

COURSE CONTENT

DATA MINING AND KNOLEDGE DISCOVERY LABORATORY

VI Semester: CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks

ACIC08 Core
L T P C CIA SEE Total

1 0 2 2 30 70 100

Contact Classes: 12 Tutorial Classes: NIL Practical Classes: 33 Total Classes: 45

Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

This course helps the students to practically understand a data warehouse, techniques and methods for data

gathering and data pre-processing using different tools. The different data mining models and techniques

will be discussed in this course. The main objective of this lab is to impart the knowledge on how to

implement classical models and algorithms in data warehousing and data mining and to characterize the

kinds of patterns that can be discovered by association rule mining, classification and clustering.

II. COURSE OBJECTIVES:

The students will try to learn:

I. The Data Object Exploration and visualization

II. The pre-processing on new and existing datasets.

III. Frequent item set generation and association rules on transactional data.

IV. The data model creation by using various classification and clustering algorithms.

V. The data models accuracy analysis by varying the sample size.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO 1 Analyze the knowledge generated from data objects, matrix operations using Numpy.

CO 2 Demonstrate Numpy module methods to categorize and correlate the raw data.

CO 3 Select appropriate pre-processing techniques to manage the missing values of data.

CO 4 Apply Apriori Algorithm and logistic regression for classification of data mining.

CO 5 Identify Classification technique from Decision Tree, Bayesian Network and Support Vector

Machines to mine knowledge from pre-processed data.

CO 6 Examine Clustering algorithms to build predication model for solving real world problem.

IV.COURSE CONTENT:

EXERCISES FOR DATA MINING AND KNOWLEDGE DISCOVERY

LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory

practice sessions.

1. Getting Started Exercises

Introduction:

The Data Mining Lab with Python is designed to introduce students and professionals to the

practical aspects of data mining, leveraging Python's rich ecosystem of data analysis and machine

learning libraries. Python, being one of the most popular programming languages in the data

science community, provides a comprehensive environment for data manipulation, visualization,

and analysis.

Software:
 Anaconda Distribution, combined with tools like Jupyter Notebook or IDEs like PyCharm or VS Code,

 provides a robust environment for tackling data mining tasks with Python and its libraries.

REFERENCE BOOKS:

 1. Robert Layton, “Learning Data Mining with Python”,Packt Publishing, 2015.

 Web References:

I. https://www.dataquest.io/blog/sci-kit-learn-tutorial/

II. https://archive.ics.uci.edu/ml/datasets.php/

III. https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python

 NUMPY:

 NumPy stands for Numerical Python which is a Python library used for working with arrays. It provides

 an efficient interface to store and operate on dense data buffers. NumPy arrays provide much more

 efficient storage and data operations as the arrays grow larger in size. NumPy arrays form the core of

 nearly the entire ecosystem of data science tools in Python. It also has functions for working in domain

 of linear algebra, fourier transform and matrices. The array object in NumPy is called ndarray

https://www.dataquest.io/blog/sci-kit-learn-tutorial/
https://archive.ics.uci.edu/ml/datasets.php/
https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python

1.1 Implement Multidimensional 2-D and 3-D arrays using Numpy

Multidimensional arrays are arrays that have more than one dimension. They can be thought of

as arrays of arrays. Commonly used multidimensional arrays include 2D arrays (matrices) and 3D

arrays. Create multidimensional arrays and find its shape and dimension .

Input: array_2d = np.array ([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Output: 2D Array :

 Shape: (3, 3)

 Dimension: 2

Explanation: The “shape” attribute returns a tuple representing the array's “dimensions”, and ndim returns

the number of dimensions.

Input: array_3d = np.array ([[[1, 2], [3, 4]],

 [[5, 6], [7, 8]],

 [[9, 10], [11, 12]]])

Output: 3D Array:

 Shape: (3, 2, 2)

 Dimension: 3

Import numpy as np

a=np.array([[1,2,3],[2,3,4],[3,4,5]])

b=a.shape
print("shape:",a.shape)

c=a.ndim
print("dimensions:",a.ndim)
 # Write code here
 …

1.2 Implement a matrix full of zeros and ones using Numpy

NumPy can create matrices filled with zeros or ones using the np.zeros and np.ones functions, respectively.

Input: matrix_zeros = np.zeros((3, 4))

Output: Matrix full of zeros:

[[0. 0. 0. 0.]

 [0. 0. 0. 0.]

 [0. 0. 0. 0.]]

Input: matrix_ones = np.ones((2, 3))

Output: Matrix full of ones:

[[1. 1. 1.]

 [1. 1. 1.]]

Input: z=np.zeros((2,2))

Output: [[0. 0.]

 [0. 0.]]

import numpy as np

matrix_zeros = np.zeros((3, 4))

print("Matrix full of zeros:")
print(matrix_zeros)

matrix_ones = np.ones((2, 3))

print("Matrix full of ones:")
print(matrix_ones)

TRY:

Exercises:

1.Create an array of evenly spaced values (step value)

Hint: Use arrange() method

2.Create an array of evenly spaced values (number of samples)

Hint: Use linespace() method

3.Create a constant array

Hint: Use full() method

4.Create a 2X2 identity matrix

Hint: Use eye() method

5.Create an array with random values

Hint: Use random() method

6.Create an empty array

Hint: Use empty() method

1.3 Implement functions Reshape and flatten data in the array

NumPy is used to reshape and flatten functions for modifying the shape of an array.

Input: original_array = np.array([[1, 2, 3],

 [4, 5, 6]])

Output: Reshaped Array:

 [[1 2]

 [3 4]

 [5 6]]

import numpy as np

a=np.array([[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7]])
 b=a.reshape(4,2,2)

 # Write code here
 reshaped_array = original_array.reshape((3, 2))

print("Original Array:")
print(original_array)
print("\nReshaped Array:")
print(reshaped_array)

TRY:

Exercises:

1.Find length of an array

2.Find size of an array

3.Find Data type of array elements

Hint: Use dtype

4.Find the name of the data type

Hint: Use dtype.name

5.Convert an array to a different type

Hint: Use astype(int) method

6. Reshape, but don’t change data

1.4 Implement functions Append data vertically and horizontally

numpy.vstack is used to vertically stack arrays (i.e., stack arrays one on top of the other).

When two or more arrays with the same number of columns, vstack concatenates them along the vertical

axis (axis 0), forming a new array with the same number of columns but a greater number of rows.

The function takes a tuple of arrays as input and returns a single array as output.

numpy.hstack is used to horizontally stack arrays (i.e., stack arrays side by side).

When you have two or more arrays with the same number of rows, hstack concatenates them along the

horizontal axis (axis 1), forming a new array with the same number of rows but a greater number of columns.

The function takes a tuple of arrays as input and returns a single array as output.

If the arrays being stacked do not have the same number of rows, hstack will raise a ValueError.

Example usage: np.hstack((array1, array2))

Input: array1 = np.array([[1, 2, 3],
 [4, 5, 6]])

 array2 = np.array([[7, 8, 9],
 [10, 11, 12]])

Output: Vertically stacked array:

[[1 2 3]

 [4 5 6]

 [7 8 9]

 [10 11 12]]

Horizontally stacked array:

[[1 2 3 7 8 9]

 [4 5 6 10 11 12]]

Explanation: stacks the arrays vertically using NumPy's vstack and hstack functions

import numpy as np

Example data arrays
array1 = np.array([[1, 2, 3],
 [4, 5, 6]])

array2 = np.array([[7, 8, 9],
 [10, 11, 12]])

Vertically stack arrays
stacked_vertically = np.vstack((array1, array2))

print("Vertically stacked array:")
print(stacked_vertically)
print()

Horizontally stack arrays
stacked_horizontally = np.hstack((array1, array2))

print("Horizontally stacked array:")
print(stacked_horizontally)

Try:

Exercises:

1.Implement Stack arrays vertically (row-wise)

2.Create stacked column-wise arrays

3.Implement Arithmetic Operations: Addition, Subtraction, Multiplication,

Division, Exponentiation, Square root, Print sines of an array, Element-wise

cosine, Element-wise natural logarithm, Dot product

1.5 Apply indexing and slicing on array using Numpy

Indexing in NumPy allows accessing individual elements of an array using integer indices, denoted as

array[i, j], where i represents the row index and j represents the column index.

Slicing in NumPy enables extracting subarrays or specific portions of an array using slice notation, denoted

as array[start:stop:step]. It's applicable along one or more dimensions, allowing for versatile extraction of

data from arrays.

Input: arr = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Output: Accessing single elements:

Element at (0, 0): 1

Element at (1, 2): 6

Accessing subarrays:

First row: [1 2 3]

Second column: [2 5 8]

Subarray (2x2) from top-left corner:

[[1 2]

 [4 5]]

Modifying elements using indexing:

Array after modifying element at (1, 1):

[[1 2 3]

 [4 10 6]

 [7 8 9]]

Modifying subarrays using slicing:

Array after modifying third column:

[[1 2 100]

 [4 10 200]

 [7 8 300]]

mport numpy as np

Create a NumPy array

arr = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Print original array

print("Original array:")

print(arr)

print()

Indexing: Accessing single elements

print("Accessing single elements:")

print("Element at (0, 0):", arr[0, 0])

print("Element at (1, 2):", arr[1, 2])

print()

Slicing: Accessing subarrays

print("Accessing subarrays:")

print("First row:", arr[0])

print("Second column:", arr[:, 1])

print("Subarray (2x2) from top-left corner:")

print(arr[:2, :2])

print()

Modifying elements using indexing

print("Modifying elements using indexing:")

arr[1, 1] = 10

print("Array after modifying element at (1, 1):")

print(arr)

print()

Modifying subarrays using slicing

print("Modifying subarrays using slicing:")

arr[:, 2] = [100, 200, 300]

print("Array after modifying third column:")

print(arr)

1.6 Implement statistical functions on array, Min, Max, Mean, Median and

Standard Deviation

You are given an m x n integer grid accounts where accounts[i][j] is the amount of money the ith customer

has in the jth bank. Return the wealth that the richest customer has. A customer's wealth is the amount of

money they have in all their bank accounts. The richest customer is the customer that has the maximum

wealth.

Input: arr = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Output:

Minimum value: 1

Maximum value: 9

Mean: 5.0

Median: 5.0

Standard Deviation: 2.581988897471611

Explanation:

The original array is printed.

The minimum value in the array is 1.

The maximum value in the array is 9.

The mean (average) value of the array is calculated to be 5.0.

The median value of the array is also calculated to be 5.0.

The standard deviation of the array is calculated to be approximately 2.582.

import numpy as np

Create a NumPy array

arr = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Minimum value

min_val = np.min(arr)

Maximum value

max_val = np.max(arr)

Mean

mean_val = np.mean(arr)

Median

median_val = np.median(arr)

Standard deviation

std_dev = np.std(arr)

Print results

print("Original Array:")

print(arr)

print()

print("Minimum value:", min_val)

print("Maximum value:", max_val)

print("Mean:", mean_val)

print("Median:", median_val)

print("Standard Deviation:", std_dev)

Try:

Exercises:

1.Create a view of the array with the same data

Hint: Use View()

2.Create a copy of the array

 Hint: Use copy()

3.Create a deep copy of the array

4.Sort the elements of an array's axis

5.Implement Concatenation of two arrays

Hint: Use concatenate() method

6.Split the array vertically at the 2nd index

 Hint: np.vsplit(c,2)

2. Matrix Operations USING NUMPY

2.1 Dot and matrix product of two arrays

Given two matrices X and Y, the task is to compute the sum of two matrices and then print it in Python.

Input:

 Array 1: [[1 2]

 [3 4]]

Array 2: [[5 6]

 [7 8]]

Output:

 Dot Product: 70

 Matrix Product: [[19. 22.]

 [43. 50.]]

Explanation:

The program prints the original arrays array1 and array2.

It calculates the dot product of the arrays, which is 15 + 26 + 37 + 48 = 70.

It also calculates the matrix product of the arrays using nested loops for matrix multiplication.

The resulting matrix product is printed.

import numpy as np

Define two arrays
array1 = np.array([[1, 2],
 [3, 4]])

array2 = np.array([[5, 6],
 [7, 8]])

Dot product of arrays
dot_product = 0
for i in range(array1.shape[0]):
 for j in range(array1.shape[1]):
 dot_product += array1[i][j] * array2[i][j]

Matrix product of arrays
matrix_product = np.zeros((array1.shape[0], array2.shape[1]))
for i in range(array1.shape[0]):
 for j in range(array2.shape[1]):
 for k in range(array1.shape[1]):
 matrix_product[i][j] += array1[i][k] * array2[k][j]

Print results
print("Array 1:")
print(array1)
print("Array 2:")
print(array2)
print("Dot Product:", dot_product)
print("Matrix Product:")
print(matrix_product)
for r in result:
 print(r)

2.2 Compute the Eigen values of a matrix

Eigenvalues are a set of scalar values associated with a square matrix that describe how the matrix

transforms vectors. They represent the scaling factors by which these vectors are stretched or

compressed when transformed by the matrix. Eigenvalues play a crucial role in various

mathematical and engineering applications, such as solving systems of differential equations,

analyzing stability in dynamical systems, and dimensionality reduction techniques like Principal

Component Analysis (PCA).

Given two matrices X and Y, the task is to compute the multiplication of two matrices and then print it.

Input:

 matrix = np.array([[1, 2],

 [3, 4]])

Output:

 Eigenvalues of the matrix:

[-0.37228132 5.37228132]

import numpy as np

Define a matrix
matrix = np.array([[1, 2],
 [3, 4]])

Compute eigenvalues
eigenvalues = np.linalg.eigvals(matrix)

Print eigenvalues
print("Eigenvalues of the matrix:")
print(eigenvalues)

The np.linalg.eigvals() function is used to compute the eigenvalues of the matrix.

The eigenvalues are stored in the variable eigenvalues, and we print them out.

2.3 Solve a linear matrix equation such as 3 * x0 + x1 = 9, x0 + 2 * x1 = 8

Numpy provides efficient tools for solving linear matrix equations through functions like

numpy.linalg.solve(). These equations involve expressing a system of linear equations in matrix form (Ax =

b), where A is the coefficient matrix, x is the vector of variables to be solved for, and b is the vector of

constants. Numpy's linear algebra module allows for quick and accurate computation of solutions,

facilitating tasks in engineering, physics, and data analysis.

Input: A = np.array([[3, 1], [1, 2]])

 B = np.array([9, 8])

Output: x0 = 2.0

 x1 = 3.0

import numpy as np

Coefficients of the linear equations
A = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])

Solve the linear equations
solution = np.linalg.solve(A, b)

print("Solution:")
print("x0 =", solution[0])
print("x1 =", solution[1])

Explanation: This program defines the coefficients of the linear equations in matrix form (A) and the

constants on the right-hand side of the equations (b). Then, it uses numpy.linalg.solve() to find the solution

vector x, which contains the values of x0 and x1. Finally, it prints out the solution.

2.4 Compute the multiplicative inverse of a matrix

Numpy's numpy.linalg.inv() function efficiently computes the multiplicative inverse of a square matrix. This

inverse matrix, when multiplied with the original matrix, yields the identity matrix. This operation is

fundamental in solving systems of linear equations, transforming vectors, and various numerical

computations in fields like engineering, physics, and machine learning.

Input: Original matrix:

A = np.array([[4, 7], [2, 6]])

Output: Inverse of the matrix: [[0.6 -0.7]

 [-0.2 0.4]]
import numpy as np

Define the matrix
A = np.array([[4, 7], [2, 6]])

Compute the inverse of the matrix
A_inv = np.linalg.inv(A)

print("Original matrix:")
print(A)

print("\nInverse of the matrix:")
print(A_inv)

Explanation: This program first defines a matrix A, then it calculates its inverse using np.linalg.inv(), and

finally prints both the original matrix and its inverse. Make sure the matrix is square and non-singular for

its inverse to exist. If the matrix is singular or non-square, numpy.linalg.inv() will raise a ‘LinAlgError’.

Try:

Exercises: Transpose of a Matrix

2.5 Compute the rank of a matrix

Input: Original matrix:

A = np.array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])

Output: Rank of the matrix: 2

import numpy as np

Define the matrix
A = np.array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

Compute the rank of the matrix
rank = np.linalg.matrix_rank(A)

print("Rank of the matrix:", rank)

Explanation: This program defines a matrix A, then it calculates its rank using numpy.linalg.matrix_rank(),

and finally prints out the rank of the matrix.

2.6 Compute the determinant of an array

Input: Original matrix:

A = np.array([[1, 2],

 [3, 4]])

Output: Determinant of the array: -2.0000000000000004

import numpy as np

Define the array (matrix)
A = np.array([[1, 2],
 [3, 4]])

Compute the determinant of the array
determinant = np.linalg.det(A)

print("Determinant of the array:", determinant)

Explanation: This program defines a 2x2 array A, then it calculates its determinant using

numpy.linalg.det(), and finally prints out the determinant of the array.

Asking For Help

np.info(np.ndarray.dtype)

Try:

1.Saving & Loading On Disk

Save(), Savez(), Load() methods

2. Saving & Loading Text Files

Loadtxt("myfile.txt"),

genfromtxt("my_file.csv", delimiter=',')

savetxt("myarray.txt", a, delimiter=" ")

3. EXPLORATION AND VISULIZATION OF DATA

Exploration of Data:

Exploration of data is an iterative process that involves iteratively exploring,

visualizing, and analyzing the dataset to gain insights, generate hypotheses, and

inform subsequent data-driven decisions or modeling approaches.

3.1 Loading data from CSV file

To load data from a CSV file in Python, particularly using the brain_size.csv dataset, you can use the

pandas library. Below is a simple Python program demonstrating how to load the data from the CSV file:

Explanation: This program reads the CSV file using pd.read_csv() function from pandas, then displays the

first few rows of the DataFrame using df.head().

Source of Dataset: https://www.kaggle.com/code/rashmiek99/head-size-vs-brain-weight

import pandas as pd

Load the CSV file into a pandas DataFrame

df = pd.read_csv("brain_size.csv")

Display the first few rows of the DataFrame

print("First few rows of the dataset:")

print(df.head())

Output:

First few rows of the dataset:

 Gender FSIQ VIQ PIQ Weight Height MRI_Count

0 Female 133 132 124 118.0 64.5 816932

1 Male 140 150 124 NaN 72.5 1001121

2 Male 139 123 150 143.0 73.3 1038437

3 Male 133 129 128 172.0 68.8 965353

4 Female 137 132 134 147.0 65.0 951545

3.2 Compute the basic statistics of given data, shape, no. of columns, mean

This program reads the data from the brain_size.csv file using pd.read_csv() function from pandas. Then, it

prints the shape of the DataFrame using df.shape, the number of columns using len(df.columns), and

computes the mean of each numerical column using df.mean(). Finally, it prints out the means. Make sure

to replace "brain_size.csv" with the appropriate path if the file is located elsewhere.

import pandas as pd

Load the data from the CSV file
df = pd.read_csv("brain_size.csv")

Display the shape of the DataFrame
print("Shape of the DataFrame (rows, columns):", df.shape)

Display the number of columns
print("Number of columns:", len(df.columns))

Compute the mean of each numerical column
means = df.mean()

https://www.kaggle.com/code/rashmiek99/head-size-vs-brain-weight

print("\nMean of each numerical column:")
print(means)

Output: Shape of the DataFrame (rows, columns): (237, 8)

Number of columns: 8

Mean of each numerical column:

Gender 1.53

FSIQ 113.82

VIQ 112.35

PIQ 111.42

Weight 151.05

Height 151.42

MRI_Count 9317.73

dtype: float64

This output indicates that the DataFrame has 237 rows and 8 columns, and it provides the mean of each

numerical column in the dataset.

3.3 Splitting a data frame on values of categorical variables

To split a DataFrame based on values of categorical variables, you can use pandas' groupby() function.

Here's a Python program that demonstrates how to split the brain_size.csv dataset based on a categorical

variable:

Explanation: The output of the program will display the groups based on the categorical variable 'Gender',

and it will show the data associated with each group. In this example, there are groups for both males and

females, and each group contains the corresponding data rows from the DataFrame.

import pandas as pd

Load the data from the CSV file

df = pd.read_csv("brain_size.csv")

Split the DataFrame based on a categorical variable (e.g., Gender)

split_data = df.groupby('Gender')

Display the groups

for gender, data in split_data:

 print("Group:", gender)

 print(data)

 print()

Output: Group: Female

 Gender FSIQ VIQ PIQ Weight Height MRI_Count

27 Female 77 83 72 118 149 7916

28 Female 130 129 127 132 152 8555

...

Group: Male

 Gender FSIQ VIQ PIQ Weight Height MRI_Count

0 Male 133 132 124 118 186 8167

1 Male 140 150 124 0 186 8188

...

3.4 Visualize each attribute

import pandas as pd
import matplotlib.pyplot as plt

Load the dataset
file_path = "brain_size.csv"
dataset = pd.read_csv(file_path)

Visualize each attribute
for column in dataset.columns:
 if column != 'ID': # Exclude ID column if present
 plt.figure(figsize=(8, 6))
 plt.hist(dataset[column], bins=20, color='skyblue', edgecolor='black')
 plt.title(f'Histogram of {column}')
 plt.xlabel(column)
 plt.ylabel('Frequency')
 plt.grid(True)
 plt.show()

Explanation: This program will load the "brain_size.csv" dataset, iterate over each attribute (excluding the

'ID' column if present), and create a histogram for each attribute using Matplotlib.

4. EXPLORATION OF DATA, CORRILATION

CORRILATION: Correlation is a statistical measure that describes the strength and direction

of a relationship between two variables. It ranges from -1 to 1, where 1 indicates a perfect

positive correlation, -1 indicates a perfect negative correlation, and 0 indicates no correlation.

4.1 Load data, describe the given data and identify missing, outlier data

items.

Dataset: Pima Indians Diabetes Dataset

Source of Dataset: https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

Library: pandas and matplotlib

The program will load the Pima Indians Diabetes Dataset from a URL, display the first few rows and

summary statistics, identify missing data, and visualize outliers using boxplots for each column.

import pandas as pd

import matplotlib.pyplot as plt

Load the dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-
diabetes.data.csv"

names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI',
'DiabetesPedigreeFunction', 'Age', 'Outcome']

dataset = pd.read_csv(url, names=names)

Display the first few rows of the dataset

print("First few rows of the dataset:")

print(dataset.head())

Display summary statistics of the dataset

print("\nSummary statistics of the dataset:")

print(dataset.describe())

Identify missing data

missing_data = dataset.isnull().sum()

print("\nMissing data:")

print(missing_data)

Identify outliers

plt.figure(figsize=(10,6))

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

boxplot = dataset.boxplot(column=names)

plt.xticks(rotation=45)

plt.title("Boxplot showing outliers")

plt.show()

Output:

First few rows of the dataset:

 Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction

Age Outcome

0 6 148 72 35 0 33.6 0.627 50 1

1 1 85 66 29 0 26.6 0.351 31 0

2 8 183 64 0 0 23.3 0.672 32 1

3 1 89 66 23 94 28.1 0.167 21 0

4 0 137 40 35 168 43.1 2.288 33 1

Summary statistics of the dataset:

 Pregnancies Glucose BloodPressure SkinThickness Insul in BMI DiabetesPedigreeFunction Age Outco me

count 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 768.000000 7 68.000000

mean 3.845052 120.894531 69.105469 20.536458 79.799479 31.992578 0.471876 33.240885 0.348958

std 3.369578 31.972618 19.355807 15.952218 115.244002 7 .884160 0.331329 11.760232 0.476951

min 0.000000 0.000000 0 .000000 0.000000 0.000000 0 .000000 0 .078000 21.000000 0 .000000

25% 1 .000000 99.000000 62.000000 0 .000000 0.000000 27.300000 0 .243750 24.000000 0 .000000

50% 3 .000000 117.000000 72.000000 23.000000 30.500000 32.000000 0.372500 29.000000 0.000000

75% 6 .000000 140.250000 80.000000 32.000000 127.250000 36.600000 0 .626250 41.000000 1 .000000

max 17.000000 199.000000 122.000000 99.000000 846.000000 67.100000 2 .420000 81.000000 1 .000000

Missing data:

Pregnancies 0

Glucose 0

BloodPressure 0

SkinThickness 0

Insulin 0

BMI 0

DiabetesPedigreeFunction 0

Age 0

Outcome 0

dtype: int64

Explanation: The first few rows of the dataset.

Summary statistics of the dataset, including count, mean, standard deviation, minimum, quartiles, and

maximum.

The identification of missing data, showing that there are no missing values in the dataset.

A boxplot showing outliers for each feature.

4.2 Find correlation among all attributes.

import pandas as pd

Load the dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-

diabetes.data.csv"

names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',

'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']

dataset = pd.read_csv(url, names=names)

Calculate correlation matrix

correlation_matrix = dataset.corr()

Print correlation matrix

print("Correlation matrix:")

print(correlation_matrix)

Explanation: The program loads the "Pima Indians Diabetes" dataset from a URL, calculates the correlation

matrix using the .corr() function provided by Pandas DataFrame, and then prints the correlation matrix.

Output:

Correlation matrix:

 Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome

Pregnancies 1.000000 0.129459 0.141282 -0.081672 -0.073535 0.017683 -0.033523 0.544341 0.221898

Glucose 0.129459 1.000000 0.152590 0.057328 0.331357 0.221071 0.137337 0.263514 0.466581

BloodPressure 0.141282 0.152590 1.000000 0.207371 0.088933 0.281805 0.041265 0.239528 0.065068

SkinThickness -0.081672 0.057328 0.207371 1.000000 0.436783 0.392573 0.183928 -0.113970 0.074752

Insulin -0.073535 0.331357 0.088933 0.436783 1.000000 0.197859 0.185071 -0.042163 0.130548

BMI 0.017683 0.221071 0.281805 0.392573 0.197859 1.000000 0.140647 0.036242 0.292695

DiabetesPedigreeFunction -0.033523 0.137337 0.041265 0.183928 0.185071 0.140647 1.000000 0.033561 0.173844

Age 0.544341 0.263514 0.239528 -0.113970 -0.042163 0.036242 0.033561 1.000000 0.238356

Outcome 0.221898 0.466581 0.065068 0.074752 0.130548 0.292695 0.173844 0.238356 1.000000

This output presents the correlation matrix of the features in the dataset. Each cell in the matrix represents

the correlation coefficient between two features. Positive values indicate a positive correlation, negative

values indicate a negative correlation, and values closer to 0 indicate weaker or no correlation. The

correlation matrix is a useful tool for understanding relationships between variables in the dataset.

4.3 Visualize correlation matrix.
 pip install pandas seaborn matplotlib

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

Load the dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-

diabetes.data.csv"

names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',

'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']

dataset = pd.read_csv(url, names=names)

Calculate correlation matrix

correlation_matrix = dataset.corr()

Visualize correlation matrix using a heatmap

plt.figure(figsize=(10, 8))

sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f",

linewidths=0.5)

plt.title("Correlation Matrix of Pima Indians Diabetes Dataset")

plt.xticks(rotation=45)

plt.yticks(rotation=0)

plt.show()

Output:

The program loads the Pima Indians Diabetes Dataset and calculates the correlation matrix for the

features. Then, it visualizes the correlation matrix using a heatmap generated with seaborn and matplotlib.

A heatmap visualization of the correlation matrix is displayed.

Each cell in the heatmap represents the correlation coefficient between two features.

The colors in the heatmap indicate the strength and direction of the correlation:

Darker shades (closer to red) represent stronger positive correlations.

Darker shades (closer to blue) represent stronger negative correlations.

Lighter shades represent weaker or no correlations.

The correlation coefficients are annotated in each cell of the heatmap for easy interpretation.

The title of the heatmap is "Correlation Matrix of Pima Indians Diabetes Dataset".

The x-axis and y-axis labels correspond to the feature names in the dataset, rotated for better readability

if needed.

This visualization helps to identify patterns and relationships between different features in the dataset. It's

a powerful tool for exploratory data analysis (EDA) and can provide insights into which features are most

strongly correlated with each other.

Explanation: The program loads the "Pima Indians Diabetes" dataset from a URL, calculates the correlation

matrix using the .corr() function provided by Pandas DataFrame, and then visualizes the correlation matrix using a

heatmap with annotations.

5. DATA PREPROCESSING – HANDLING MISSING VALUES

DATA PREPROCESSING:

Data preprocessing involves handling missing values, which are common in real-world datasets. In Python,

Pandas provides various methods to handle missing data, such as isnull() to detect missing values,

fillna() to fill missing values with a specific value or method, and dropna() to drop rows or columns with

missing values. Imputation techniques like mean, median, or mode can be applied using Pandas or Scikit-

learn libraries to replace missing values with statistically representative values, ensuring data integrity and

enhancing model performance. Additionally, techniques like interpolation or advanced algorithms such as

K-nearest neighbors (KNN) can be used to impute missing values based on surrounding data points, aiding

in preserving the underlying structure of the dataset.

The Python program that demonstrates how to impute missing values in the Pima Indians Diabetes Dataset

using various techniques. Use pandas library for data manipulation and scikit-learn for imputation methods.

import pandas as pd

from sklearn.impute import SimpleImputer

from sklearn.experimental import enable_iterative_imputer

from sklearn.impute import IterativeImputer

from sklearn.impute import KNNImputer

Load the dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = pd.read_csv(url, names=names)

Replace 0s with NaNs for columns where 0 doesn't make sense

cols_to_check = ['plas', 'pres', 'skin', 'test', 'mass']

data[cols_to_check] = data[cols_to_check].replace(0, pd.NA)

Define the imputation techniques

imputation_techniques = {

 "Mean": SimpleImputer(strategy="mean"),

 "Median": SimpleImputer(strategy="median"),

 "Most Frequent": SimpleImputer(strategy="most_frequent"),

 "Iterative Imputer": IterativeImputer(max_iter=10, random_state=0),

 "KNN Imputer": KNNImputer(n_neighbors=5, weights="uniform")

}

Impute missing values for each technique and display results

for technique_name, imputer in imputation_techniques.items():

 data_imputed = data.copy()

 data_imputed[cols_to_check] = imputer.fit_transform(data[cols_to_check])

 print(f"Imputation Technique: {technique_name}")

 print(data_imputed.head())

 print("\n")

Explanation: Step 1: Load the Pima Indians Diabetes Dataset using pandas.

Step 2: Replace 0s with NaNs in columns where 0 doesn't make sense (like 'plas', 'pres', 'skin',

'test', 'mass').

Step 3: Define a dictionary imputation_techniques where the keys are the names of the imputation

techniques and the values are the corresponding imputation objects from scikit -learn.

Step 4: Iterate over each technique, apply it to the dataset, and print the resulting dataset.

5.1 Remove rows/ attributes

import pandas as pd

Load the dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = pd.read_csv(url, names=names)

Replace 0s with NaNs for columns where 0 doesn't make sense

cols_to_check = ['plas', 'pres', 'skin', 'test', 'mass']

data[cols_to_check] = data[cols_to_check].replace(0, pd.NA)

Remove rows with missing values

data_cleaned = data.dropna()

print("Data after removing rows with missing values:")

print(data_cleaned.head())

Explanation: Instead of using imputation techniques, simply use the dropna() method to remove rows

containing missing values. The resulting dataset data_cleaned contains only the rows without any missing

values.

Output: Data after removing rows with missing values:

 preg plas pres skin test mass pedi age class

3 1 89 66 23 94 28.1 0.167 21 0

4 0 137 40 35 168 43.1 2.288 33 1

6 3 78 50 32 88 31.0 0.248 26 1

8 2 197 70 45 543 30.5 0.158 53 1

13 1 189 60 23 846 30.1 0.398 59 1

Rows containing any missing values have been removed.

The resulting DataFrame (data_cleaned) contains only rows without any missing values.

5.2 Replace with mean or mode
 Below is modified program that replaces missing values with mean or mode for numerical and categorical

columns, respectively:

import pandas as pd

Load the dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

data = pd.read_csv(url, names=names)

Replace 0s with NaNs for columns where 0 doesn't make sense

cols_to_check = ['plas', 'pres', 'skin', 'test', 'mass']

data[cols_to_check] = data[cols_to_check].replace(0, pd.NA)

Replace missing values with mean for numerical columns and mode for categorical columns

for col in data.columns:

 if col in cols_to_check:

 data[col] = data[col].fillna(data[col].mean())

 else:

 data[col] = data[col].fillna(data[col].mode()[0])

print("Data after replacing missing values:")

print(data.head())

Explanation: Iterate over each column in the dataset. For numerical columns (specified in cols_to_check),

missing values are replaced with the mean of the column. For categorical columns (those not in

cols_to_check), missing values are replaced with the mode of the column. Finally, print the resulting dataset

after the replacement.

Output: Data after replacing missing values:

 preg plas pres skin test mass pedi age class

0 6 148.0 72.0 35.0 122.0 33.6 0.627 50.0 1

1 1 85.0 66.0 29.0 122.0 26.6 0.351 31.0 0

2 8 183.0 64.0 29.0 122.0 23.3 0.672 32.0 1

3 1 89.0 66.0 23.0 94.0 28.1 0.167 21.0 0

4 0 137.0 40.0 35.0 168.0 43.1 2.288 33.0 1

Missing values in numerical columns ('plas', 'pres', 'skin', 'test', 'mass') are replaced with the mean of each

respective column.

Missing values in categorical column ('preg', 'pedi', 'age', 'class') are replaced with the mode of each

respective column.

5.3 Program to Perform transformation of data using Discretization

(Binning) and normalization (MinMaxScaler or MaxAbsScaler) on given

dataset.

Discretization/Binning:
Data discretization, also known as binning, is the process of converting continuous numerical

data into discrete intervals or bins. This technique is commonly used in data preprocessing to

simplify complex data and reduce noise. By grouping similar values into bins, it becomes easier

to analyze patterns and relationships in the data. Discretization methods include equal-width

binning, equal-frequency binning, and clustering-based binning, each offering different

approaches to segmenting continuous data into meaningful categories.

Python program that performs transformation of data using discretization (binning) and

normalization (MinMaxScaler) on the Pima Indians Diabetes Dataset:

import pandas as pd

from sklearn.preprocessing import KBinsDiscretizer, MinMaxScaler

Load the dataset

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.data.csv"

names = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI',

'DiabetesPedigreeFunction', 'Age', 'Outcome']

dataset = pd.read_csv(url, names=names)

Binning/Discretization

discretizer = KBinsDiscretizer(n_bins=5, encode='ordinal', strategy='quantile')

dataset_binned = discretizer.fit_transform(dataset)

Normalization using MinMaxScaler

scaler = MinMaxScaler()

dataset_normalized = scaler.fit_transform(dataset_binned)

Convert normalized data back to DataFrame

dataset_normalized = pd.DataFrame(dataset_normalized, columns=names)

Display the first few rows of the transformed dataset

print("First few rows of the transformed dataset:")

print(dataset_normalized.head())

Explanation: Step 1: Load the Pima Indians Diabetes Dataset using pandas.

Step 2: Perform binning or discretization using KBinsDiscretizer from scikit-learn. We specify

the number of bins (n_bins=5), encoding method (encode='ordinal'), and strategy for binning

(strategy='quantile').

Step 3: Normalize the binned data using MinMaxScaler.

Finally, convert the normalized data back to a DataFrame and display the first few rows of the

transformed dataset.

Output:

First few rows of the transformed dataset:

 Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome

0 0.75 0.666667 0.666667 0.666667 0.333333 0.468750 0.578125 0.833333 1.0

1 0.25 0.583333 0.333333 0.833333 0.583333 0.218750 0.281250 0.333333 0.0

2 1.00 0.983333 0.333333 0.000000 0.583333 0.104167 0.625000 0.375000 1.0

3 0.25 0.608333 0.333333 0.500000 0.416667 0.375000 0.000000 0.000000 0.0

4 0.00 0.891667 0.000000 0.666667 0.750000 0.875000 1.000000 0.375000 1.0

Each row corresponds to an observation (sample) in the dataset.

The columns represent the features after discretization (binned) and normalization (MinMaxScaler).

The values are scaled to be between 0 and 1 after normalization.

The column names remain the same as in the original dataset.

The transformed dataset is now ready for further analysis or modeling.

6. ASSOCIATION RULE MINING, APRIORI

ASSOCIATION RULE MINING:

Association rule mining is a data mining technique used to discover interesting relationships,

or associations, among variables in large datasets. It primarily focuses on identifying frequent

patterns, such as if-then rules, within transactional databases or datasets. The most common

algorithm used for association rule mining is the Apriori algorithm, which efficiently generates

frequent itemsets and derives association rules based on support, confidence, and lift measures.

Association rule mining finds applications in market basket analysis, recommendation systems,

and customer behavior analysis, enabling businesses to gain insights into patterns and

dependencies among items or attributes.

APRIORI ALGORITHM:

The Apriori algorithm is a classic algorithm in data mining used for association rule mining. It efficiently

discovers frequent itemsets in transactional databases by iteratively pruning infrequent itemsets. The

algorithm employs a level-wise approach, where candidate itemsets are generated at each level based on

the frequent itemsets of the previous level. It employs support-based pruning to reduce the search space,

resulting in improved efficiency for mining large datasets.

Implement a program to find rules that describe associations by using

Apriori algorithm between different products given as 7500 transactions at

a French retail store.

Dataset: https://drive.google.com/file/d/1y5DYn0dGoSbC22xowBq2d4po6h1JxcTQ/view?usp=sharing

Implement the Apriori algorithm to find association rules between different products

based on 7500 transactions at a French retail store, you can use the mlxtend library in

Python. pip install mlxtend.

from mlxtend.frequent_patterns import apriori

from mlxtend.frequent_patterns import association_rules

import pandas as pd

Load the dataset of transactions

transactions = pd.read_csv("transactions.csv")

Data Preprocessing

Convert transaction data into a one-hot encoded DataFrame

onehot = transactions.groupby(['Transaction',

'Item'])['Item'].count().unstack().reset_index().fillna(0).set_index('Transaction')

Convert counts to binary values (0 or 1)

onehot = onehot.applymap(lambda x: 1 if x > 0 else 0)

Applying Apriori algorithm

frequent_itemsets = apriori(onehot, min_support=0.01, use_colnames=True)

Generating association rules

rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1)

Displaying association rules

print(rules)

Explanation: The code assumes to have a CSV file named "transactions.csv" containing

transaction data, where each row represents a transaction, and the items purchased are

listed in each column. Make sure to replace "transactions.csv" with the actual filename

and path of the dataset.

https://drive.google.com/file/d/1y5DYn0dGoSbC22xowBq2d4po6h1JxcTQ/view?usp=sharing

The code first preprocesses the data by converting it into a one-hot encoded format. Then, it

applies the Apriori algorithm to find frequent itemsets with a minimum support of 0.01 (adjust

as needed). Finally, it generates association rules based on these frequent itemsets using the

lift metric. Adjust the parameters such as min_support and min_threshold according to your

requirements.

6.1 Display top 5 rows of data

import pandas as pd

Load the dataset

retail_data = pd.read_csv("D:/datasets/store_data.csv") # Replace "your_dataset.csv" with the actual

filename and path

Display the top 5 rows of the dataset

print(retail_data.head())

The code will load the dataset into a pandas DataFrame and then print the first 5 rows of the

DataFrame using the head() function.

Output:

 Transaction Item

0 1 Bread

1 1 Peanut Butter

2 1 Jelly

3 2 Milk

4 2 Bread

6.2 Find the rules with min_confidence: 0.2, min_support= 0.0045,

min_lift=3, min_length=2

from mlxtend.frequent_patterns import apriori

from mlxtend.frequent_patterns import association_rules

import pandas as pd

Load the dataset of transactions

transactions = pd.read_csv("transactions.csv")

Data Preprocessing

Convert transaction data into a one-hot encoded DataFrame

onehot = transactions.groupby(['Transaction',

'Item'])['Item'].count().unstack().reset_index().fillna(0).set_index('Transaction')

Convert counts to binary values (0 or 1)

onehot = onehot.applymap(lambda x: 1 if x > 0 else 0)

Applying Apriori algorithm

frequent_itemsets = apriori(onehot, min_support=0.0045, use_colnames=True)

Generating association rules

rules = association_rules(frequent_itemsets, metric="lift", min_threshold=3)

Filtering rules based on minimum confidence and minimum length

filtered_rules = rules[(rules['confidence'] > 0.2) & (rules['lift'] > 3) & (rules['antecedents'].apply(lambda x:

len(x)) >= 2)]

Displaying filtered association rules

print(filtered_rules)

Explanation: Replace "transactions.csv" with the actual filename and path of your dataset. Th e

code will load the dataset, apply the Apriori algorithm to find frequent itemsets with a minimum

support of 0.0045, and generate association rules with a minimum lift of 3. It then filters the rules

based on a minimum confidence of 0.2 and a minimum length of 2 for the antecedent set. Adjust

the parameters as needed for your specific dataset and requirements.

Output:

 antecedents consequents antecedent support ... lift leverage conviction

0 (Coffee, Croissant) (Juice) 0.06 ... 3.333333 0.0450 2.8

1 (Coffee, Croissant) (Muffin, Tea) 0.06 ... 3.333333 0.0450 2.8

2 (Muffin, Coffee) (Tea, Juice) 0.06 ... 4.000000 0.0450 3.0

3 (Tea, Juice) (Muffin, Coffee) 0.06 ... 4.000000 0.0450 3.0

4 (Muffin, Coffee) (Pastry) 0.06 ... 5.000000 0.0450 4.0

5 (Coffee, Croissant, Tea) (Pastry) 0.06 ... 5.000000 0.0450 4.0

6 (Coffee, Pastry, Hot Chocolate) (Muffin) 0.06 ... 5.000000 0.0450 4.0

7 (Coffee, Pastry, Muffin) (Tea, Juice) 0.06 ... 5.000000 0.0450 4.0

8 (Coffee, Pastry, Muffin, Hot Chocolate) (Tea) 0.06 ... 6.000000 0.0450 5.0

7. Implement Decision Tree Classification using Bank Marketing

Data

Decision tree is the most powerful and popular tool for classification and prediction. A Decision tree is

a flowchart like tree structure, where each internal node denotes a test on an attribute, each branch

represents an outcome of the test, and each leaf node (terminal node) holds a class label. Decision Trees

are popular because they have two key properties:

A. Simplicity: Decision Trees are simple, visually appealing and are easy to interpret.
B. Accuracy: Advance Decision Tree models show exceptional performance in predicting

patterns in complex data.

TYPES OF NODES

A decision tree consists of three types of nodes :

1. Root Nodes

The very top node is called as root node or just a node. Alternatively, it is also called as top decision node.

It represents the entire population or sample, and this further gets divided into two or more

homogeneous sets.

2.Decision Nodes

When a sub-node splits into further sub-nodes, then it is called a decision node. These are also called as

Internal nodes, or at-times just a Node(s). Internal nodes have arrows pointing to them, and they have

arrows pointing away from them.

3.Leaf Nodes

Nodes with no children (no further split) is called Leaf or Terminal node or just leaves. Leaf noes have

arrows pointing to them, but there are no arrows pointing away from them.

In general, Decision tree analysis is a predictive modelling tool that can be applied across many areas.

Decision trees can be constructed by an algorithmic approach that can split the dataset in different ways

based on different conditions. Decisions tress are the most powerful algorithms that falls under the category

of supervised algorithms. They can be used for both classification and regression tasks. The two main

entities of a tree are decision nodes, where the data is split and leaves, where we got outcome.

TYPES OF DECISION TREES

In Machine Learning, we have two types of Model, these are Regression and Classification. With Decision

Trees we have similar models. We can say that Decision Trees can be applied to both Regression and

Classification Problems.

1. Regression Tree

Regression Trees are used for continuous quantitative target variables. Example:

• Predicting rainfall

• Predicting revenue

• Predicting marks etc.

2.Classification Tree

Classification Tree are used for discrete categorical target variables. Example:

• Predicting if the temperature will be High or Low

• Predicting if a team will Win the match or not

• Predicting the health of a person, Healthy or Unhealthy.

FOUR MAIN SPLITTING CRITERIA USED IN DECISION TREES

1. Gini impurity

Gini impurity is a measure of how often a randomly chosen element from the set would be incorrectly

labeled if it was randomly labeled according to the distribution of labels in the subset. In simple terms,

Gini impurity is the measure of impurity in a node.

Where, pi - probabilities of each class

2. Entropy

 Another very popular way to split nodes in the decision tree is Entropy. Entropy is the measure of

Randomness in the system. The formula for Entropy is:

Where, pi - probabilities of each class

3. Variance

 Variance describes how much a model changes when you train it using different portions of your data

set.

4. Information gain

Information gain or IG is a statistical property that measures how well a given attribute separates the

training examples according to their target classification.

Information gain is calculated by :

comparing the entropy of the dataset before and after a transformation.

TWO PHASES OF IMPLEMENTATION

While implementing the decision tree we will go through the following two phases:

I. Building phase

1. Pre-process the dataset.

2. Split the dataset from train and test using Python sklearn package.

3. Train the classifier.

II. Operational phase

1. Building phase

2. Calculate the accuracy.

SPLIT CREATION

A split is basically including an attribute in the dataset and a value. We can create a split in dataset with

the help of following three parts −

Part1: Calculating Gini Score − We have just discussed this part in the previous section. Part2: Splitting a

dataset − It may be defined as separating a dataset into two lists of rows having index of an attribute and

a split value of that attribute. After getting the two groups - right and left, from the dataset, we can

calculate the value of split by using Gini score calculated in first part. Split value will decide in which group

the attribute will reside.

Part3: Evaluating all splits − Next part after finding Gini score and splitting dataset is the evaluation of

all splits. For this purpose, first, we must check every value associated with each attribute as a candidate

split. Then we need to find the best possible split by evaluating the cost of the split. The best split will be

used as a node in the decision tree.

Building a Tree

As we know that a tree has root node and terminal nodes. After creating the root node, we can build the

tree by following two parts −

Part1: Terminal node creation

While creating terminal nodes of decision tree, one important point is to decide when to stop growing

tree or creating further terminal nodes. It can be done by using two criteria namely maximum tree depth

and minimum node records as follows −

• Maximum Tree Depth − As name suggests, this is the maximum number of the nodes in a tree after root

node. We must stop adding terminal nodes once a tree reached at maximum depth i.e. once a tree got

maximum number of terminal nodes.

• Minimum Node Records − It may be defined as the minimum number of training patterns that a given

node is responsible for. We must stop adding terminal nodes once tree reached at these minimum node

records or below this minimum. Terminal node is used to make a final prediction.

Part2: Recursive Splitting

As we understood about when to create terminal nodes, now we can start building our tree. Recursive

splitting is a method to build the tree. In this method, once a node is created, we can create the child nodes

(nodes added to an existing node) recursively on each group of data, generated by splitting the dataset, by

calling the same function again and again.

PREDICTION

After building a decision tree, we need to make a prediction about it. Basically, prediction involves

navigating the decision tree with the specifically provided row of data. We can make a prediction with the

help of recursive function, as did above. The same prediction routine is called again with the left or the child

right nodes.

Assumptions

The following are some of the assumptions we make while creating decision tree −

5.While preparing decision trees, the training set is as root node.

6.Decision tree classifier prefers the features values to be categorical. In case if you want to use

continuous values then they must be done discretized prior to model building.

7.Based on the attribute’s values, the records are recursively distributed.

8.Statistical approach will be used to place attributes at any node position i.e.as root node or internal

node.

PROCEDURE

Step 1: Gather the data / dataset

Step 2: Import the required Python packages

Step 3: Build a data frame

Step 4: Create the Model in Python (In this example Decision Tree)

Step 5: Predict using Test Dataset and Check the score

Step 6: Prediction with a New Set of Data / unseen data (if required)

Source of Dataset: https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset

7.1 Explore data and visualize each attribute

The data is related with direct marketing campaigns of a Portuguese banking institution. The marketing

campaigns were based on phone calls. Often, more than one contact to the same client was required, in

order to access if the product (bank term deposit) would be ('yes') or not ('no') subscribed. The dataset

provides the bank customers‘ information. It includes 41,188 records and 21 fields. The classification

goal is to predict whether the client will subscribe (1/0) to a term deposit (variable y).

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Load the dataset

bank_data = pd.read_csv("bank.csv")

Display the first few rows of the dataset

print("First few rows of the dataset:")

print(bank_data.head())

Explore the structure of the dataset

print("\nDataset Info:")

print(bank_data.info())

https://www.kaggle.com/datasets/janiobachmann/bank-marketing-dataset

Summary statistics of numerical columns

print("\nSummary Statistics:")

print(bank_data.describe())

Check for missing values

print("\nMissing Values:")

print(bank_data.isnull().sum())

Visualize each attribute

for column in bank_data.columns:

 if bank_data[column].dtype == 'object': # Only visualize categorical variables

 plt.figure(figsize=(8, 6))

 sns.countplot(x=column, data=bank_data, palette='Set2')

 plt.title(f'Countplot of {column}')

 plt.xlabel(column)

 plt.ylabel('Count')

 plt.xticks(rotation=45)

 plt.show()

 else:

 plt.figure(figsize=(8, 6))

 sns.histplot(bank_data[column], kde=True, color='skyblue', bins=20)

 plt.title(f'Histogram of {column}')

 plt.xlabel(column)

 plt.ylabel('Frequency')

 plt.show()

Explanation: Step 1: Load the dataset.

Step 2: Explore the data to understand its structure, summary statistics, and missing values.

Step 3: Visualize each attribute using appropriate plots such as histograms, bar plots, count

plots, etc.

The code will load the dataset, display its structure, summary statistics, and missing values. It will

then visualize each attribute using appropriate plots based on whether the attribute is categorical

or numerical.

Output:

SQL: age job marital education default balance housing loan contact day month duration

campaign pdays previous poutcome y

0 30 unemployed married primary no 1787 yes no cellular 19 oct 79 1 -1 0 unknown no

1 33 services married secondary no 4789 yes yes cellular 11 may 220 1 339 4 failure no

2 35 management single tertiary no 1350 yes no cellular 16 apr 185 1 330 1 failure no

3 30 management married tertiary no 1476 yes yes unknown 3 jun 199 4 -1 0 unknown no

4 59 blue-collar married secondary no 0 yes no unknown 5 may 226 1 -1 0 unknown no

y.head()

age

56 0

57 0

37 0

40 0

56 0

Name: y, dtype: int64

#Count of unique values(y/n)

bank['y'].value_counts()

4640 people opened term deposit account and 36548 have not opened the term deposit

account

0 36548

1 4640

Name: y, dtype: int64

Decide which categorical variables you want to use in model

for col_name in X.columns:

if X[col_name].dtypes == 'object':# in pandas it is object

unique_cat = len(X[col_name].unique())

print("Feature '{col_name}' has {unique_cat} unique categories".format(col_name=col_name,

unique_cat=unique_cat))

print(X[col_name].value_counts())

print()

Output:

Feature 'job' has 12 unique categories

admin. 10422

blue-collar 9254

technician 6743

services 3969

management 2924

retired 1720

entrepreneur 1456

self-employed 1421

housemaid 1060

unemployed 1014

student 875

unknown 330

Name: job, dtype: int64

Feature 'marital' has 4 unique categories

married 24928

single 11568

divorced 4612

unknown 80

Name: marital, dtype: int64

Feature 'education' has 8 unique categories

university.degree 12168

high.school 9515

basic.9y 6045

professional.course 5243

basic.4y 4176

basic.6y 2292

unknown 1731

illiterate 18

Name: education, dtype: int64

Feature 'default' has 3 unique categories

no 32588

unknown 8597

yes 3

Name: default, dtype: int64

Feature 'housing' has 3 unique categories

yes 21576

no 18622

unknown 990

Name: housing, dtype: int64

Feature 'loan' has 3 unique categories

no 33950

yes 6248

unknown 990

Name: loan, dtype: int64

Feature 'contact' has 2 unique categories

cellular 26144

telephone 15044

Name: contact, dtype: int64

Feature 'month' has 10 unique categories

may 13769

jul 7174

aug 6178

jun 5318

nov 4101

apr 2632

oct 718

sep 570

mar 546

dec 182

Name: month, dtype: int64

Feature 'day_of_week' has 5 unique categories

thu 8623

mon 8514

wed 8134

tue 8090

fri 7827

Name: day_of_week, dtype: int64

Feature 'poutcome' has 3 unique categories

nonexistent 35563

failure 4252

success 1373

Name: poutcome, dtype: int64

Visualizations:

#visualization of Predictor variable (y)

print(y.value_counts().plot.bar()

7.2 Predict the test set results and find the accuracy of the model

Predict the test set results and find the accuracy of the model for Bank Marketing Data, first need to train a

machine learning model on the dataset and then evaluate its performance on a test set.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score

Load the dataset

bank_data = pd.read_csv("bank.csv")

Perform label encoding for categorical variables

label_encoder = LabelEncoder()

for column in bank_data.columns:

 if bank_data[column].dtype == 'object':

 bank_data[column] = label_encoder.fit_transform(bank_data[column])

Split the data into features and target variable

X = bank_data.drop(columns=['y'])

y = bank_data['y']

Split the data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Initialize and train a RandomForestClassifier model

rf_classifier = RandomForestClassifier(random_state=42)

rf_classifier.fit(X_train, y_train)

Predict the test set results

y_pred = rf_classifier.predict(X_test)

Calculate the accuracy of the model

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy of the model:", accuracy)

Explanation: This code performs label encoding for categorical variables, splits the dataset into features

and target variable, splits the data into train and test sets, initializes and trains a RandomForestClassifier

model, predicts the test set results, and finally calculates the accuracy of the model.

Output:

The output of the provided code snippet will be the accuracy of the trained Random Forest Classifier model

when applied to the test set. It will be a single floating-point number representing the proportion of

correctly predicted outcomes in the test set.

Accuracy of the model: 0.85

The model achieved an accuracy of 85% on the test set, indicating that 85% of the test set samples were

correctly classified by the model.

7.3 Visualize the confusion matrix

Confusion Matrix:

A confusion matrix is a performance measurement tool in machine learning that provides a summary of the

model's predictions against the actual outcomes. It tabulates the counts of true positive, true negative, false

positive, and false negative predictions, enabling the assessment of the model's accuracy, precision, recall,

and F1-score. It is particularly useful in binary classification tasks but can be extended to multiclass

classification by considering each class separately.

To visualize the confusion matrix for Bank Marketing Data, you first need to train a machine learning model

and then use the predicted values and actual labels to construct the confusion matrix.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

Load the dataset

bank_data = pd.read_csv("bank.csv")

Perform label encoding for categorical variables

label_encoder = LabelEncoder()

for column in bank_data.columns:

 if bank_data[column].dtype == 'object':

 bank_data[column] = label_encoder.fit_transform(bank_data[column])

Split the data into features and target variable

X = bank_data.drop(columns=['y'])

y = bank_data['y']

Split the data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Initialize and train a RandomForestClassifier model

rf_classifier = RandomForestClassifier(random_state=42)

rf_classifier.fit(X_train, y_train)

Predict the test set results

y_pred = rf_classifier.predict(X_test)

Generate confusion matrix

conf_matrix = confusion_matrix(y_test, y_pred)

Visualize the confusion matrix

plt.figure(figsize=(8, 6))

sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", cbar=False)

plt.title("Confusion Matrix")

plt.xlabel("Predicted Label")

plt.ylabel("True Label")

plt.show()

Explanation: This code first loads the dataset, preprocesses it by encoding categorical variables, splits it

into training and testing sets, and trains a RandomForestClassifier model. Then, it predicts the test set results

and generates the confusion matrix using scikit-learn's confusion_matrix function. Finally, it visualizes the

confusion matrix using seaborn's heatmap.

Output:

The output of the provided code will be a heatmap visualization of the confusion matrix for the predictions

made by the RandomForestClassifier model on the test set of the Bank Marketing Data. The confusion

matrix will be displayed with annotations indicating the counts of true positive, true negative, false positive,

and false negative predictions.

The heatmap will provide a visual representation of the confusion matrix, with different colors representing

different levels of prediction accuracy. The diagonal elements of the heatmap represent the correct

predictions (true positives and true negatives), while the off-diagonal elements represent incorrect

predictions (false positives and false negatives).

7.4 Compute precision, recall, F-measure and support.

Explanation: To compute precision, recall, F-measure, and support using scikit-learn's classification_report

function.

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import classification_report

Load the dataset

bank_data = pd.read_csv("bank.csv")

Perform label encoding for categorical variables

label_encoder = LabelEncoder()

for column in bank_data.columns:

 if bank_data[column].dtype == 'object':

 bank_data[column] = label_encoder.fit_transform(bank_data[column])

Split the data into features and target variable

X = bank_data.drop(columns=['y'])

y = bank_data['y']

Split the data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Initialize and train a RandomForestClassifier model

rf_classifier = RandomForestClassifier(random_state=42)

rf_classifier.fit(X_train, y_train)

Predict the test set results

y_pred = rf_classifier.predict(X_test)

Compute precision, recall, F-measure, and support

report = classification_report(y_test, y_pred)

Display the results

print("Classification Report:")

print(report)

Output:

This code first loads the dataset, preprocesses it by encoding categorical variables, splits it into training and

testing sets, and trains a RandomForestClassifier model. Then, it predicts the test set results and computes

precision, recall, F-measure, and support using scikit-learn's classification_report function.

8. Implement Decision Tree Classification on IRIS Dataset

Dataset: The data set consists of 50 samples from each of three species of Iris: Iris setosa, Iris

virginica and Iris versicolor. Four features were measured from each sample: the length and the

width of the sepals and petals, in centimeters.

Source of Dataset: https://archive.ics.uci.edu/dataset/53/iris

Importing decision tree classifier

> from sklearn.tree import DecisionTreeClassifier

Importing iris data set

> from sklearn.datasets import load_iris

Importing train_test_split for splitting of data

> from sklearn.model_selection import train_test_split

8.1 Calculate Euclidean Distance.

Euclidean distance is a measure of the straight-line distance between two points in Euclidean space. It is

one of the most commonly used distance metrics in various fields including mathematics, statistics, and

computer science. In the context of machine learning and data analysis, Euclidean distance is often used

to quantify the similarity or dissimilarity between data points.

To calculate the Euclidean distance using the Iris dataset:

Step 1: Load the Iris Dataset: which is a popular dataset in machine learning, containing measurements

of various iris flowers.

Step 2: Choose Two Data Points: Select any two data points from the Iris dataset.

Step 3: Calculate Euclidean Distance: Compute the Euclidean distance between the chosen data points

using the formula mentioned above.

This code uses the popular scikit-learn library to load the Iris dataset and compute the Euclidean distance

between two given data points:

https://archive.ics.uci.edu/dataset/53/iris

from sklearn.datasets import load_iris

from scipy.spatial import distance

import numpy as np

Load Iris dataset

iris = load_iris()

data = iris.data

Function to calculate Euclidean distance

def euclidean_distance(point1, point2):

 return np.sqrt(np.sum((point1 - point2) ** 2))

Example usage

Choose two data points

point_index1 = 0

point_index2 = 100

Calculate Euclidean distance between the two chosen data points

distance_euclidean = euclidean_distance(data[point_index1], data[point_index2])

print("Euclidean distance between point {} and point {}: {:.2f}".format(point_index1, point_index2,

distance_euclidean))

Explanation: The code will load the Iris dataset from scikit-learn, define a function to calculate the

Euclidean distance between two points, and then demonstrate the usage by calculating the distance

between the first and the 101st data points in the dataset. There can be change point_index1 and

point_index2 to calculate the distance between any two points in the dataset.

Output:

Euclidean distance between point 0 and point 100: 3.84

This indicates that the Euclidean distance between the first data point (index 0) and the 101st data point

(index 100) in the Iris dataset is approximately 3.84.

8.2 Get Nearest Neighbors

To get the nearest neighbors using the Iris dataset, we can utilize the NearestNeighbors class from the

scikit-learn library.

from sklearn.datasets import load_iris

from sklearn.neighbors import NearestNeighbors

Load Iris dataset

iris = load_iris()

data = iris.data

Define the number of neighbors to find

n_neighbors = 5

Initialize the Nearest Neighbors model

knn = NearestNeighbors(n_neighbors=n_neighbors)

Fit the model with the dataset

knn.fit(data)

Choose a data point for which nearest neighbors will be found

query_point_index = 0 # Index of the query point

Find the nearest neighbors for the query point

distances, indices = knn.kneighbors([data[query_point_index]])

Print the indices and distances of nearest neighbors

print("Nearest neighbors for point {}:".format(query_point_index))

for i in range(n_neighbors):

 print("Neighbor {}, Index: {}, Distance: {:.2f}".format(i + 1, indices[0][i], distances[0][i]))

Explanation:

Step 1: First import the necessary libraries (load_iris to load the Iris dataset and NearestNeighbors to

perform nearest neighbor search).

Step21: Load the Iris dataset and initialize the NearestNeighbors model with the desired number of

neighbors to find (n_neighbors).

Step 3: Fit the model with the dataset.

Step 4: Choose a query point (in this case, the first data point) for which nearest neighbors will be found.

Step 5: Finally, use the kneighbors method to find the nearest neighbors for the query point and print

their indices and distances.

Output:

Nearest neighbors for point 0:

Neighbor 1, Index: 0, Distance: 0.00

Neighbor 2, Index: 17, Distance: 0.14

Neighbor 3, Index: 4, Distance: 0.14

Neighbor 4, Index: 39, Distance: 0.14

Neighbor 5, Index: 27, Distance: 0.15

Explanation: The output indicates the indices and distances of the five nearest neighbors for the first data

point in the Iris dataset. Each line corresponds to a nearest neighbor, showing its position in the dataset

(index) and the distance from the query point.

8.3 Make Predictions

Explanation:

To make predictions using the Iris dataset, typically employ a supervised learning algorithm. One of the

most common algorithms for this task is the k-nearest neighbors (KNN) algorithm.

Step 1: First import necessary libraries (load_iris to load the Iris dataset, train_test_split to split the dataset

into training and testing sets, KNeighborsClassifier to initialize the KNN classifier, and accuracy_score to

evaluate the accuracy of the predictions).

Step 2: Load the Iris dataset and split it into features (X) and target labels (y).

Step 3: Split the dataset into training and testing sets using 80% of the data for training and 20% for

testing.

Step 4: Initialize the KNN classifier with the desired number of neighbors (n_neighbors) and train it on the

training data.

Step 5: Make predictions on the testing data using the trained classifier.

Step 6: Finally, calculate the accuracy of the predictions by comparing them to the true labels and print

the accuracy score.

Can change parameters such as the number of neighbors (n_neighbors) or the test size in train_test_split

according to the requirements.

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score

Load Iris dataset

iris = load_iris()

X = iris.data

y = iris.target

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Initialize the KNN classifier

knn = KNeighborsClassifier(n_neighbors=3) # You can change the number of neighbors as needed

Train the classifier on the training data

knn.fit(X_train, y_train)

Make predictions on the testing data

y_pred = knn.predict(X_test)

Calculate the accuracy of the predictions

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

Output:

The output of the provided Python code will display the accuracy achieved by the KNN classifier on the

testing data. Since the output can vary due to the randomness involved in splitting the dataset and the

nature of the algorithm, the specific accuracy value may differ between runs.

Accuracy: 0.9666666666666667

The output indicates that the KNN classifier achieved an accuracy of approximately 96.67% on the testing

data. The output may vary slightly due to the random splitting of the dataset.

9. Implement Decision Tree Classification

9.1 build a decision tree classifier to determine the kind of flower by using

given dimensions.

Explanation: Use scikit-learn to build a decision tree classifier for determining the type of flower based

on given dimensions using the Iris dataset.

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score, classification_report

Load Iris dataset

iris = load_iris()

X = iris.data

y = iris.target

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Initialize the Decision Tree classifier

clf = DecisionTreeClassifier(random_state=42)

Train the classifier on the training data

clf.fit(X_train, y_train)

Make predictions on the testing data

y_pred = clf.predict(X_test)

Calculate the accuracy of the predictions

accuracy = accuracy_score(y_test, y_pred)

print("Accuracy:", accuracy)

Print classification report

print("\nClassification Report:")

print(classification_report(y_test, y_pred, target_names=iris.target_names))

Explanation:

Step 1: Import necessary libraries (load_iris to load the Iris dataset, train_test_split to split the dataset into

training and testing sets, DecisionTreeClassifier to initialize the Decision Tree classifier, accuracy_score to

evaluate the accuracy of the predictions, and classification_report to generate a classification report).

Step 2: Lload the Iris dataset and split it into features (X) and target labels (y).

Step 3: Split the dataset into training and testing sets using 80% of the data for training and 20% for testing.

Step 4: Initialize the Decision Tree classifier and train it on the training data.

Step 5: Make predictions on the testing data using the trained classifier.

Step 6: Finally, calculate the accuracy of the predictions and print the classification report, which includes

precision, recall, F1-score, and support for each class.

This code will build a decision tree classifier to determine the type of flower based on the given dimensions

in the Iris dataset.

Output:

Displays the accuracy achieved by the Decision Tree classifier on the testing data, as well as the classification

report containing precision, recall, F1-score, and support for each class.

Accuracy: 1.0

Classification Report:

 precision recall f1-score support

 setosa 1.00 1.00 1.00 10

 versicolor 1.00 1.00 1.00 9

 virginica 1.00 1.00 1.00 11

 accuracy 1.00 30

 macro avg 1.00 1.00 1.00 30

weighted avg 1.00 1.00 1.00 30

The output indicates that the Decision Tree classifier achieved an accuracy of 100% on the testing

data. Additionally, the classification report shows perfect precision, recall, and F1-score for each

class (setosa, versicolor, and virginica), indicating that the classifier performed flawlessly on this

particular test set. However, keep in mind that the performance might vary slightly due to the

randomness involved in splitting the dataset.

9.2 Train with various split measures (Gini index, Entropy and Information

Gain)

Train a decision tree classifier with various split criteria such as Gini index, entropy, and information gain

using the Iris dataset, utilize the Decision Tree Classifier from scikit-learn library with the appropriate

criterion parameter.

Explanation:

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import accuracy_score

Load Iris dataset

iris = load_iris()

X = iris.data

y = iris.target

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Initialize Decision Tree classifiers with different split measures

classifiers = {

 "Gini Index": DecisionTreeClassifier(criterion="gini", random_state=42),

 "Entropy": DecisionTreeClassifier(criterion="entropy", random_state=42),

 "Information Gain": DecisionTreeClassifier(criterion="gini", splitter="best", random_state=42)

}

Train each classifier on the training data and evaluate on the testing data

for clf_name, clf in classifiers.items():

 clf.fit(X_train, y_train)

 y_pred = clf.predict(X_test)

 accuracy = accuracy_score(y_test, y_pred)

 print(f"{clf_name} - Accuracy: {accuracy:.2f}")

Explanation:

Step 1: Import necessary libraries (load_iris to load the Iris dataset, train_test_split to split the dataset into

training and testing sets, Decision Tree Classifier to initialize the Decision Tree classifier, and

accuracy_score to evaluate the accuracy of the predictions).

Step 2: Load the Iris dataset and split it into features (X) and target labels (y).

Step 3: Split the dataset into training and testing sets using 80% of the data for training and 20% for

testing.

Step 4: Initialize three Decision Tree classifiers with different split measures: Gini index, entropy, and

information gain.

Step 5: Train each classifier on the training data and evaluate its performance on the testing data by

calculating the accuracy of the predictions.

The code will train three decision tree classifiers with different split measures using the Iris dataset and

print the accuracy achieved by each classifier.

Output:

Display the accuracy achieved by each Decision Tree classifier trained with different split measures on the

testing data.

Gini Index - Accuracy: 1.00

Entropy - Accuracy: 1.00

Information Gain - Accuracy: 1.00

This output indicates that all three Decision Tree classifiers achieved perfect accuracy of 100%

on the testing data when trained with different split measures: Gini index, entropy, and

information gain.

9.3 Compare the accuracy

Explanation:

To compare the accuracy of different classifiers using the Iris dataset, you can train multiple classifiers and

evaluate their performance on the same testing data.

Below Python code example that compares the accuracy of Decision Tree, K-Nearest Neighbors (KNN),

and Support Vector Machine (SVM) classifiers

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

Load Iris dataset

iris = load_iris()

X = iris.data

y = iris.target

Split the dataset into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Initialize classifiers

classifiers = {

 "Decision Tree": DecisionTreeClassifier(random_state=42),

 "K-Nearest Neighbors": KNeighborsClassifier(),

 "Support Vector Machine": SVC(random_state=42)

}

Train and evaluate each classifier

for clf_name, clf in classifiers.items():

 clf.fit(X_train, y_train)

 y_pred = clf.predict(X_test)

 accuracy = accuracy_score(y_test, y_pred)

 print(f"{clf_name} - Accuracy: {accuracy:.2f}")

Output:

Step 1: Import necessary libraries (load_iris to load the Iris dataset, classifiers from scikit-learn, and

accuracy_score to evaluate the accuracy of the predictions).

Step 2: Load the Iris dataset and split it into features (X) and target labels (y).

Step 3: Split the dataset into training and testing sets using 80% of the data for training and 20% for

testing.

Step 4: Initialize three classifiers: Decision Tree, K-Nearest Neighbors, and Support Vector Machine (SVM).

Step 5: Train each classifier on the training data and evaluate its performance on the testing data by

calculating the accuracy of the predictions.

The code will compare the accuracy of Decision Tree, KNN, and SVM classifiers using the Iris dataset.

10. CLASSIFICATION – BAYESIAN NETWORK

Bayesian Network Classification is a probabilistic graphical model that represents a set of random

variables and their conditional dependencies via a directed acyclic graph. In classification tasks,

Bayesian Networks can model the relationships between input features and class labels, allowing

for efficient inference of class probabilities given observed data. By incorporating prior

knowledge and updating probabilities based on new evidence, Bayesian Networks offer a

principled approach to classification, particularly in domains with uncertainty and complex

dependencies.

Source for Dataset: https://www.kaggle.com/datasets/nikhil1e9/loan-default

A bank is concerned about the potential for loans not to be repaid. If previous loan default

data can be used to predict which potential customers are liable to have problems repaying

loans, these "bad risk" customers can either be declined a loan or offer ed alternative products.

Dataset: The stream named bayes_bankloan.str, which references the data file named

bankloan.sav.

These files are available from the Demos directory of any IBM® SPSS® Modeler installation

and can be accessed from the IBM SPSS Modeler program group on the Windows Start menu.

The bayes_bankloan.str file is in the streams directory.

https://www.kaggle.com/datasets/nikhil1e9/loan-default

10.1 Build Bayesian network model using existing loan default data

Explanation:

Use the pgmpy library to build a Bayesian network model for a loan default dataset. This library provides

tools for probabilistic graphical models, including Bayesian networks.

pip install pgmpy

from pgmpy.models import BayesianModel

from pgmpy.estimators import MaximumLikelihoodEstimator

import pandas as pd

Load loan default dataset

data = pd.read_csv('loan_default_dataset.csv') # replace 'loan_default_dataset.csv' with your dataset

filename

Define the structure of the Bayesian network

model = BayesianModel([('income', 'loan_status'), ('credit_score', 'loan_status'), ('loan_status',

'approval')])

Estimate parameters from the dataset

model.fit(data, estimator=MaximumLikelihoodEstimator)

Print the model's structure and parameters

print("Bayesian Network Structure:")

print(model.edges())

print("\nBayesian Network Parameters:")

for cpd in model.get_cpds():

 print(cpd)

Output:

Step 1: Load the loan default dataset using pd.read_csv.

Step 2: Define the structure of the Bayesian network specifying the dependencies between

variables.

Step 3: Use Maximum Likelihood Estimation to estimate the parameters (conditional probability

distributions) from the dataset.

Step 4: Finally, print the structure of the Bayesian network and the estimated parameters.

Replace 'loan_default_dataset.csv' with the filename of path loan default dataset. Ensure that the

dataset is properly formatted with appropriate columns for 'income', 'credit_score', 'loan_status',

and 'approval'.

The output of the program will include the structure of the Bayesian network (defined by the

edges between nodes) and the parameters (conditional probability distributions) estimated

from your dataset.

This output represents the Bayesian network structure and the conditional probability

distributions estimated from the dataset for each node in the network.

10.2 Visualize Tree Augmented Naïve Bayes model

Explanation:

Visualizing a Tree Augmented Naïve Bayes (TAN) model for a loan defaulters dataset can be achieved using

the pgmpy library, which provides tools for probabilistic graphical models including TAN.

pip install pgmpy

import numpy as np

import pandas as pd

from pgmpy.estimators import TreeAugmentedNaiveBayes

from pgmpy.models import BayesianModel

import networkx as nx

import matplotlib.pyplot as plt

Load loan default dataset

data = pd.read_csv('loan_default_dataset.csv') # replace 'loan_default_dataset.csv' with your dataset

filename

Instantiate a TreeAugmentedNaiveBayes estimator

tan = TreeAugmentedNaiveBayes()

Fit the TAN model to the data

tan.fit(data)

Get the TAN graph

tan_graph = tan.graph_

Plot the TAN graph

plt.figure(figsize=(10, 6))

pos = nx.spring_layout(tan_graph)

nx.draw(tan_graph, pos, with_labels=True, node_size=2000, node_color="skyblue", font_size=10,

font_weight="bold")

edge_labels = nx.get_edge_attributes(tan_graph, 'weight')

nx.draw_networkx_edge_labels(tan_graph, pos, edge_labels=edge_labels, font_color='red')

plt.title("Tree-Augmented Naïve Bayes (TAN) Graph")

plt.show()

Step 1: Load the loan default dataset using pd.read_csv.

Step 2: Instantiate a TreeAugmentedNaiveBayes estimator from pgmpy.

Step 3: Fit the TAN model to the dataset.

Step 4: Otain the TAN graph from the fitted model.

Step 5: Use NetworkX and Matplotlib to visualize the TAN graph.

Replace 'loan_default_dataset.csv' with the filename of in path of loan default dataset.

The code will generate a visualization of the TAN model as a directed acyclic graph, where nodes represent

variables and edges represent dependencies between variables. Edge labels indicate the weights

(conditional probabilities) associated with the edges.

Output:

The visualization will show a directed acyclic graph where nodes represent variables/features, and edges

represent dependencies between variables.

Each node will have labels representing the variable names, and edge labels will indicate the weights

(conditional probabilities) associated with the edges.

After running the code, a graphical window should pop up displaying the TAN graph visualization. It will

look like a network diagram with nodes connected by arrows. The layout of the nodes might vary slightly

depending on the specific structure of the TAN model learned from your dataset.

V. REFERENCE BOOKS:

1. Robert Layton, “Learning Data Mining with Python”, Packt Publishing, 2015.

VI. WEB REFERENCES:

1. https://www.dataquest.io/blog/sci-kit-learn-tutorial/

2. https://www.ibm.com/support/knowledgecenter/en/SS3RA7_sub/modeler_tutorial_ddita/mod

eler_tuto rial_ddita,gentopic1.html

3. https://archive.ics.uci.edu/ml/datasets.php/

4. https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python

5. https://pythonprogramming.net/k-mean-titanic-dataset-machine-learning-tutorial/

6. https://newoutlook.it/download/python/learning-data-mining-with-python.pdf

VII. MATERIALS ONLINE:

1. Course Template

2. Lab Manual

https://www.dataquest.io/blog/sci-kit-learn-tutorial/
https://archive.ics.uci.edu/ml/datasets.php/
https://www.datacamp.com/community/tutorials/svm-classification-scikit-learn-python
https://pythonprogramming.net/k-mean-titanic-dataset-machine-learning-tutorial/
https://newoutlook.it/download/python/learning-data-mining-with-python.pdf

