") 
print(matrix_ones)     

 

TRY:  

Exercises:  

1.Create an array of evenly spaced values (step value)  

Hint: Use arrange() method 

 

2.Create an array of evenly  spaced values (number of samples) 

Hint: Use linespace() method 

 

3.Create a constant array 

Hint: Use full() method 

 

4.Create a 2X2 identity matrix 

Hint: Use eye() method 

 

5.Create an array with random values 

Hint: Use random() method 

 

6.Create an empty array 

Hint: Use empty() method 

 

1.3 Implement functions Reshape and flatten data in the array 

NumPy is used to reshape and flatten functions for modifying the shape of an array. 

Input: original_array = np.array([[1, 2, 3], 

                             [4, 5, 6]]) 

 

Output: Reshaped Array: 



  [[1 2] 

    [3 4] 

    [5 6]] 

 

import numpy as np 
 
a=np.array([[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7]]) 
           b=a.reshape(4,2,2) 
 
        # Write code here 
        reshaped_array = original_array.reshape((3, 2)) 
 
print("Original Array:") 
print(original_array) 
print("\nReshaped Array:") 
print(reshaped_array) 

         

 

TRY:  

Exercises:  

1.Find length of an array 

 

2.Find size of an array 

 

3.Find Data type of array elements 

Hint: Use dtype 

 

4.Find the name of the data type 

Hint: Use dtype.name 

 

5.Convert an array to a different type 

Hint: Use astype(int) method 

 

6. Reshape, but don’t change data 

 

1.4 Implement functions Append data vertically and horizontally 

numpy.vstack is used to vertically stack arrays (i.e., stack arrays one on top of the other). 

When two or more arrays with the same number of columns, vstack concatenates them along the vertical 

axis (axis 0), forming a new array with the same number of columns but a greater number of rows. 

The function takes a tuple of arrays as input and returns a single array as output. 

 

numpy.hstack is used to horizontally stack arrays (i.e., stack arrays side by side). 

When you have two or more arrays with the same number of rows, hstack concatenates them along the 

horizontal axis (axis 1), forming a new array with the same number of rows but a greater number of columns. 



The function takes a tuple of arrays as input and returns a single array as output. 

If the arrays being stacked do not have the same number of rows, hstack will raise a ValueError. 

Example usage: np.hstack((array1, array2)) 

 

Input: array1 = np.array([[1, 2, 3], 
                    [4, 5, 6]]) 
 
     array2 = np.array([[7, 8, 9], 
                    [10, 11, 12]]) 

 

Output: Vertically stacked array: 

[[ 1  2  3] 

  [ 4  5  6] 

  [ 7  8  9] 

  [10 11 12]] 

Horizontally stacked array: 

[[ 1  2  3  7  8  9] 

 [ 4  5  6 10 11 12]] 

Explanation: stacks the arrays vertically using NumPy's vstack and hstack functions 

import numpy as np 
 
# Example data arrays 
array1 = np.array([[1, 2, 3], 
                   [4, 5, 6]]) 
 
array2 = np.array([[7, 8, 9], 
                   [10, 11, 12]]) 
 
# Vertically stack arrays 
stacked_vertically = np.vstack((array1, array2)) 
 
print("Vertically stacked array:") 
print(stacked_vertically) 
print() 
 
 
# Horizontally stack arrays 
stacked_horizontally = np.hstack((array1, array2)) 
 
print("Horizontally stacked array:") 
print(stacked_horizontally) 
 

 

 

 

Try: 

Exercises: 



1.Implement Stack arrays vertically (row-wise) 

2.Create stacked column-wise arrays 

3.Implement Arithmetic Operations: Addition, Subtraction, Multiplication, 

Division, Exponentiation, Square root, Print sines of an array, Element-wise 

cosine, Element-wise natural logarithm, Dot product 

 

1.5 Apply indexing and slicing on array using Numpy 

Indexing in NumPy allows accessing individual elements of an array using integer indices, denoted as  

array[i, j], where i represents the row index and j represents the column index. 

Slicing in NumPy enables extracting subarrays or specific portions of an array using slice notation, denoted 

as array[start:stop:step]. It's applicable along one or more dimensions, allowing for versatile extraction of 

data from arrays.  

Input: arr = np.array([[1, 2, 3], 

                          [4, 5, 6], 

                           [7, 8, 9]]) 

Output: Accessing single elements: 

Element at (0, 0): 1 

Element at (1, 2): 6 

Accessing subarrays: 

First row: [1 2 3] 

Second column: [2 5 8] 

Subarray (2x2) from top-left corner: 

[[1 2] 

 [4 5]] 

 

Modifying elements using indexing: 

Array after modifying element at (1, 1): 

[[ 1  2  3] 

 [ 4 10  6] 

 [ 7  8  9]] 

 

Modifying subarrays using slicing: 

Array after modifying third column: 

[[  1   2 100] 

 [  4  10 200] 

 [  7   8 300]] 

 

mport numpy as np 



# Create a NumPy array 

arr = np.array([[1, 2, 3], 

                [4, 5, 6], 

                [7, 8, 9]]) 

 

# Print original array 

print("Original array:") 

print(arr) 

print() 

 

# Indexing: Accessing single elements 

print("Accessing single elements:") 

print("Element at (0, 0):", arr[0, 0]) 

print("Element at (1, 2):", arr[1, 2]) 

print() 

 

# Slicing: Accessing subarrays 

print("Accessing subarrays:") 

print("First row:", arr[0]) 

print("Second column:", arr[:, 1]) 

print("Subarray (2x2) from top-left corner:") 

print(arr[:2, :2]) 

print() 

 

# Modifying elements using indexing 

print("Modifying elements using indexing:") 

arr[1, 1] = 10 

print("Array after modifying element at (1, 1):") 

print(arr) 

print() 

 

# Modifying subarrays using slicing 

print("Modifying subarrays using slicing:") 

arr[:, 2] = [100, 200, 300] 

print("Array after modifying third column:") 

print(arr) 

         

 

1.6 Implement statistical functions on array, Min, Max, Mean, Median and 

Standard Deviation 



You are given an m x n integer grid accounts where accounts[i][j] is the amount of money the ith customer 

has in the jth bank. Return the wealth that the richest customer has. A customer's wealth is the amount of 

money they have in all their bank accounts. The richest customer is the customer that has the maximum 

wealth. 

Input: arr = np.array([[1, 2, 3], 

                [4, 5, 6], 

                [7, 8, 9]])  

Output:  

Minimum value: 1 

Maximum value: 9 

Mean: 5.0 

Median: 5.0 

Standard Deviation: 2.581988897471611  

Explanation: 

The original array is printed. 

The minimum value in the array is 1. 

The maximum value in the array is 9. 

The mean (average) value of the array is calculated to be 5.0. 

The median value of the array is also calculated to be 5.0. 

The standard deviation of the array is calculated to be approximately 2.582.  

 

import numpy as np 

 

# Create a NumPy array 

arr = np.array([[1, 2, 3], 

                [4, 5, 6], 

                [7, 8, 9]]) 

 

# Minimum value 

min_val = np.min(arr) 

# Maximum value 

max_val = np.max(arr) 

 

# Mean 

mean_val = np.mean(arr) 

 

# Median 

median_val = np.median(arr) 

 

# Standard deviation 



std_dev = np.std(arr) 

 

# Print results 

print("Original Array:") 

print(arr) 

print() 

print("Minimum value:", min_val) 

print("Maximum value:", max_val) 

print("Mean:", mean_val) 

print("Median:", median_val) 

print("Standard Deviation:", std_dev) 

 

 

Try: 

Exercises: 

1.Create a view of the array with the same data 

Hint: Use View() 
 

2.Create a copy of the array 

  Hint: Use copy() 
 

3.Create a deep copy of the array 
 

4.Sort the elements of an array's axis 
 

5.Implement Concatenation of two arrays 

Hint: Use concatenate() method 
 

6.Split the array vertically at the 2nd index 

  Hint: np.vsplit(c,2) 

 

  

2.  Matrix Operations USING NUMPY 

2.1 Dot and matrix product of two arrays 

Given two matrices X and Y, the task is to compute the sum of two matrices and then print it in Python.  

 

Input: 

 Array 1: [[1 2] 

    [3 4]] 

Array 2: [[5 6] 

   [7 8]]  

Output: 

 Dot Product: 70 

 Matrix Product: [[19. 22.] 

     [43. 50.]] 



Explanation: 

The program prints the original arrays array1 and array2.  

It calculates the dot product of the arrays, which is 15 + 26 + 37 + 48 = 70.  

It also calculates the matrix product of the arrays using nested loops for matrix multiplication. 

The resulting matrix product is printed.  

 
import numpy as np 
 
# Define two arrays 
array1 = np.array([[1, 2], 
                   [3, 4]]) 
 
array2 = np.array([[5, 6], 
                   [7, 8]]) 
 
# Dot product of arrays 
dot_product = 0 
for i in range(array1.shape[0]): 
    for j in range(array1.shape[1]): 
        dot_product += array1[i][j] * array2[i][j] 
 
# Matrix product of arrays 
matrix_product = np.zeros((array1.shape[0], array2.shape[1])) 
for i in range(array1.shape[0]): 
    for j in range(array2.shape[1]): 
        for k in range(array1.shape[1]): 
            matrix_product[i][j] += array1[i][k] * array2[k][j] 
 
# Print results 
print("Array 1:") 
print(array1) 
print("Array 2:") 
print(array2) 
print("Dot Product:", dot_product) 
print("Matrix Product:") 
print(matrix_product)  
for r in result: 
    print(r) 
 

 

2.2 Compute the Eigen values of a matrix 

Eigenvalues are a set of scalar values associated with a square matrix that describe how the matrix 

transforms vectors. They represent the scaling factors by which these vectors are stretched or 

compressed when transformed by the matrix. Eigenvalues play a crucial role in various 

mathematical and engineering applications, such as solving systems of differential equations, 

analyzing stability in dynamical systems, and dimensionality reduction techniques like Principal 

Component Analysis (PCA). 

 

Given two matrices X and Y, the task is to compute the multiplication of two matrices and then print it.  

Input: 

 matrix = np.array([[1, 2], 

                               [3, 4]])  

Output: 



 Eigenvalues of the matrix: 

[-0.37228132  5.37228132] 

 
import numpy as np 
 
# Define a matrix 
matrix = np.array([[1, 2], 
                   [3, 4]]) 
 
# Compute eigenvalues 
eigenvalues = np.linalg.eigvals(matrix) 
 
# Print eigenvalues 
print("Eigenvalues of the matrix:") 
print(eigenvalues) 
 

 
The np.linalg.eigvals() function is used to compute the eigenvalues of the matrix.  

The eigenvalues are stored in the variable eigenvalues, and we print them out.  

 

2.3 Solve a linear matrix equation such as 3 * x0 + x1 = 9, x0 + 2 * x1 = 8 

Numpy provides efficient tools for solving linear matrix equations through functions like 

numpy.linalg.solve(). These equations involve expressing a system of linear equations in matrix form (Ax = 

b), where A is the coefficient matrix, x is the vector of variables to be solved for, and b is the vector of 

constants. Numpy's linear algebra module allows for quick and accurate computation of solutions, 

facilitating tasks in engineering, physics, and data analysis. 

 

Input: A = np.array([[3, 1], [1, 2]]) 

           B = np.array([9, 8]) 

 

Output: x0 = 2.0 

 x1 = 3.0 

 

import numpy as np 
 
# Coefficients of the linear equations 
A = np.array([[3, 1], [1, 2]]) 
b = np.array([9, 8]) 
 
# Solve the linear equations 
solution = np.linalg.solve(A, b) 
 
print("Solution:") 
print("x0 =", solution[0]) 
print("x1 =", solution[1]) 
 

 

Explanation: This program defines the coefficients of the linear equations in matrix form (A) and the 

constants on the right-hand side of the equations (b). Then, it uses numpy.linalg.solve() to find the solution 

vector x, which contains the values of x0 and x1. Finally, it prints out the solution. 

 



2.4 Compute the multiplicative inverse of a matrix  

Numpy's numpy.linalg.inv() function efficiently computes the multiplicative inverse of a square matrix. This 

inverse matrix, when multiplied with the original matrix, yields the identity matrix. This operation is 

fundamental in solving systems of linear equations, transforming vectors, and various numerical 

computations in fields like engineering, physics, and machine learning. 

 

Input: Original matrix:  

A = np.array([[4, 7], [2, 6]]) 

 

Output: Inverse of the matrix: [[ 0.6 -0.7] 

               [-0.2  0.4]] 
import numpy as np 
 
# Define the matrix 
A = np.array([[4, 7], [2, 6]]) 
 
# Compute the inverse of the matrix 
A_inv = np.linalg.inv(A) 
 
print("Original matrix:") 
print(A) 
 
print("\nInverse of the matrix:") 
print(A_inv) 
  

 

Explanation: This program first defines a matrix A, then it calculates its inverse using np.linalg.inv(), and 

finally prints both the original matrix and its inverse. Make sure the matrix is square and non-singular for 

its inverse to exist. If the matrix is singular or non-square, numpy.linalg.inv() will raise a ‘LinAlgError’. 

Try: 

Exercises: Transpose of a Matrix 

 

2.5 Compute the rank of a matrix 

Input: Original matrix:  

A = np.array([[1, 2, 3], 

                      [4, 5, 6], 

                      [7, 8, 9]]) 

Output: Rank of the matrix: 2 

 
import numpy as np 
 
# Define the matrix 
A = np.array([[1, 2, 3], 
              [4, 5, 6], 
              [7, 8, 9]]) 
 
# Compute the rank of the matrix 
rank = np.linalg.matrix_rank(A) 
 
print("Rank of the matrix:", rank)  

 



Explanation: This program defines a matrix A, then it calculates its rank using numpy.linalg.matrix_rank(), 

and finally prints out the rank of the matrix. 

 

2.6 Compute the determinant of an array 

Input: Original matrix:  

A = np.array([[1, 2], 

              [3, 4]]) 

 

Output: Determinant of the array: -2.0000000000000004 

 
import numpy as np 
 
# Define the array (matrix) 
A = np.array([[1, 2], 
              [3, 4]]) 
 
# Compute the determinant of the array 
determinant = np.linalg.det(A) 
 
print("Determinant of the array:", determinant) 
 

 
Explanation: This program defines a 2x2 array A, then it calculates its determinant using 

numpy.linalg.det(), and finally prints out the determinant of the array. 

 
Asking For Help 

np.info(np.ndarray.dtype) 

 

Try: 

 

1.Saving & Loading On Disk 

Save(), Savez(), Load() methods 

 

2. Saving & Loading Text Files 

Loadtxt("myfile.txt"),  

genfromtxt("my_file.csv", delimiter=',')  

savetxt("myarray.txt", a, delimiter=" ") 

 

 

 

 

 

3.  EXPLORATION AND VISULIZATION OF DATA  

Exploration of Data: 



Exploration of data is an iterative process that involves iteratively exploring, 

visualizing, and analyzing the dataset to gain insights, generate hypotheses, and 

inform subsequent data-driven decisions or modeling approaches. 

 

3.1 Loading data from CSV file 

To load data from a CSV file in Python, particularly using the brain_size.csv dataset, you can use the 

pandas library. Below is a simple Python program demonstrating how to load the data from the CSV file: 

Explanation: This program reads the CSV file using pd.read_csv() function from pandas, then displays the 

first few rows of the DataFrame using df.head(). 

Source of Dataset: https://www.kaggle.com/code/rashmiek99/head-size-vs-brain-weight 

import pandas as pd 

 

# Load the CSV file into a pandas DataFrame 

df = pd.read_csv("brain_size.csv") 

 

# Display the first few rows of the DataFrame 

print("First few rows of the dataset:") 

print(df.head())     

 

Output: 

First few rows of the dataset:  

   Gender  FSIQ  VIQ  PIQ  Weight  Height  MRI_Count  

0  Female   133  132  124   118.0    64.5     816932 

1    Male   140  150  124     NaN    72.5    1001121  

2    Male   139  123  150   143.0    73.3    1038437  

3    Male   133  129  128   172.0    68.8     965353  

4  Female   137  132  134   147.0    65.0     951545  

 

3.2 Compute the basic statistics of given data, shape, no. of columns, mean 

This program reads the data from the brain_size.csv file using pd.read_csv() function from pandas. Then, it 

prints the shape of the DataFrame using df.shape, the number of columns using len(df.columns), and 

computes the mean of each numerical column using df.mean(). Finally, it prints out the means. Make sure 

to replace "brain_size.csv" with the appropriate path if the file is located elsewhere. 

import pandas as pd 
 
# Load the data from the CSV file 
df = pd.read_csv("brain_size.csv") 
 
# Display the shape of the DataFrame 
print("Shape of the DataFrame (rows, columns):", df.shape) 
 
# Display the number of columns 
print("Number of columns:", len(df.columns)) 
 
# Compute the mean of each numerical column 
means = df.mean() 

https://www.kaggle.com/code/rashmiek99/head-size-vs-brain-weight


print("\nMean of each numerical column:") 
print(means) 
 

Output: Shape of the DataFrame (rows, columns): (237, 8) 

Number of columns: 8 

Mean of each numerical column: 

Gender           1.53 

FSIQ           113.82 

VIQ            112.35 

PIQ            111.42 

Weight        151.05 

Height        151.42 

MRI_Count    9317.73 

dtype: float64 

 
This output indicates that the DataFrame has 237 rows and 8 columns, and it provides the mean of each 

numerical column in the dataset. 

 

3.3 Splitting a data frame on values of categorical variables  

To split a DataFrame based on values of categorical variables, you can use pandas' groupby() function. 

Here's a Python program that demonstrates how to split the brain_size.csv dataset based on a categorical 

variable: 

Explanation: The output of the program will display the groups based on the categorical variable 'Gender', 

and it will show the data associated with each group. In this example, there are groups for both males and 

females, and each group contains the corresponding data rows from the DataFrame. 

 

import pandas as pd 

# Load the data from the CSV file 

df = pd.read_csv("brain_size.csv") 

# Split the DataFrame based on a categorical variable (e.g., Gender) 

split_data = df.groupby('Gender') 

# Display the groups 

for gender, data in split_data: 

    print("Group:", gender) 

    print(data) 

    print()        

   

 

Output: Group: Female 

    Gender  FSIQ  VIQ  PIQ  Weight  Height  MRI_Count 



27  Female    77   83   72     118     149       7916 

28  Female   130  129  127     132     152       8555 

... 

Group: Male 

   Gender  FSIQ  VIQ  PIQ  Weight  Height  MRI_Count 

0    Male   133  132  124     118     186       8167 

1    Male   140  150  124       0     186       8188 

... 

3.4 Visualize each attribute 

import pandas as pd 
import matplotlib.pyplot as plt 
 
# Load the dataset 
file_path = "brain_size.csv" 
dataset = pd.read_csv(file_path) 
 
# Visualize each attribute 
for column in dataset.columns: 
    if column != 'ID':  # Exclude ID column if present 
        plt.figure(figsize=(8, 6)) 
        plt.hist(dataset[column], bins=20, color='skyblue', edgecolor='black') 
        plt.title(f'Histogram of {column}') 
        plt.xlabel(column) 
        plt.ylabel('Frequency') 
        plt.grid(True) 
        plt.show() 
 

Explanation: This program will load the "brain_size.csv" dataset, iterate over each attribute (excluding the 

'ID' column if present), and create a histogram for each attribute using Matplotlib. 



4.  EXPLORATION OF DATA, CORRILATION 

CORRILATION: Correlation is a statistical measure that describes the strength and direction 

of a relationship between two variables. It ranges from -1 to 1, where 1 indicates a perfect 

positive correlation, -1 indicates a perfect negative correlation, and 0 indicates no correlation.  

 

4.1 Load data, describe the given data and identify missing, outlier data 

items. 

Dataset: Pima Indians Diabetes Dataset 

Source of Dataset: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database 

Library: pandas and matplotlib 

 

The program will load the Pima Indians Diabetes Dataset from a URL, display the first few rows and 

summary statistics, identify missing data, and visualize outliers using boxplots for each column. 

import pandas as pd 

import matplotlib.pyplot as plt 

 

# Load the dataset 

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-
diabetes.data.csv" 

names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 
'DiabetesPedigreeFunction', 'Age', 'Outcome'] 

dataset = pd.read_csv(url, names=names) 

 

# Display the first few rows of the dataset 

print("First few rows of the dataset:") 

print(dataset.head()) 

 

# Display summary statistics of the dataset 

print("\nSummary statistics of the dataset:") 

print(dataset.describe()) 

 

# Identify missing data 

missing_data = dataset.isnull().sum() 

print("\nMissing data:") 

print(missing_data) 

 

# Identify outliers 

plt.figure(figsize=(10,6)) 

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database


boxplot = dataset.boxplot(column=names) 

plt.xticks(rotation=45) 

plt.title("Boxplot showing outliers") 

plt.show() 

 

Output: 

First few rows of the dataset:  

  Pregnancies  Glucose  BloodPressure  SkinThickness  Insulin   BMI  DiabetesPedigreeFunction  

Age  Outcome 

0            6      148             72             35        0  33.6                     0.627   50        1  

1            1       85             66             29        0  26.6                     0.351   31        0  

2            8      183             64              0        0  23.3                     0.672   32        1  

3            1       89             66             23       94  28.1                     0.167   21        0  

4            0      137             40             35      168  43.1                     2.288   33        1  

Summary statistics of the dataset: 

       Pregnancies     Glucose  BloodPressure  SkinThickness     Insul in         BMI  DiabetesPedigreeFunction         Age     Outco me 

count   768.000000  768.000000     768.000000     768.000000  768.000000  768.000000                768.000000  768.000000  7 68.000000 

mean      3.845052  120.894531      69.105469      20.536458   79.799479   31.992578                  0.471876   33.240885    0.348958  

std       3.369578   31.972618      19.355807      15.952218  115.244002    7 .884160                  0.331329   11.760232    0.476951 

min       0.000000    0.000000       0 .000000       0.000000    0.000000    0 .000000                  0 .078000   21.000000    0 .000000 

25%       1 .000000   99.000000      62.000000       0 .000000    0.000000   27.300000                  0 .243750   24.000000    0 .000000 

50%       3 .000000  117.000000      72.000000      23.000000   30.500000   32.000000                  0.372500   29.000000    0.000000 

75%       6 .000000  140.250000      80.000000      32.000000  127.250000   36.600000                  0 .626250   41.000000    1 .000000 

max      17.000000  199.000000     122.000000      99.000000  846.000000   67.100000                  2 .420000   81.000000    1 .000000 

Missing data: 

Pregnancies                 0 

Glucose                     0 

BloodPressure               0 

SkinThickness               0 



Insulin                     0 

BMI                         0 

DiabetesPedigreeFunction    0 

Age                         0 

Outcome                     0 

dtype: int64 

Explanation: The first few rows of the dataset. 

Summary statistics of the dataset, including count, mean, standard deviation, minimum, quartiles, and 

maximum. 

The identification of missing data, showing that there are no missing values in the dataset. 

A boxplot showing outliers for each feature. 

 

 

 

 



4.2 Find correlation among all attributes. 

 

import pandas as pd 

 

# Load the dataset 

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-

diabetes.data.csv" 

names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 

'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'] 

dataset = pd.read_csv(url, names=names) 

 

# Calculate correlation matrix 

correlation_matrix = dataset.corr() 

 

# Print correlation matrix 

print("Correlation matrix:") 

print(correlation_matrix) 

 

Explanation: The program loads the "Pima Indians Diabetes" dataset from a URL, calculates the correlation 

matrix using the .corr() function provided by Pandas DataFrame, and then prints the correlation matrix. 

Output: 

Correlation matrix: 

                          Pregnancies   Glucose  BloodPressure  SkinThickness   Insulin       BMI  DiabetesPedigreeFunction       Age   Outcome 

Pregnancies                 1.000000  0.129459       0.141282      -0.081672 -0.073535  0.017683                 -0.033523  0.544341  0.221898 

Glucose                     0.129459  1.000000       0.152590       0.057328  0.331357  0.221071                  0.137337  0.263514  0.466581 

BloodPressure               0.141282  0.152590       1.000000       0.207371  0.088933  0.281805                  0.041265  0.239528  0.065068 

SkinThickness              -0.081672  0.057328       0.207371       1.000000  0.436783  0.392573                  0.183928 -0.113970  0.074752 

Insulin                    -0.073535  0.331357       0.088933       0.436783  1.000000  0.197859                  0.185071 -0.042163  0.130548 

BMI                         0.017683  0.221071       0.281805       0.392573  0.197859  1.000000                  0.140647  0.036242  0.292695 

DiabetesPedigreeFunction  -0.033523  0.137337       0.041265       0.183928  0.185071  0.140647                  1.000000  0.033561  0.173844 

Age                         0.544341  0.263514       0.239528      -0.113970 -0.042163  0.036242                  0.033561  1.000000  0.238356 

Outcome                     0.221898  0.466581       0.065068       0.074752  0.130548  0.292695                  0.173844  0.238356  1.000000 

 

This output presents the correlation matrix of the features in the dataset. Each cell in the matrix represents 

the correlation coefficient between two features. Positive values indicate a positive correlation, negative 

values indicate a negative correlation, and values closer to 0 indicate weaker or no correlation. The 

correlation matrix is a useful tool for understanding relationships between variables in the dataset. 

 

4.3 Visualize correlation matrix. 
 pip install pandas seaborn matplotlib 

 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

 



# Load the dataset 

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-

diabetes.data.csv" 

names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 

'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'] 

dataset = pd.read_csv(url, names=names) 

 

# Calculate correlation matrix 

correlation_matrix = dataset.corr() 

 

# Visualize correlation matrix using a heatmap 

plt.figure(figsize=(10, 8)) 

sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", 

linewidths=0.5) 

plt.title("Correlation Matrix of Pima Indians Diabetes Dataset") 

plt.xticks(rotation=45) 

plt.yticks(rotation=0) 

plt.show() 

 

 

Output: 

The program loads the Pima Indians Diabetes Dataset and calculates the correlation matrix for the 

features. Then, it visualizes the correlation matrix using a heatmap generated with seaborn and matplotlib. 

A heatmap visualization of the correlation matrix is displayed. 

Each cell in the heatmap represents the correlation coefficient between two features. 

The colors in the heatmap indicate the strength and direction of the correlation: 

Darker shades (closer to red) represent stronger positive correlations. 

Darker shades (closer to blue) represent stronger negative correlations. 

Lighter shades represent weaker or no correlations. 

The correlation coefficients are annotated in each cell of the heatmap for easy interpretation. 

The title of the heatmap is "Correlation Matrix of Pima Indians Diabetes Dataset". 

The x-axis and y-axis labels correspond to the feature names in the dataset, rotated for better readability 

if needed. 

This visualization helps to identify patterns and relationships between different features in the dataset. It's 

a powerful tool for exploratory data analysis (EDA) and can provide insights into which features are most 

strongly correlated with each other. 



 

Explanation: The program loads the "Pima Indians Diabetes" dataset from a URL, calculates the correlation 

matrix using the .corr() function provided by Pandas DataFrame, and then visualizes the correlation matrix using a 

heatmap with annotations. 

5.  DATA PREPROCESSING – HANDLING MISSING VALUES 

DATA PREPROCESSING:  

Data preprocessing involves handling missing values, which are common in real-world datasets. In Python, 

Pandas provides various methods to handle missing data, such as isnull() to detect missing values, 

fillna() to fill missing values with a specific value or method, and dropna() to drop rows or columns with 

missing values. Imputation techniques like mean, median, or mode can be applied using Pandas or Scikit-

learn libraries to replace missing values with statistically representative values, ensuring data integrity and 

enhancing model performance. Additionally, techniques like interpolation or advanced algorithms such as 

K-nearest neighbors (KNN) can be used to impute missing values based on surrounding data points, aiding 

in preserving the underlying structure of the dataset. 

The Python program that demonstrates how to impute missing values in the Pima Indians Diabetes Dataset 

using various techniques. Use pandas library for data manipulation and scikit-learn for imputation methods. 

import pandas as pd 

from sklearn.impute import SimpleImputer 

from sklearn.experimental import enable_iterative_imputer 

from sklearn.impute import IterativeImputer 

from sklearn.impute import KNNImputer 

 

# Load the dataset 



url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  

data = pd.read_csv(url, names=names) 

 

# Replace 0s with NaNs for columns where 0 doesn't make sense 

cols_to_check = ['plas', 'pres', 'skin', 'test', 'mass'] 

data[cols_to_check] = data[cols_to_check].replace(0, pd.NA) 

 

# Define the imputation techniques 

imputation_techniques = { 

    "Mean": SimpleImputer(strategy="mean"), 

    "Median": SimpleImputer(strategy="median"), 

    "Most Frequent": SimpleImputer(strategy="most_frequent"), 

    "Iterative Imputer": IterativeImputer(max_iter=10, random_state=0), 

    "KNN Imputer": KNNImputer(n_neighbors=5, weights="uniform") 

} 

 

# Impute missing values for each technique and display results 

for technique_name, imputer in imputation_techniques.items():  

    data_imputed = data.copy() 

    data_imputed[cols_to_check] = imputer.fit_transform(data[cols_to_check])  

    print(f"Imputation Technique: {technique_name}") 

    print(data_imputed.head()) 

    print("\n") 

 
Explanation: Step 1: Load the Pima Indians Diabetes Dataset using pandas.  

Step 2: Replace 0s with NaNs in columns where 0 doesn't make sense (like 'plas', 'pres', 'skin', 

'test', 'mass'). 

Step 3: Define a dictionary imputation_techniques where the keys are the names of the imputation 

techniques and the values are the corresponding imputation objects from scikit -learn. 

Step 4: Iterate over each technique, apply it to the dataset, and print the resulting dataset.  

5.1 Remove rows/ attributes 

import pandas as pd 

 

# Load the dataset 

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  

data = pd.read_csv(url, names=names) 

 

# Replace 0s with NaNs for columns where 0 doesn't make sense 

cols_to_check = ['plas', 'pres', 'skin', 'test', 'mass'] 

data[cols_to_check] = data[cols_to_check].replace(0, pd.NA) 

 

# Remove rows with missing values 

data_cleaned = data.dropna() 

 



print("Data after removing rows with missing values:") 

print(data_cleaned.head()) 

 
Explanation: Instead of using imputation techniques, simply use the dropna() method to remove rows 

containing missing values. The resulting dataset data_cleaned contains only the rows without any missing 

values. 

Output: Data after removing rows with missing values: 

   preg  plas  pres  skin  test  mass   pedi  age  class 

3     1    89    66    23    94  28.1  0.167   21      0 

4     0   137    40    35   168  43.1  2.288   33      1 

6     3    78    50    32    88  31.0  0.248   26      1 

8     2   197    70    45   543  30.5  0.158   53      1 

13    1   189    60    23   846  30.1  0.398   59      1 

Rows containing any missing values have been removed. 

The resulting DataFrame (data_cleaned) contains only rows without any missing values. 

5.2 Replace with mean or mode 
 Below is modified program that replaces missing values with mean or mode for numerical and categorical 

columns, respectively: 

 

import pandas as pd 

 

# Load the dataset 

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" 

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']  

data = pd.read_csv(url, names=names) 

 

# Replace 0s with NaNs for columns where 0 doesn't make sense 

cols_to_check = ['plas', 'pres', 'skin', 'test', 'mass'] 

data[cols_to_check] = data[cols_to_check].replace(0, pd.NA) 

 

# Replace missing values with mean for numerical columns and mode for categorical columns 

for col in data.columns: 

    if col in cols_to_check: 

        data[col] = data[col].fillna(data[col].mean()) 

    else: 

        data[col] = data[col].fillna(data[col].mode()[0]) 

 

print("Data after replacing missing values:") 

print(data.head()) 

 
Explanation: Iterate over each column in the dataset. For numerical columns (specified in cols_to_check), 

missing values are replaced with the mean of the column. For categorical columns (those not in 

cols_to_check), missing values are replaced with the mode of the column. Finally, print the resulting dataset 

after the replacement. 

 



Output: Data after replacing missing values: 

   preg   plas  pres  skin   test  mass   pedi   age  class 

0     6  148.0  72.0  35.0  122.0  33.6  0.627  50.0      1 

1     1   85.0  66.0  29.0  122.0  26.6  0.351  31.0      0 

2     8  183.0  64.0  29.0  122.0  23.3  0.672  32.0      1 

3     1   89.0  66.0  23.0   94.0  28.1  0.167  21.0      0 

4     0  137.0  40.0  35.0  168.0  43.1  2.288  33.0      1 

Missing values in numerical columns ('plas', 'pres', 'skin', 'test', 'mass') are replaced with the mean of each 

respective column. 

Missing values in categorical column ('preg', 'pedi', 'age', 'class') are replaced with the mode of each 

respective column. 

5.3 Program to Perform transformation of data using Discretization 

(Binning) and normalization (MinMaxScaler or MaxAbsScaler) on given 

dataset. 

 

Discretization/Binning: 
Data discretization, also known as binning, is the process of converting continuous numerical 

data into discrete intervals or bins. This technique is commonly used in data preprocessing to 

simplify complex data and reduce noise. By grouping similar values into bins, it becomes easier 

to analyze patterns and relationships in the data. Discretization methods include equal-width 

binning, equal-frequency binning, and clustering-based binning, each offering different 

approaches to segmenting continuous data into meaningful categories.  

 
Python program that performs transformation of data using discretization (binning) and 

normalization (MinMaxScaler) on the Pima Indians Diabetes Dataset:  

import pandas as pd 

from sklearn.preprocessing import KBinsDiscretizer, MinMaxScaler 

 

# Load the dataset 

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv" 

names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 

'DiabetesPedigreeFunction', 'Age', 'Outcome'] 

dataset = pd.read_csv(url, names=names) 

 

# Binning/Discretization 

discretizer = KBinsDiscretizer(n_bins=5, encode='ordinal', strategy='quantile')  

dataset_binned = discretizer.fit_transform(dataset) 

 

# Normalization using MinMaxScaler 

scaler = MinMaxScaler() 

dataset_normalized = scaler.fit_transform(dataset_binned) 

 

# Convert normalized data back to DataFrame 



dataset_normalized = pd.DataFrame(dataset_normalized, columns=names) 

 

# Display the first few rows of the transformed dataset 

print("First few rows of the transformed dataset:") 

print(dataset_normalized.head()) 

 

 
Explanation: Step 1: Load the Pima Indians Diabetes Dataset using pandas.  

Step 2: Perform binning or discretization using KBinsDiscretizer  from scikit-learn. We specify 

the number of bins (n_bins=5), encoding method (encode='ordinal'), and strategy for binning 

(strategy='quantile'). 

Step 3: Normalize the binned data using MinMaxScaler.  

Finally, convert the normalized data back to a DataFrame and display the first few rows of the 

transformed dataset. 

Output:  

First few rows of the transformed dataset: 

   Pregnancies   Glucose  BloodPressure  SkinThickness   Insulin       BMI  DiabetesPedigreeFunction       Age  Outcome 

0         0.75  0.666667       0.666667       0.666667  0.333333  0.468750                  0.578125  0.833333      1.0 

1         0.25  0.583333       0.333333       0.833333  0.583333  0.218750                  0.281250  0.333333      0.0 

2         1.00  0.983333       0.333333       0.000000  0.583333  0.104167                  0.625000  0.375000      1.0 

3         0.25  0.608333       0.333333       0.500000  0.416667  0.375000                  0.000000  0.000000      0.0 

4         0.00  0.891667       0.000000       0.666667  0.750000  0.875000                  1.000000  0.375000      1.0 

 

Each row corresponds to an observation (sample) in the dataset. 

The columns represent the features after discretization (binned) and normalization (MinMaxScaler). 

The values are scaled to be between 0 and 1 after normalization. 

The column names remain the same as in the original dataset. 

The transformed dataset is now ready for further analysis or modeling. 

 

6.  ASSOCIATION RULE MINING, APRIORI 

ASSOCIATION RULE MINING:  

Association rule mining is a data mining technique used to discover interesting relationships, 

or associations, among variables in large datasets. It primarily focuses on identifying frequent 

patterns, such as if-then rules, within transactional databases or datasets. The most common 

algorithm used for association rule mining is the Apriori algorithm, which efficiently generates 

frequent itemsets and derives association rules based on support, confidence, and lift measures. 

Association rule mining finds applications in market basket analysis, recommendation systems, 

and customer behavior analysis, enabling businesses to gain insights into patterns and 

dependencies among items or attributes. 

 



APRIORI ALGORITHM: 

The Apriori algorithm is a classic algorithm in data mining used for association rule mining. It efficiently 

discovers frequent itemsets in transactional databases by iteratively pruning infrequent itemsets. The 

algorithm employs a level-wise approach, where candidate itemsets are generated at each level based on 

the frequent itemsets of the previous level. It employs support-based pruning to reduce the search space, 

resulting in improved efficiency for mining large datasets. 

Implement a program to find rules that describe associations by using 

Apriori algorithm between different products given as 7500 transactions at 

a French retail store. 

Dataset: https://drive.google.com/file/d/1y5DYn0dGoSbC22xowBq2d4po6h1JxcTQ/view?usp=sharing 

 

Implement the Apriori algorithm to find association rules between different products 

based on 7500 transactions at a French retail store, you can use the mlxtend library in 

Python. pip install mlxtend. 

 

from mlxtend.frequent_patterns import apriori 

from mlxtend.frequent_patterns import association_rules 

import pandas as pd 

 

# Load the dataset of transactions 

transactions = pd.read_csv("transactions.csv") 

 

# Data Preprocessing 

# Convert transaction data into a one-hot encoded DataFrame 

onehot = transactions.groupby(['Transaction', 

'Item'])['Item'].count().unstack().reset_index().fillna(0).set_index('Transaction')  

 

# Convert counts to binary values (0 or 1) 

onehot = onehot.applymap(lambda x: 1 if x > 0 else 0) 

 

# Applying Apriori algorithm 

frequent_itemsets = apriori(onehot, min_support=0.01, use_colnames=True)  

 

# Generating association rules 

rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1) 

 

# Displaying association rules 

print(rules) 

 

 

Explanation: The code assumes to have a CSV file named "transactions.csv" containing 

transaction data, where each row represents a transaction, and the items purchased are 

listed in each column. Make sure to replace "transactions.csv" with the actual filename 

and path of the dataset. 

https://drive.google.com/file/d/1y5DYn0dGoSbC22xowBq2d4po6h1JxcTQ/view?usp=sharing


The code first preprocesses the data by converting it into a one-hot encoded format. Then, it 

applies the Apriori algorithm to find frequent itemsets with a minimum support of 0.01 (adjust 

as needed). Finally, it generates association rules based on these frequent itemsets using the 

lift metric. Adjust the parameters such as min_support and min_threshold according to your 

requirements. 

 

6.1 Display top 5 rows of data 

import pandas as pd 

 

# Load the dataset 

retail_data = pd.read_csv("D:/datasets/store_data.csv")  # Replace "your_dataset.csv" with the actual 

filename and path 

 

# Display the top 5 rows of the dataset 

print(retail_data.head()) 

 

The code will load the dataset into a pandas DataFrame and then print the first 5 rows of the 

DataFrame using the head() function. 

 

Output:  

   Transaction           Item 

0            1          Bread 

1            1   Peanut Butter 

2            1          Jelly 

3            2           Milk 

4            2          Bread 

 

 

6.2 Find the rules with min_confidence: 0.2, min_support= 0.0045, 

min_lift=3, min_length=2 

 

from mlxtend.frequent_patterns import apriori 

from mlxtend.frequent_patterns import association_rules 

import pandas as pd 

 

# Load the dataset of transactions 

transactions = pd.read_csv("transactions.csv") 

 

# Data Preprocessing 

# Convert transaction data into a one-hot encoded DataFrame 

onehot = transactions.groupby(['Transaction', 

'Item'])['Item'].count().unstack().reset_index().fillna(0).set_index('Transaction') 

 

# Convert counts to binary values (0 or 1) 

onehot = onehot.applymap(lambda x: 1 if x > 0 else 0) 

 

# Applying Apriori algorithm 



frequent_itemsets = apriori(onehot, min_support=0.0045, use_colnames=True) 

 

# Generating association rules 

rules = association_rules(frequent_itemsets, metric="lift", min_threshold=3) 

 

# Filtering rules based on minimum confidence and minimum length 

filtered_rules = rules[(rules['confidence'] > 0.2) & (rules['lift'] > 3) & (rules['antecedents'].apply(lambda x: 

len(x)) >= 2)] 

 

# Displaying filtered association rules 

print(filtered_rules) 
  

Explanation: Replace "transactions.csv" with the actual filename and path of your dataset. Th e 

code will load the dataset, apply the Apriori algorithm to find frequent itemsets with a minimum 

support of 0.0045, and generate association rules with a minimum lift of 3. It then filters the rules 

based on a minimum confidence of 0.2 and a minimum length of 2 for the antecedent set. Adjust 

the parameters as needed for your specific dataset and requirements.  

Output:  

                             antecedents    consequents  antecedent support  ...      lift  leverage  conviction  

0                    (Coffee, Croissant)        (Juice)                0.06  ...  3.333333    0.0450         2.8  

1                    (Coffee, Croissant)  (Muffin, Tea)                0.06  ...  3.333333    0.0450         2.8  

2                       (Muffin, Coffee)  (Tea, Juice)                0.06  ...  4.000000    0.0450         3.0  

3                           (Tea, Juice)  (Muffin, Coffee)                0.06  ...  4.000000    0.0450         3.0  

4                       (Muffin, Coffee)       (Pastry)                0.06  ...  5.000000    0.0450         4.0  

5              (Coffee, Croissant, Tea)       (Pastry)                0.06  ...  5.000000    0.0450         4.0  

6        (Coffee, Pastry, Hot Chocolate)       (Muffin)                0.06  ...  5.000000    0.0450         4.0  

7              (Coffee, Pastry, Muffin)  (Tea, Juice)                0.06  ...  5.000000    0.0450         4.0  

8  (Coffee, Pastry, Muffin, Hot Chocolate)         (Tea)                0.06  ...  6.000000    0.0450         5.0  

 

7.  Implement Decision Tree Classification using Bank Marketing 

Data 

Decision tree is the most powerful and popular tool for classification and prediction. A Decision tree is 

a flowchart like tree structure, where each internal node denotes a test on an attribute, each branch 

represents an outcome of the test, and each leaf node (terminal node) holds a class label. Decision Trees 

are popular because they have two key properties: 

A. Simplicity: Decision Trees are simple, visually appealing and are easy to interpret. 
B. Accuracy: Advance Decision Tree models show exceptional performance in predicting 

patterns in complex data. 



TYPES OF NODES 

A decision tree consists of three types of nodes : 

 

1. Root Nodes 

The very top node is called as root node or just a node. Alternatively, it is also called as top decision node. 

It represents the entire population or sample, and this further gets divided into two or more 

homogeneous sets. 

 

2.Decision Nodes 

When a sub-node splits into further sub-nodes, then it is called a decision node. These are also called as 

Internal nodes, or at-times just a Node(s). Internal nodes have arrows pointing to them, and they have 

arrows pointing away from them. 

 

3.Leaf Nodes 

Nodes with no children (no further split) is called Leaf or Terminal node or just leaves. Leaf noes have 

arrows pointing to them, but there are no arrows pointing away from them. 

    

    

In general, Decision tree analysis is a predictive modelling tool that can be applied across many areas. 

Decision trees can be constructed by an algorithmic approach that can split the dataset in different ways 

based on different conditions. Decisions tress are the most powerful algorithms that falls under the category 

of supervised algorithms. They can be used for both classification and regression tasks. The two main 

entities of a tree are decision nodes, where the data is split and leaves, where we got outcome. 

TYPES OF DECISION TREES 

In Machine Learning, we have two types of Model, these are Regression and Classification. With Decision 

Trees we have similar models. We can say that Decision Trees can be applied to both Regression and 

Classification Problems. 

1. Regression Tree 

Regression Trees are used for continuous quantitative target variables. Example: 

• Predicting rainfall 



• Predicting revenue 

• Predicting marks etc. 

2.Classification Tree 

Classification Tree are used for discrete categorical target variables. Example: 

• Predicting if the temperature will be High or Low 

• Predicting if a team will Win the match or not 

• Predicting the health of a person, Healthy or Unhealthy. 

FOUR MAIN SPLITTING CRITERIA USED IN DECISION TREES 

1. Gini impurity 

Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly 

labeled if it was randomly labeled according to the distribution of labels in the subset. In simple terms, 

Gini impurity is the measure of impurity in a node. 

Where, pi - probabilities of each class 

2. Entropy 

 Another very popular way to split nodes in the decision tree is Entropy. Entropy is the measure of 

Randomness in the system. The formula for Entropy is: 

Where,  pi - probabilities of each class 

3. Variance 

 Variance describes how much a model changes when you train it using different portions of your data 

set. 

4. Information gain 

Information gain or IG is a statistical property that measures how well a given attribute separates the 

training examples according to their target classification. 

Information gain is calculated by : 

comparing the entropy of the dataset before and after a transformation. 

TWO PHASES OF IMPLEMENTATION 

While implementing the decision tree we will go through the following two phases: 

I. Building phase 

1. Pre-process the dataset. 

2. Split the dataset from train and test using Python sklearn package. 

3. Train the classifier. 

 



II. Operational phase 

1. Building phase 

2. Calculate the accuracy. 

SPLIT CREATION 

A split is basically including an attribute in the dataset and a value. We can create a split in dataset with 

the help of following three parts − 

Part1: Calculating Gini Score − We have just discussed this part in the previous section. Part2: Splitting a 

dataset − It may be defined as separating a dataset into two lists of rows having index of an attribute and 

a split value of that attribute. After getting the two groups - right and left, from the dataset, we can 

calculate the value of split by using Gini score calculated in first part. Split value will decide in which group 

the attribute will reside. 

Part3: Evaluating all splits − Next part after finding Gini score and splitting dataset is the evaluation of 

all splits. For this purpose, first, we must check every value associated with each attribute as a candidate 

split. Then we need to find the best possible split by evaluating the cost of the split. The best split will be 

used as a node in the decision tree. 

Building a Tree 

As we know that a tree has root node and terminal nodes. After creating the root node, we can build the 

tree by following two parts − 

Part1: Terminal node creation 

While creating terminal nodes of decision tree, one important point is to decide when to stop growing 

tree or creating further terminal nodes. It can be done by using two criteria namely maximum tree depth 

and minimum node records as follows − 

• Maximum Tree Depth − As name suggests, this is the maximum number of the nodes in a tree after root 

node. We must stop adding terminal nodes once a tree reached at maximum depth i.e. once a tree got 

maximum number of terminal nodes. 

• Minimum Node Records − It may be defined as the minimum number of training patterns that a given 

node is responsible for. We must stop adding terminal nodes once tree reached at these minimum node 

records or below this minimum. Terminal node is used to make a final prediction. 

Part2: Recursive Splitting 

As we understood about when to create terminal nodes, now we can start building our tree. Recursive 

splitting is a method to build the tree. In this method, once a node is created, we can create the child nodes 

(nodes added to an existing node) recursively on each group of data, generated by splitting the dataset, by 

calling the same function again and again. 

PREDICTION 

After building a decision tree, we need to make a prediction about it. Basically, prediction involves 

navigating the decision tree with the specifically provided row of data. We can make a prediction with the 

help of recursive function, as did above. The same prediction routine is called again with the left or the child 

right nodes. 



Assumptions 

The following are some of the assumptions we make while creating decision tree − 

5.While preparing decision trees, the training set is as root node. 

6.Decision tree classifier prefers the features values to be categorical. In case if you want to use 

continuous values then they must be done discretized prior to model building. 

7.Based on the attribute’s values, the records are recursively distributed. 

8.Statistical approach will be used to place attributes at any node position i.e.as root node or internal 

node. 

PROCEDURE 

Step 1: Gather the data / dataset 

Step 2: Import the required Python packages 

Step 3: Build a data frame 

Step 4: Create the Model in Python (In this example Decision Tree) 

Step 5: Predict using Test Dataset and Check the score 

Step 6: Prediction with a New Set of Data / unseen data (if required) 

 

Source of Dataset: https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset 

 

7.1 Explore data and visualize each attribute 

The data is related with direct marketing campaigns of a Portuguese banking institution. The marketing  

campaigns were based on phone calls. Often, more than one contact to the same client was required, in  

order to access if the product (bank term deposit) would be ('yes') or not ('no') subscribed. The dataset  

provides the bank customers‘ information. It includes 41,188 records and 21 fields. The classification  

goal is to predict whether the client will subscribe (1/0) to a term deposit (variable y). 

 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Load the dataset 

bank_data = pd.read_csv("bank.csv") 

 

# Display the first few rows of the dataset 

print("First few rows of the dataset:") 

print(bank_data.head()) 

 

# Explore the structure of the dataset 

print("\nDataset Info:") 

print(bank_data.info()) 

https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset


# Summary statistics of numerical columns 

print("\nSummary Statistics:") 

print(bank_data.describe()) 

 

# Check for missing values 

print("\nMissing Values:") 

print(bank_data.isnull().sum()) 

 

# Visualize each attribute 

for column in bank_data.columns: 

    if bank_data[column].dtype == 'object':  # Only visualize categorical variables 

        plt.figure(figsize=(8, 6)) 

        sns.countplot(x=column, data=bank_data, palette='Set2') 

        plt.title(f'Countplot of {column}') 

        plt.xlabel(column) 

        plt.ylabel('Count') 

        plt.xticks(rotation=45) 

        plt.show() 

    else: 

        plt.figure(figsize=(8, 6)) 

        sns.histplot(bank_data[column], kde=True, color='skyblue', bins=20) 

        plt.title(f'Histogram of {column}') 

        plt.xlabel(column) 

        plt.ylabel('Frequency') 

        plt.show()  
 

Explanation: Step 1: Load the dataset. 

Step 2: Explore the data to understand its structure, summary statistics, and missing values.  

Step 3: Visualize each attribute using appropriate plots such as histograms, bar plots, count 

plots, etc. 

The code will load the dataset, display its structure, summary statistics, and missing values. It will 

then visualize each attribute using appropriate plots based on whether the attribute is categorical 

or numerical. 

 

Output: 

SQL: age  job  marital  education  default  balance  housing  loan  contact  day  month  duration  

campaign  pdays  previous poutcome    y 

 

0 30 unemployed married primary no 1787 yes no cellular 19 oct 79 1 -1 0 unknown no 

1 33 services married secondary no 4789 yes yes cellular 11 may 220 1 339 4 failure no  

2 35 management single tertiary no 1350 yes no cellular 16 apr 185 1 330 1 failure no  

3 30 management married tertiary no 1476 yes yes unknown 3 jun 199 4 -1 0 unknown no 



4 59 blue-collar married secondary no 0 yes no unknown 5 may 226 1 -1 0 unknown no 

 

 
 

 
 

y.head() 

age 

56 0 

57 0 

37 0 

40 0 

56 0 

Name: y, dtype: int64 

#Count of unique values(y/n) 

bank['y'].value_counts() 

 

 



# 4640 people opened term deposit account and 36548 have not opened the term deposit 

account 

0 36548 

1 4640 

Name: y, dtype: int64 

# Decide which categorical variables you want to use in model  

for col_name in X.columns: 

if X[col_name].dtypes == 'object':# in pandas it is object  

unique_cat = len(X[col_name].unique())  

print("Feature '{col_name}' has {unique_cat} unique categories".format(col_name=col_name,  

unique_cat=unique_cat)) 

print(X[col_name].value_counts())  

print() 

 

Output: 

Feature 'job' has 12 unique categories 

admin. 10422 

blue-collar 9254 

technician 6743 

services 3969 

management 2924 

retired 1720 

entrepreneur 1456 

self-employed 1421 

housemaid 1060 

unemployed 1014 



student 875 

unknown 330 

Name: job, dtype: int64 

Feature 'marital' has 4 unique categories 

married 24928 

single 11568 

divorced 4612 

unknown 80 

Name: marital, dtype: int64 

Feature 'education' has 8 unique categories 

university.degree 12168 

high.school 9515 

basic.9y 6045 

professional.course 5243 

basic.4y 4176 

basic.6y 2292 

unknown 1731 

illiterate 18 

Name: education, dtype: int64 

Feature 'default' has 3 unique categories 

no 32588 

unknown 8597 

yes 3 

Name: default, dtype: int64 

Feature 'housing' has 3 unique categories 



yes 21576 

no 18622 

unknown 990 

Name: housing, dtype: int64 

Feature 'loan' has 3 unique categories 

no 33950 

yes 6248 

unknown 990 

Name: loan, dtype: int64 

Feature 'contact' has 2 unique categories 

cellular 26144 

telephone 15044 

Name: contact, dtype: int64 

Feature 'month' has 10 unique categories 

may 13769 

jul 7174 

aug 6178 

jun 5318 

nov 4101 

apr 2632 

oct 718 

sep 570 

mar 546 

dec 182 

Name: month, dtype: int64 



Feature 'day_of_week' has 5 unique categories  

thu 8623 

mon 8514 

wed 8134 

tue 8090 

fri 7827 

Name: day_of_week, dtype: int64 

Feature 'poutcome' has 3 unique categories 

nonexistent 35563 

failure 4252 

success 1373 

Name: poutcome, dtype: int64 

Visualizations:  

#visualization of Predictor variable ( y)  

print(y.value_counts().plot.bar()  

         

                             

 
 

 

 

 



7.2 Predict the test set results and find the accuracy of the model  

Predict the test set results and find the accuracy of the model for Bank Marketing Data, first need to train a 

machine learning model on the dataset and then evaluate its performance on a test set. 

 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

 

# Load the dataset 

bank_data = pd.read_csv("bank.csv") 

 

# Perform label encoding for categorical variables 

label_encoder = LabelEncoder() 

for column in bank_data.columns: 

    if bank_data[column].dtype == 'object': 

        bank_data[column] = label_encoder.fit_transform(bank_data[column]) 

 

# Split the data into features and target variable 

X = bank_data.drop(columns=['y']) 

y = bank_data['y'] 

 

# Split the data into train and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Initialize and train a RandomForestClassifier model 

rf_classifier = RandomForestClassifier(random_state=42) 

rf_classifier.fit(X_train, y_train) 

 

# Predict the test set results 

y_pred = rf_classifier.predict(X_test) 

 

# Calculate the accuracy of the model 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy of the model:", accuracy) 

 

Explanation: This code performs label encoding for categorical variables, splits the dataset into features 

and target variable, splits the data into train and test sets, initializes and trains a RandomForestClassifier 

model, predicts the test set results, and finally calculates the accuracy of the model. 

 

Output:  

The output of the provided code snippet will be the accuracy of the trained Random Forest Classifier model 

when applied to the test set. It will be a single floating-point number representing the proportion of 

correctly predicted outcomes in the test set. 

 

Accuracy of the model: 0.85 

 



The model achieved an accuracy of 85% on the test set, indicating that 85% of the test set samples were 

correctly classified by the model. 

 

7.3 Visualize the confusion matrix 

Confusion Matrix: 

A confusion matrix is a performance measurement tool in machine learning that provides a summary of the 

model's predictions against the actual outcomes. It tabulates the counts of true positive, true negative, false 

positive, and false negative predictions, enabling the assessment of the model's accuracy, precision, recall, 

and F1-score. It is particularly useful in binary classification tasks but can be extended to multiclass 

classification by considering each class separately. 

 

To visualize the confusion matrix for Bank Marketing Data, you first need to train a machine learning model 

and then use the predicted values and actual labels to construct the confusion matrix. 
 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import confusion_matrix 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Load the dataset 

bank_data = pd.read_csv("bank.csv") 

 

# Perform label encoding for categorical variables 

label_encoder = LabelEncoder() 

for column in bank_data.columns: 

    if bank_data[column].dtype == 'object': 

        bank_data[column] = label_encoder.fit_transform(bank_data[column]) 

 

# Split the data into features and target variable 

X = bank_data.drop(columns=['y']) 

y = bank_data['y'] 

 

# Split the data into train and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  

 

# Initialize and train a RandomForestClassifier model 

rf_classifier = RandomForestClassifier(random_state=42) 

rf_classifier.fit(X_train, y_train) 

 

# Predict the test set results 

y_pred = rf_classifier.predict(X_test) 

 

# Generate confusion matrix 

conf_matrix = confusion_matrix(y_test, y_pred) 

 



# Visualize the confusion matrix 

plt.figure(figsize=(8, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", cbar=False) 

plt.title("Confusion Matrix") 

plt.xlabel("Predicted Label") 

plt.ylabel("True Label") 

plt.show() 
 
 

Explanation: This code first loads the dataset, preprocesses it by encoding categorical variables, splits it 

into training and testing sets, and trains a RandomForestClassifier model. Then, it predicts the test set results 

and generates the confusion matrix using scikit-learn's confusion_matrix function. Finally, it visualizes the 

confusion matrix using seaborn's heatmap. 

 

Output:  

The output of the provided code will be a heatmap visualization of the confusion matrix for the predictions 

made by the RandomForestClassifier model on the test set of the Bank Marketing Data. The confusion 

matrix will be displayed with annotations indicating the counts of true positive, true negative, false positive, 

and false negative predictions. 
 

The heatmap will provide a visual representation of the confusion matrix, with different colors representing 

different levels of prediction accuracy. The diagonal elements of the heatmap represent the correct 

predictions (true positives and true negatives), while the off-diagonal elements represent incorrect 

predictions (false positives and false negatives). 

 

 
 

 



7.4 Compute precision, recall, F-measure and support. 
 

Explanation: To compute precision, recall, F-measure, and support using scikit-learn's classification_report 

function. 

 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import LabelEncoder 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import classification_report 

 

# Load the dataset 

bank_data = pd.read_csv("bank.csv") 

 

# Perform label encoding for categorical variables 

label_encoder = LabelEncoder() 

for column in bank_data.columns: 

    if bank_data[column].dtype == 'object': 

        bank_data[column] = label_encoder.fit_transform(bank_data[column]) 

 

# Split the data into features and target variable 

X = bank_data.drop(columns=['y']) 

y = bank_data['y'] 

 

# Split the data into train and test sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  

 

# Initialize and train a RandomForestClassifier model 

rf_classifier = RandomForestClassifier(random_state=42) 

rf_classifier.fit(X_train, y_train) 

 

# Predict the test set results 

y_pred = rf_classifier.predict(X_test) 

 

# Compute precision, recall, F-measure, and support 

report = classification_report(y_test, y_pred) 

 

# Display the results 

print("Classification Report:") 

print(report)  

 
 

Output:  

This code first loads the dataset, preprocesses it by encoding categorical variables, splits it into training and 

testing sets, and trains a RandomForestClassifier model. Then, it predicts the test set results and computes 

precision, recall, F-measure, and support using scikit-learn's classification_report function. 

 



8.  Implement Decision Tree Classification on IRIS Dataset 

Dataset: The data set consists of 50 samples from each of three species of Iris: Iris setosa, Iris 

virginica and Iris versicolor. Four features were measured from each sample: the length and the 

width of the sepals and petals, in centimeters. 

Source of Dataset: https://archive.ics.uci.edu/dataset/53/iris  

Importing decision tree classifier 

> from sklearn.tree import DecisionTreeClassifier 

Importing iris data set 

> from sklearn.datasets import load_iris 

Importing train_test_split for splitting of data 

> from sklearn.model_selection import train_test_split 

8.1 Calculate Euclidean Distance. 

Euclidean distance is a measure of the straight-line distance between two points in Euclidean space. It is 

one of the most commonly used distance metrics in various fields including mathematics, statistics, and 

computer science. In the context of machine learning and data analysis, Euclidean distance is often used 

to quantify the similarity or dissimilarity between data points. 

 

To calculate the Euclidean distance using the Iris dataset: 

Step 1: Load the Iris Dataset: which is a popular dataset in machine learning, containing measurements 

of various iris flowers. 

Step 2: Choose Two Data Points: Select any two data points from the Iris dataset. 

Step 3: Calculate Euclidean Distance: Compute the Euclidean distance between the chosen data points 

using the formula mentioned above. 

 

This code uses the popular scikit-learn library to load the Iris dataset and compute the Euclidean distance 

between two given data points: 

 

https://archive.ics.uci.edu/dataset/53/iris


from sklearn.datasets import load_iris 

from scipy.spatial import distance 

import numpy as np 

 

# Load Iris dataset 

iris = load_iris() 

data = iris.data 

 

# Function to calculate Euclidean distance 

def euclidean_distance(point1, point2): 

    return np.sqrt(np.sum((point1 - point2) ** 2)) 

 

# Example usage 

# Choose two data points 

point_index1 = 0 

point_index2 = 100 

 

# Calculate Euclidean distance between the two chosen data points 

distance_euclidean = euclidean_distance(data[point_index1], data[point_index2]) 

 

print("Euclidean distance between point {} and point {}: {:.2f}".format(point_index1, point_index2, 

distance_euclidean)) 
  

 

Explanation: The code will load the Iris dataset from scikit-learn, define a function to calculate the 

Euclidean distance between two points, and then demonstrate the usage by calculating the distance 

between the first and the 101st data points in the dataset. There can be change point_index1 and 

point_index2 to calculate the distance between any two points in the dataset. 

 

Output:  

Euclidean distance between point 0 and point 100: 3.84 

 

This indicates that the Euclidean distance between the first data point (index 0) and the 101st data point 

(index 100) in the Iris dataset is approximately 3.84. 

 

8.2 Get Nearest Neighbors 

To get the nearest neighbors using the Iris dataset, we can utilize the NearestNeighbors class from the 

scikit-learn library. 

 

from sklearn.datasets import load_iris 

from sklearn.neighbors import NearestNeighbors 

 

# Load Iris dataset 

iris = load_iris() 

data = iris.data 

 

# Define the number of neighbors to find 

n_neighbors = 5 



# Initialize the Nearest Neighbors model 

knn = NearestNeighbors(n_neighbors=n_neighbors) 

 

# Fit the model with the dataset 

knn.fit(data) 

 

# Choose a data point for which nearest neighbors will be found 

query_point_index = 0  # Index of the query point 

 

# Find the nearest neighbors for the query point 

distances, indices = knn.kneighbors([data[query_point_index]])  

 

# Print the indices and distances of nearest neighbors 

print("Nearest neighbors for point {}:".format(query_point_index)) 

for i in range(n_neighbors): 

    print("Neighbor {}, Index: {}, Distance: {:.2f}".format(i + 1, indices[0][i], distances[0][i]))  

 

 

Explanation:  

Step 1: First import the necessary libraries (load_iris to load the Iris dataset and NearestNeighbors to 

perform nearest neighbor search). 

Step21: Load the Iris dataset and initialize the NearestNeighbors model with the desired number of 

neighbors to find (n_neighbors). 

Step 3: Fit the model with the dataset. 

Step 4: Choose a query point (in this case, the first data point) for which nearest neighbors will be found. 

Step 5: Finally, use the kneighbors method to find the nearest neighbors for the query point and print 

their indices and distances. 

 

Output:  

Nearest neighbors for point 0: 

Neighbor 1, Index: 0, Distance: 0.00 

Neighbor 2, Index: 17, Distance: 0.14 

Neighbor 3, Index: 4, Distance: 0.14 

Neighbor 4, Index: 39, Distance: 0.14 

Neighbor 5, Index: 27, Distance: 0.15 

 



Explanation: The output indicates the indices and distances of the five nearest neighbors for the first data 

point in the Iris dataset. Each line corresponds to a nearest neighbor, showing its position in the dataset 

(index) and the distance from the query point. 

8.3 Make Predictions 

Explanation: 

To make predictions using the Iris dataset, typically employ a supervised learning algorithm. One of the 

most common algorithms for this task is the k-nearest neighbors (KNN) algorithm.  

 

Step 1: First import necessary libraries (load_iris to load the Iris dataset, train_test_split to split the dataset 

into training and testing sets, KNeighborsClassifier to initialize the KNN classifier, and accuracy_score to 

evaluate the accuracy of the predictions). 

Step 2: Load the Iris dataset and split it into features (X) and target labels (y). 

Step 3: Split the dataset into training and testing sets using 80% of the data for training and 20% for 

testing. 

Step 4: Initialize the KNN classifier with the desired number of neighbors (n_neighbors) and train it on the 

training data. 

Step 5: Make predictions on the testing data using the trained classifier. 

Step 6: Finally, calculate the accuracy of the predictions by comparing them to the true labels and print 

the accuracy score. 

Can change parameters such as the number of neighbors (n_neighbors) or the test size in train_test_split 

according to the requirements. 

 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.metrics import accuracy_score 

 

# Load Iris dataset 

iris = load_iris() 

X = iris.data 

y = iris.target 

 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  

 

# Initialize the KNN classifier 

knn = KNeighborsClassifier(n_neighbors=3)  # You can change the number of neighbors as needed  
 

# Train the classifier on the training data 

knn.fit(X_train, y_train) 
 

# Make predictions on the testing data 

y_pred = knn.predict(X_test) 
 

# Calculate the accuracy of the predictions 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy:", accuracy) 
         



Output:  

The output of the provided Python code will display the accuracy achieved by the KNN classifier on the 

testing data. Since the output can vary due to the randomness involved in splitting the dataset and the 

nature of the algorithm, the specific accuracy value may differ between runs. 

 

Accuracy: 0.9666666666666667 

 

The output indicates that the KNN classifier achieved an accuracy of approximately 96.67% on the testing 

data. The output may vary slightly due to the random splitting of the dataset. 

 

9. Implement Decision Tree Classification 

9.1 build a decision tree classifier to determine the kind of flower by using 

given dimensions.  

Explanation: Use scikit-learn to build a decision tree classifier for determining the type of flower based 

on given dimensions using the Iris dataset. 

 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import accuracy_score, classification_report 

 

# Load Iris dataset 

iris = load_iris() 

X = iris.data 

y = iris.target 

 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  

 

# Initialize the Decision Tree classifier 

clf = DecisionTreeClassifier(random_state=42) 

 

# Train the classifier on the training data 

clf.fit(X_train, y_train) 

 

# Make predictions on the testing data 

y_pred = clf.predict(X_test) 

 

# Calculate the accuracy of the predictions 

accuracy = accuracy_score(y_test, y_pred) 

print("Accuracy:", accuracy) 

 

# Print classification report 

print("\nClassification Report:") 

print(classification_report(y_test, y_pred, target_names=iris.target_names)) 
 

 



Explanation:  

Step 1: Import necessary libraries (load_iris to load the Iris dataset, train_test_split to split the dataset into 

training and testing sets, DecisionTreeClassifier to initialize the Decision Tree classifier, accuracy_score to 

evaluate the accuracy of the predictions, and classification_report to generate a classification report). 

Step 2: Lload the Iris dataset and split it into features (X) and target labels (y). 

Step 3: Split the dataset into training and testing sets using 80% of the data for training and 20% for testing. 

Step 4: Initialize the Decision Tree classifier and train it on the training data. 

Step 5:  Make predictions on the testing data using the trained classifier. 

Step 6: Finally, calculate the accuracy of the predictions and print the classification report, which includes 

precision, recall, F1-score, and support for each class. 

This code will build a decision tree classifier to determine the type of flower based on the given dimensions 

in the Iris dataset. 

Output:  

Displays the accuracy achieved by the Decision Tree classifier on the testing data, as well as the classification 

report containing precision, recall, F1-score, and support for each class. 

Accuracy: 1.0 

Classification Report: 

              precision    recall  f1-score   support 

    setosa       1.00      1.00      1.00        10 

  versicolor       1.00      1.00      1.00         9 

   virginica       1.00      1.00      1.00        11 

    accuracy                           1.00        30 

   macro avg       1.00      1.00      1.00        30 

weighted avg       1.00      1.00      1.00        30 

 

The output indicates that the Decision Tree classifier achieved an accuracy of 100% on the testing 

data. Additionally, the classification report shows perfect precision, recall, and F1-score for each 

class (setosa, versicolor, and virginica), indicating that the classifier performed flawlessly on this 

particular test set. However, keep in mind that the performance might vary slightly due to the 

randomness involved in splitting the dataset. 

 



9.2 Train with various split measures (Gini index, Entropy and Information 

Gain) 

Train a decision tree classifier with various split criteria such as Gini index, entropy, and information gain 

using the Iris dataset, utilize the Decision Tree Classifier from scikit-learn library with the appropriate 

criterion parameter.  

 

Explanation:  

 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.metrics import accuracy_score 

 

# Load Iris dataset 

iris = load_iris() 

X = iris.data 

y = iris.target 

 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  

 

# Initialize Decision Tree classifiers with different split measures 

classifiers = { 

    "Gini Index": DecisionTreeClassifier(criterion="gini", random_state=42),  

    "Entropy": DecisionTreeClassifier(criterion="entropy", random_state=42),  

    "Information Gain": DecisionTreeClassifier(criterion="gini", splitter="best", random_state=42)  

} 

 

# Train each classifier on the training data and evaluate on the testing data  

for clf_name, clf in classifiers.items(): 

    clf.fit(X_train, y_train) 

    y_pred = clf.predict(X_test) 

    accuracy = accuracy_score(y_test, y_pred) 

    print(f"{clf_name} - Accuracy: {accuracy:.2f}")      
  

 

Explanation:  

Step 1: Import necessary libraries (load_iris to load the Iris dataset, train_test_split to split the dataset into 

training and testing sets, Decision Tree Classifier to initialize the Decision Tree classifier, and 

accuracy_score to evaluate the accuracy of the predictions). 

Step 2: Load the Iris dataset and split it into features (X) and target labels (y). 

Step 3: Split the dataset into training and testing sets using 80% of the data for training and 20% for 

testing. 



Step 4: Initialize three Decision Tree classifiers with different split measures: Gini index, entropy, and 

information gain. 

Step 5: Train each classifier on the training data and evaluate its performance on the testing data by 

calculating the accuracy of the predictions. 

The code will train three decision tree classifiers with different split measures using the Iris dataset and 

print the accuracy achieved by each classifier. 

 

Output:  

Display the accuracy achieved by each Decision Tree classifier trained with different split measures on the 

testing data. 

Gini Index - Accuracy: 1.00 

Entropy - Accuracy: 1.00 

Information Gain - Accuracy: 1.00 

This output indicates that all three Decision Tree classifiers achieved perfect accuracy of 100% 

on the testing data when trained with different split measures: Gini index, entropy, and 

information gain. 

 

9.3 Compare the accuracy 

Explanation:  

To compare the accuracy of different classifiers using the Iris dataset, you can train multiple classifiers and 

evaluate their performance on the same testing data.  

Below Python code example that compares the accuracy of Decision Tree, K-Nearest Neighbors (KNN), 

and Support Vector Machine (SVM) classifiers 

 

from sklearn.datasets import load_iris 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.svm import SVC 

from sklearn.metrics import accuracy_score 

 

# Load Iris dataset 

iris = load_iris() 

X = iris.data 

y = iris.target 

 

# Split the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  

 

# Initialize classifiers 

classifiers = { 

    "Decision Tree": DecisionTreeClassifier(random_state=42), 

    "K-Nearest Neighbors": KNeighborsClassifier(), 



    "Support Vector Machine": SVC(random_state=42) 

} 

# Train and evaluate each classifier 

for clf_name, clf in classifiers.items(): 

    clf.fit(X_train, y_train) 

    y_pred = clf.predict(X_test) 

    accuracy = accuracy_score(y_test, y_pred) 

    print(f"{clf_name} - Accuracy: {accuracy:.2f}")  
 
 

Output:  

Step 1: Import necessary libraries (load_iris to load the Iris dataset, classifiers from scikit-learn, and 

accuracy_score to evaluate the accuracy of the predictions). 

Step 2: Load the Iris dataset and split it into features (X) and target labels (y). 

Step 3: Split the dataset into training and testing sets using 80% of the data for training and 20% for 

testing. 

Step 4: Initialize three classifiers: Decision Tree, K-Nearest Neighbors, and Support Vector Machine (SVM). 

Step 5: Train each classifier on the training data and evaluate its performance on the testing data by 

calculating the accuracy of the predictions. 

The code will compare the accuracy of Decision Tree, KNN, and SVM classifiers using the Iris dataset.  

 

10. CLASSIFICATION – BAYESIAN NETWORK 

Bayesian Network Classification is a probabilistic graphical model that represents a set of random 

variables and their conditional dependencies via a directed acyclic graph. In classification tasks, 

Bayesian Networks can model the relationships between input features and class labels, allowing 

for efficient inference of class probabilities given observed data. By incorporating prior 

knowledge and updating probabilities based on new evidence, Bayesian Networks offer a 

principled approach to classification, particularly in domains with uncertainty and complex 

dependencies. 
 

Source for Dataset: https://www.kaggle.com/datasets/nikhil1e9/loan-default 

A bank is concerned about the potential for loans not to be repaid. If previous loan default 

data can be used to predict which potential customers are liable to have problems repaying 

loans, these "bad risk" customers can either be declined a loan or offer ed alternative products.  

Dataset: The stream named bayes_bankloan.str, which references the data file named 

bankloan.sav.  

These files are available from the Demos directory of any IBM® SPSS® Modeler installation 

and can be accessed from the IBM SPSS Modeler program group on the Windows Start menu. 

The bayes_bankloan.str file is in the streams directory.  

 

 

 

https://www.kaggle.com/datasets/nikhil1e9/loan-default


10.1 Build Bayesian network model using existing loan default data 

Explanation:  

Use the pgmpy library to build a Bayesian network model for a loan default dataset. This library provides 

tools for probabilistic graphical models, including Bayesian networks. 

 

pip install pgmpy 

 

from pgmpy.models import BayesianModel 

from pgmpy.estimators import MaximumLikelihoodEstimator 

import pandas as pd 

 

# Load loan default dataset 

data = pd.read_csv('loan_default_dataset.csv')  # replace 'loan_default_dataset.csv' with your dataset 

filename 

 

# Define the structure of the Bayesian network 

model = BayesianModel([('income', 'loan_status'), ('credit_score', 'loan_status'), ('loan_status', 

'approval')]) 

 

# Estimate parameters from the dataset 

model.fit(data, estimator=MaximumLikelihoodEstimator) 

 

# Print the model's structure and parameters 

print("Bayesian Network Structure:") 

print(model.edges()) 

 

print("\nBayesian Network Parameters:") 

for cpd in model.get_cpds(): 

    print(cpd)  

  

 

Output: 

Step 1: Load the loan default dataset using pd.read_csv.  

Step 2: Define the structure of the Bayesian network specifying the dependencies between 

variables. 

Step 3: Use Maximum Likelihood Estimation to estimate the parameters (conditional probability 

distributions) from the dataset.  

Step 4: Finally, print the structure of the Bayesian network and the estimated parameters. 

Replace 'loan_default_dataset.csv' with the filename of path loan default dataset. Ensure that the 

dataset is properly formatted with appropriate columns for 'income', 'credit_score', 'loan_status', 

and 'approval'. 

 
The output of the program will include the structure of the Bayesian network (defined by the 

edges between nodes) and the parameters (conditional probability distributions) estimated 

from your dataset. 

 



 

 
This output represents the Bayesian network structure and the conditional probability 

distributions estimated from the dataset for each node in the network.  

 

10.2 Visualize Tree Augmented Naïve Bayes model  

Explanation:  

Visualizing a Tree Augmented Naïve Bayes (TAN) model for a loan defaulters dataset can be achieved using 

the pgmpy library, which provides tools for probabilistic graphical models including TAN. 

 

pip install pgmpy 

 

import numpy as np 

import pandas as pd 

from pgmpy.estimators import TreeAugmentedNaiveBayes 

from pgmpy.models import BayesianModel 

import networkx as nx 

import matplotlib.pyplot as plt 

 

# Load loan default dataset 

data = pd.read_csv('loan_default_dataset.csv')  # replace 'loan_default_dataset.csv' with your dataset 

filename 

 

# Instantiate a TreeAugmentedNaiveBayes estimator 

tan = TreeAugmentedNaiveBayes() 

 

# Fit the TAN model to the data 

tan.fit(data) 



# Get the TAN graph 

tan_graph = tan.graph_ 

 

# Plot the TAN graph 

plt.figure(figsize=(10, 6)) 

pos = nx.spring_layout(tan_graph) 

nx.draw(tan_graph, pos, with_labels=True, node_size=2000, node_color="skyblue", font_size=10, 

font_weight="bold") 

edge_labels = nx.get_edge_attributes(tan_graph, 'weight') 

nx.draw_networkx_edge_labels(tan_graph, pos, edge_labels=edge_labels, font_color='red') 

plt.title("Tree-Augmented Naïve Bayes (TAN) Graph") 

plt.show()  

 

Step 1: Load the loan default dataset using pd.read_csv. 

Step 2: Instantiate a TreeAugmentedNaiveBayes estimator from pgmpy. 

Step 3: Fit the TAN model to the dataset. 

Step 4: Otain the TAN graph from the fitted model. 

Step 5: Use NetworkX and Matplotlib to visualize the TAN graph. 

Replace 'loan_default_dataset.csv' with the filename of in path of loan default dataset. 

The code will generate a visualization of the TAN model as a directed acyclic graph, where nodes represent 

variables and edges represent dependencies between variables. Edge labels indicate the weights 

(conditional probabilities) associated with the edges. 

 

Output:  

The visualization will show a directed acyclic graph where nodes represent variables/features, and edges 

represent dependencies between variables. 

Each node will have labels representing the variable names, and edge labels will indicate the weights 

(conditional probabilities) associated with the edges. 

After running the code, a graphical window should pop up displaying the TAN graph visualization. It will 

look like a network diagram with nodes connected by arrows. The layout of the nodes might vary slightly 

depending on the specific structure of the TAN model learned from your dataset. 
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