
 DATABASE MANAGEMENT SYSTEMS LABORATORY

IV Semester: CSE / IT / CSIT / CSE (AI&ML) / CSE (DS) / CSE (CS)

Course Code Category Hours / Week Credits Maximum Marks

AITC07 Core
L T P C CIA SEE Total

0 0 3 1.5 30 70 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45

Prerequisite: No Prerequisites

I. COURSE OVERVIEW:

The purpose of this course is to provide a clear understanding of fundamentals with emphasis on their applications to

create and manage large data sets. It highlights on technical overview of database software to retrieve data from n

database. The course includes database design principles, normalization, concurrent transaction processing, security,

recovery and file organization techniques.

II. COURSES OBJECTIVES:

The students will try to learn

I. The SQL commands for data definition, manipulation, control and perform transactions in database systems.

II. The procedural language for implementation of functions, procedures, cursors and triggers using PL/SQL

programs.

III. The logical design of a real time database system with the help of Entity Relationship diagrams.

III. COURSE OUTCOMES:

At the end of the course students should be able to:

CO1 Demonstrate database creation and manipulation concepts with the help of SQL queries.

CO2
Make use of inbuilt functions of SQL queries to perform data aggregations, subqueries, embedded

queries and views.

CO3 Apply key constraints on database for maintaining integrity and quality of data.

CO4 Demonstrate normalization techniques by using referential key constraints.

CO5
Implement PL/SQL programs on procedures, cursors and triggers for enhancing the features of

database system to handle exceptions.

CO6
Design database model with the help of Entity Relationship diagrams for a real time system or

scenario.

IV. COURSE CONTENT:

EXERCISES FOR DATABASE MANAGEMENT SYSTEMS LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory practice

sessions.

1. Getting Started Exercises

Installation and Accessing Data base

Introduction:

A Database Management System (DBMS) is a software system that is designed to manage and organize data in

a structured manner. It allows users to create, modify, and query a database, as well as manage the security and

access controls for that database.

We can use different Database Languages and PL/SQL Programming for performing Database management in

Convenient manner.

.Software:

Oracle

Installation of Oracle Database:

Step 1: Go to Main Database Folder where you’ll find Setup. Right click the setup.exe file and choose

Run as Administrator.

Step 2: Click Yes to continue. This will start Oracle Universal Installer.

Step 3: Select any of the three different Installation Options according to your needs.

• Option 1 – If you want to Install Oracle Server Software and want to Create Database also.

• Option 2 – If you want to Install Oracle Server only.

• Option 3 – If you want to Upgrade your Existing Database.

Step 4: Choose between Server Class and Desktop Class as per your requirement and click on Next.

Step 5: Configure the basic settings and create a Password for your database. Once the configuration

is done click on Next to continue.

Step 6: Oracle Universal Installer (OUI) will check for the Prerequisites such as Hardware compatibility.

Step 7: Click on Finish to start the Installation process. This installation might take some time

depending on your Hardware.

Step 8: Click OK to finish the installation.

Step 9: Copy the localhost link provided to open your Enterprise Manager.

Step 10: Click the Close Button and you are done with the Installation Process.

Go to Start Menu and

• Search Oracle Folder

• Click on Database Control – Oracle (Your Global Database Name)

• This will take you to the Login Screen of your Oracle Enterprise Manager.

1.1 Creating and Deleting a Database - CREATE DATABASE and DROP DATABASE

You can create a new database using SQL command "CREATE DATABASE databaseName"; and delete a

database using "DROP DATABASE databaseName". You could optionally apply condition "IF EXISTS" or "IF

NOT EXISTS" to these commands. For example,

mysql> CREATE DATABASE southwind;

Query OK, 1 row affected (0.03 sec)

mysql> DROP DATABASE southwind;

Query OK, 0 rows affected (0.11 sec)

mysql> CREATE DATABASE IF NOT EXISTS southwind;

Query OK, 1 row affected (0.01 sec)

mysql> DROP DATABASE IF EXISTS southwind;

Query OK, 0 rows affected (0.00 sec)

IMPORTANT: Use SQL DROP (and DELETE) commands with extreme care, as the deleted entities are

irrecoverable. THERE IS NO UNDO!!!

SHOW CREATE DATABASE

The CREATE DATABASE commands uses some defaults. You can issue a "SHOW CREATE

DATABASE databaseName" to display the full command and check these default values. We use \G (instead

of ';') to display the results vertically. (Try comparing the outputs produced by ';' and \G.)

mysql> CREATE DATABASE IF NOT EXISTS southwind;

mysql> SHOW CREATE DATABASE southwind \G

*************************** 1. row ***************************

 Database: southwind

Create Database: CREATE DATABASE `southwind` /*!40100 DEFAULT CHARACTER SET latin1 */

Try:

Create own database for storing all tables

2. Exercises on database definition language queries.

2.1 Create a table called Employee with the following structure.

a. Add a column commission with domain to the Employee table.

b. Insert any five records into the table.

c. Update the column details of job

d. Rename the column of Employ table using alter command.

e. Delete the employee whose emp no is 19

create table employee (empno number, ename varchar2(10),job varchar2(10),mgr number,sal

number);

Table created.

SQL> desc employee;

Name Null Type

EMPNO NUMBER

ENAME VARCHAR2(10)

JOB VARCHAR2(10)

MGR NUMBER

SAL NUMBER

2.2 Add a column commission with domain to the Employee table.

SQL> alter table employee add(commission number); Table altered.

SQL> desc employee;

Name Null Type

EMPNO NUMBER

ENAME VARCHAR2(10)

JOB VARCHAR2(10)

MGR NUMBER

SAL NUMBER

COMMISSION NUMBE

2.3 Insert any five records into the table.

SQL> insert into employee values(&empno,’&ename’,’&job’,&mgr,&sal,’&commission’);

Enter value for empno: 101

Enter value for ename: abhi Enter value for job: manager

Enter value for mgr: 1234 Enter value for sal: 10000 Enter value for commission: 70

Page 11

old 1: insert into employee values(&empno,’&ename’,’&job’,&mgr,&sal,’&commission’)

new 1: insert into employee values(101,’abhi’,’manager’,1234,10000,’70’)

1 row created.

2.4 Update the column details of job

SQL> update employee set job=’trainee’ where empno=103; 1 row updated.

SQL> select * from employee;

EMPNO ENAME JOB MGR SAL COMMISSION

101 abhi manager 1234 10000 70

102 rohith analyst 2345 9000 65

103 david trainee 3456 9000 65

104 rahul Clerk 4567 7000 55

105 pramod salesman 5678 5000 5

2.5 Rename the column of Employ table using alter command.

SQL> alter table employee rename column mgr to manager_no;

Table altered.

SQL> desc employee;

Name Null Type

EMPNO NUMBER

ENAME VARCHAR2(10)

JOB VARCHAR2(10)

MANAGER_NO NUMBER

SAL NUMBER

COMMISSION NUMBER

Try:

1. List the maximum salary paid to salesman

2. Display name of emp whose name start with “I‟

3. List details of emp who have joined before ‟30-sept-81‟

4. Display the emp details in the descending order of their basic salary

5. List of no of emp & avg salary for emp in the dept no „20‟

Hint:

Create a database called company consist of the following tables by using data definition languages.

1.Emp (eno, ename, job, hire date, salary, commission, deptno,)

2.dept (deptno, deptname, location)

eno is primary key in emp

deptno is primary key in dept

3. Exercises on database Manipulation language Queries.

3.1 Create a table called department with the following structure.

SQL> create table department (deptno number, deptname varchar2(10), location varchar2(10));

Table created.

SQL> desc department;

DEPTNO NUMBER

DEPTNAME VARCHAR2(10)

LOCATION VARCHAR2(10)

3.2 Add column designation to the department table.

SQL> alter table department add(designation varchar2(10));

Table altered.

SQL> desc department;

DEPTNO NUMBER

DEPTNAME VARCHAR2(10)

LOCATION VARCHAR2(10)

DESIGNATION VARCHAR2(10)

3.3 Insert values into the table.

SQL> insert into department values(&deptno,’&deptname’,’&location’,&designation’);

Enter value for deptno: 9

Enter value for deptname: accounting Enter value for location: hyderabad Enter value for designation:

manager

old 1: insert into department values(&deptno,’&deptname’,’&location’,’&designation’)

new 1: insert into department values(9,’accounting’,’hyderabad’,’manager’)

1 row created.

SQL> /

Enter value for deptno: 10

Enter value for deptname: research Enter value for location: chennai Enter value for designation:

professor

old 1: insert into department values(&deptno,’&deptname’,’&location’,’&designation’)

new 1: insert into department values(10,’research’,’chennai’,’professor’)

1 row created

3.4 List the records of emp table grouped by deptno.

SQL> select deptno,deptname from department group by deptno,deptname;

Page 13

DEPTNO DEPTNAME

9 accounting

12 operations

10 research

11 sales

3.5 Update the record designation where deptno is 17.

SQL> update department set designation=’accountant’ where deptno=17;

2 rows updated.

Try:

1. List full details of all Rooms.

2. How many Rooms are there.

3. List the price and type of all rooms at the Amrutha Hotel.

4. List the number of guests in each Room

5. Update the price of all rooms by 5%.

Hint:

The following tables form part of a database held in a relational DBMS by using data

manipulation languages:

Hotel (HotelNo, Name, City) HotelNo is the primary key

Room (RoomNo, HotelNo, Type, Price)

Booking (HotelNo, GuestNo, DateFrom, DateTo, RoomNo)

Guest (GuestNo, GuestName, GuestAddress) GuestNo is primary key

Room contains room details for each hotel and (HotelNo, RoomNo) forms the

primary key.

Booking contains details of the bookings and the primary key comprises

(HotelNo, GuestNo and DateFrom)

4. Exercises on both DDL and DML Queries.

4.1 Create a table called Customer with the following structure.

Students can execute fallowing queries based on previous queries executed

Try:

1. Retrieve city, phone, url of author whose name is „CHETAN BHAGAT‟.

2. Retrieve book title, reviewable id and rating of all books.

3. Retrieve book title, price, author name and url for publishers „MEHTA‟.

4. In a PUBLISHER relation change the phone number of „MEHTA‟ to 123456

5. Calculate and display the average, maximum, minimum price of each publisher.

6. Delete details of all books having a page count less than 100.

7. Retrieve details of all authors residing in city Pune and whose name begins with character

„C‟.

8. Retrieve details of authors residing in same city as „Korth‟.

9. Create a procedure to update the value of page count of a book of given ISBN.

10. Create a function that returns the price of book with a given ISBN.

Hint:

Create the following tables using data definition languages, data manipulation languages.

1)PUBLISHER (PID , PNAME ,ADDRESS ,STATE ,PHONE ,EMAILID);

2)BOOK (ISBN ,BOOK_TITLE , CATEGORY , PRICE , COPYRIGHT_DATE , YEAR ,PAGE_COUNT ,PID);

3) AUTHOR (AID,ANAME,STATE,CITY ,ZIP,PHONE,URL)

4) AUTHOR_BOOK (AID, ISBN);

5) REVIEW (RID, ISBN, RATING);

5. Exercises on tables with different types of constraints.

5.1 Not Null constraints.

CREATE TABLE STUDENT(

ROLL_NO INT NOT NULL,

STU_NAME VARCHAR (35) NOT NULL,

STU_AGE INT NOT NULL,

STU_ADDRESS VARCHAR (235),

PRIMARY KEY (ROLL_NO)

);

Query OK, 0 rows affected (0.01 sec)

mysql> insert into student values(6201 ,'raj',18,'meerpet');

Query OK, 1 row affected (0.02 sec)

mysql> insert into student values(NULL,'raj',18,'meerpet');

ERROR 1048 (23000): Column 'ROLL_NO' cannot be null

5.2 Unique constraints.

CREATE TABLE STUDENT1(

ROLL_NO INT NOT NULL,

STU_NAME VARCHAR (35) NOT NULL UNIQUE,

STU_AGE INT NOT NULL,

STU_ADDRESS VARCHAR (35) UNIQUE,

PRIMARY KEY (ROLL_NO)

);

Query OK, 0 rows affected (0.02 sec)

mysql> insert into student1 values(6201,'raj',18,'meerpet');

Query OK, 1 row affected (0.01 sec)

mysql> insert into student1 values(6201,'raj',18,'meerpet');

ERROR 1062 (23000): Duplicate entry '6201' for key 'PRIMARY'

mysql> insert into student1 values(6202,'raj',18,'meerpet');

ERROR 1062 (23000): Duplicate entry 'raj' for key 'STU_NAME'

mysql> insert into student1 values(6202,'ram',18,'meerpet');

ERROR 1062 (23000): Duplicate entry 'meerpet' for key 'STU_ADDRESS'

5.3 Default constraints.

CREATE TABLE STUDENT2(

ROLL_NO INT NOT NULL,

STU_NAME VARCHAR (35) NOT NULL,

STU_AGE INT NOT NULL,

EXAM_FEE INT DEFAULT 10000,

STU_ADDRESS VARCHAR (35) ,

PRIMARY KEY (ROLL_NO)

);

insert into

student2(ROLL_NO,STU_NAME,STU_AGE,STU_ADDRESS)values(6202,'sam',21,'lbnagar');

Query OK, 1 row affected (0.00 sec)

mysql> select * from student2;

+---------+----------+---------+----------+-------------+

| ROLL_NO | STU_NAME | STU_AGE | EXAM_FEE | STU_ADDRESS |

+---------+----------+---------+----------+-------------+

| 6201 | raj | 18 | 12000 | meerpet |

| 6202 | sam | 21 | 10000 | lbnagar |

+---------+----------+---------+----------+-------------+

2 rows in set (0.00 sec)

5.4 Check constraints.

CREATE TABLE STUDENT3(

ROLL_NO INT NOT NULL CHECK(ROLL_NO >1000) ,

STU_NAME VARCHAR (35) NOT NULL,

STU_AGE INT NOT NULL,

EXAM_FEE INT DEFAULT 10000,

STU_ADDRESS VARCHAR (35) ,

PRIMARY KEY (ROLL_NO)

);

 insert into student3 values(112,'ramana',23,12000,'hyderabad');

Query OK, 1 row affected (0.01 sec)

mysql> select * from student3;

+---------+----------+---------+----------+-------------+

| ROLL_NO | STU_NAME | STU_AGE | EXAM_FEE | STU_ADDRESS |

+---------+----------+---------+----------+-------------+

| 112 | ramana | 23 | 12000 | hyderabad |

| 800 | raj | 13 | 12000 | lbnagar |

| 900 | raj | 13 | 12000 | lbnagar |

+---------+----------+---------+----------+-------------+

3 rows in set (0.00 sec)

5.5 Auto Increment Constraints.

CREATE TABLE Persons1 (

 Personid int NOT NULL AUTO_INCREMENT,

 LastName varchar(255) NOT NULL,

 FirstName varchar(255),

 Age int,

 PRIMARY KEY (Personid)

);

INSERT INTO persons1 values(11,'reddy','ramana',23);

Query OK, 1 row affected (0.00 sec)

INSERT INTO persons1(LastName,FirstName,Age) values('reddy','ramana',23);

Query OK, 1 row affected (0.02 sec)

mysql> select * from persons1;

+----------+----------+-----------+------+

| Personid | LastName | FirstName | Age |

+----------+----------+-----------+------+

| 11 | reddy | ramana | 23 |

| 12 | reddy | ramana | 23 |

+----------+----------+-----------+------+

2 rows in set (0.00 sec)

Try:

Create tables with both Primary key and foreign key constraints

Hint:

Practice all constraints for obtaining syntax on both primary and foreign key constraints that

applied on ID.

6. Exercises on Join Operations and Aggregate Functions in Database.

6.1 Create table names called ‘students’ and ‘officers’ and insert values as show in

below.

6.2 Inner join

1. SELECT officers.officer_name, officers.officer_address, students.course_name

2. FROM officers

3. INNER JOIN students

4. ON officers.officer_id = students.student_id;

6.3 Left Outer Join

1. SELECT officers.officer_name, officers.officer_address, students.course_name

2. FROM officers

3. LEFT JOIN students

4. ON officers.officer_id = students.student_id;

6.4 Right Outer Join

1. SELECT officers.officer_name, officers.officer_address, students.course_name,

students.student_name

2. FROM officers

3. RIGHT JOIN students

4. ON officers.officer_id = students.student_id;

6.5 Cross Join

SSelect officers.officer_name,officers.officer_address,students.course_name from officers CROSS join

students;

Try:

Perform Self join, Equi join, Natural joins on tables to get the values from multiple tables.

Hint:

Understand and use same syntax applied for all joins can use as same it is for Self-join, Equi join,

Natural joins.

6.6 AGGREGATE FUNCTIONS:

1. Count() Function:

SELECT COUNT(name) FROM employee;

2. Sum() Function

SELECT SUM(working_hours) AS "Total working hours" FROM employee;

3. AVG() Function:

 SELECT AVG(working_hours) AS "Average working hours" FROM employee;

4. MIN() Function:

SELECT MIN(working_hours) AS Minimum_working_hours FROM employee;

5. MAX() Function:

SELECT MAX(working_hours) AS Maximum_working_hours FROM employee;

Try:

Execute other aggregate functions to find first and Last employees

Hint:

Use First and Last functions as aggregate functions to execute

7. Exercises on TCL (transaction control language) Queries to perform

rollbacking and save point mechanisms.

7.1 Create table names called ‘class’ and insert values into table.

mysql> create table class (id int(5),Name char(10));

Query OK, 0 rows affected (0.01 sec)

mysql> insert into class values(1,'one'),(2,'two');

Query OK, 2 rows affected (0.00 sec)

Records: 2 Duplicates: 0 Warnings: 0

Now to perform TCL we need start the transaction:

For that START TRANSACTION is a command to do start our transaction.

SAVEPOINT works only before commit operation.

After commit operation SAVEPOINT will not work.

So save point saves the current work and displays the information.

7.2 Before commit performs

NOW

 If we perform COMMIT operation then we are not rollback the data which happens on save point states;

We can roll back the data which doesn’t performed with commit operation.

7.3 After commit performs

So after COMMIT No information will rollback.

All the above commit,

rollback, save point operations can be done after START TRANSACTION only.

Try:

Insert two more values and perform commit operation then roll back again

Hint:

Perform before commit operation to rollback data from various operations performed

8. Exercises on user accounts to grant privileges using Data Control

language process.

8.1 Create user.

create user ‘username’@’localhost’ IDENTIFIED BY ‘password’;

Ex:

create user 'iare' identified by 'iare';

Query OK, 0 rows affected (0.05 sec)

SEEL LIST OF USERS IN DATABASE:

select user from mysql.user;

TO SEE CURRENT USER:

select current_user();

TO SEE DESCRIPTION OF USER:

desc mysql.user;

TO SEE LIST OF USERS, HOST:

select user,host from mysql.user;

8.2 To Grant All Privileges, Specific Privileges to The User:

SYNTAX:

GRANT ALL PRIVILEGES ON * . * TO 'new_user'@'localhost';

GRANT ALL PRIVILEGES ON * . * TO ‘2nduser’@’localhost’;

Query OK, 0 rows affected (0.00 sec)

TO GRANT SPECIFIC PRIVILEGES TO THE USER:

GRANT CREATE, SELECT ON * . * TO '2nduser'@'localhost';

Query OK, 0 rows affected (0.00 sec)

SHOW PRIVILEGES TO THE USER:

SHOW GRANTS FOR '2nduser'@'localhost';

8.3 Revoke permissions from user:

8.4 Login as User:

Before login as a user, the user has to privileged with root user as mentioned above grants option.

That means a new user having permission to login as user.

Now

To login to a different user account, we need to open the command prompt by executing the run command.

After clicking the OK button, we can see the command prompt

Now move to the path where my sql has been specified

C drive->program files(x86)->mysql->mysql server5.5->bin

As shown in below

Next type the fallowing syntax to login as user:

Mysql -u username -p

8.5 DROP USERS FROM DATABASE:

DROP USER ‘user_name’@‘localhost’;

Try:

create any other user and grant specific privileges on create and select permissions

Hint:

create user and perform DCL operations to give privileges and revoke privileges

9. Working with basic PL/SQL programing Examples

To start with pl/sql programming

Open oracle run sql cmd line avialable in oracle

After opening window

Just type CONNECT and hit enter

Now

 it is asking you to enter user-name and password;

Enter both and now it is connected as shown in below

SQL> CONNECT

Enter user-name: SYSTEM

Enter password: admin

Connected.

Before starting pl/sql programming we need to set server;

To start server type fallowing command after connected as shown in above.

SET SERVEROUTPUT ON

After that we can start to write program as per the below syntax

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling>

END;

9.1 Hello world example with programming

9.2 Declaration and Initialization of Variables

9.3 Datatypes and its values

Try:

write program to display both local and global variable values

Hint:

use the concept local and global declaration and its variables

10. Working with PL/SQL Programming Functions.

Syntax to create a function:

CREATE [OR REPLACE] FUNCTION function_name [parameters]

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

10.1 Addition of two numbers

Creating function:

create or replace function adder(n1 in number, n2 in number)

return number

is

n3 number(8);

begin

n3 :=n1+n2;

return n3;

end;

/

call the function.:

DECLARE

 n3 number(2);

BEGIN

 n3 := adder(11,22);

 dbms_output.put_line('Addition is: ' || n3);

END;

/

10.2 compute and return the maximum of two values.

DECLARE

 a number;

 b number;

 c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

 z number;

BEGIN

 IF x > y THEN

 z:= x;

 ELSE

 Z:= y;

 END IF;

 RETURN z;

END;

BEGIN

 a:= 23;

 b:= 45;

 c := findMax(a, b);

 dbms_output.put_line(' Maximum of (23,45): ' || c);

END;

/

10.3 creating and calling function to access values from table.

To do this first create a table as shown in below

CREATE TABLE customers1

 (customer_id number(10) NOT NULL,

 customer_name varchar2(50) NOT NULL,

 city varchar2(50)

);

Next insert values into table as shown in below

insert into customers1 values(12,'raj','hyderabad');

insert into customers1 values(13,'ram','secunderabad');

Now create a function to count the no of customers in table:

Creating function:

CREATE OR REPLACE FUNCTION Fcustomers

RETURN number IS

 total number(2) := 0;

BEGIN

 SELECT count(*) into total

 FROM customers1;

 RETURN total;

END;

/

Calling function:

DECLARE

 c number(2);

BEGIN

 c := Fcustomers();

 dbms_output.put_line('Total no. of Customers: ' || c);

END;

/.

Try:
Create a function that updates the value of any column in the table.

Hint:
To update we use dml commands and call function to access values from table.

11. Working with PL/SQL Programming procedures.

Syntax:

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

 < procedure_body >

END procedure_name;

11.1 Create procedure to display hello world.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

 dbms_output.put_line('Hello World!');

END;

/

TO EXECUTE:

EXECUTE greetings;

11.2 IN & OUT Mode Example to display square of number

DECLARE

 a number;

PROCEDURE squareNum(x IN OUT number) IS

BEGIN

 x := x * x;

END;

BEGIN

 a:= 23;

 squareNum(a);

 dbms_output.put_line(' Square of (23): ' || a);

END;

/

11.3 calculate the net salary and year salary if da is 30% of basic, hra is 10% of

basic and pf is 7% if basic salary is less than 8000, pf is 10% if basic sal between

8000 to 160000.

declare

ename varchar2(15); basic number;

da number; hra number; pf number;

netsalary number; yearsalary number;

begin

ename:=’&ename’; basic:=&basic; da:=basic * (30/100); hra:=basic * (10/100);

if (basic < 8000) then

pf:=basic * (8/100);

elsif (basic >= 8000 and basic <= 16000) then

pf:=basic * (10/100);

end if;

netsalary:=basic + da + hra - pf; yearsalary := netsalary*12;

dbms_output.put_line(’Employee name : ’ || ename);

dbms_output.put_line(’Providend Fund : ’ || pf); dbms_output.put_line(’Net salary : ’ || netsalary);

dbms_output.put_line(’Year salary : ’|| yearsalary); end;

/

Try:

Write procedure to find maximum and minimum of two numbers

Hint:

create and call procedure, use conditions to find max or minimum numbers

12. Working with PL/SQL Programming Triggers.

Triggers are stored programs, which are automatically executed or fired when some event occurs. Trigger is stored

into database and invoked repeatedly, when specific condition match.

12.1 Syntax for creating trigger:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

To do this first create a table called emp:

create table emp (id number, name varchar2(50),salary number);

Insert any values:

Check values inserted or not:

12.1 Creating the trigger for updating salary:

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON emp

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

 sal_diff number;

BEGIN

 sal_diff := :NEW.salary - :OLD.salary;

 dbms_output.put_line('Old salary: ' || :OLD.salary);

 dbms_output.put_line('New salary: ' || :NEW.salary);

 dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

12.2 Calling the trigger for updating salary:

DECLARE

 total_rows number(2);

BEGIN

 UPDATE emp

 SET salary = salary + 5000;

 IF sql%notfound THEN

 dbms_output.put_line('no customers updated');

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ' customers updated ');

 END IF;

END;

/

12.2 Check the salary is updated or not:

Try:

Create the trigger to delete an employee name ‘raj’

Hint:

Use DML and DDL commands, triggers to delete the employee’s name ‘raj’

13. Working with PL/SQL Programming Cursors.

A cursor is a pointer to this context area. It contains all information needed for processing the

statement. In PL/SQL, the context area is controlled by Cursor. A cursor contains information on a select

statement and the rows of data accessed by it.

A cursor is used to referred to a program to fetch and process the rows returned by the SQL statement,

one at a time. There are two types of cursors:

1. Implicit Cursors

2. Explicit Cursors

13.1 syntax for explicit cursor declaration

Declare the cursor:

Syntax for explicit cursor declaration

CURSOR name IS

 SELECT statement;

Open the cursor:

OPEN cursor_name;

Fetch the cursor:

FETCH cursor_name INTO variable_list;

Close the cursor:

Close cursor_name;

13.2 Implicit Cursor for customers salary update

DECLARE

 total_rows number(2);

BEGIN

 UPDATE emp

 SET salary = salary + 5000;

 IF sql%notfound THEN

 dbms_output.put_line('no customers updated');

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ' customers updated ');

 END IF;

END;

/

13.3 Explicit cursor for displaying updated salary

DECLARE

 c_id emp.id%type;

 c_name emp.name%type;

 c_salary emp.salary%type;

 CURSOR c_customers is

 SELECT id, name, salary FROM emp;

BEGIN

 OPEN c_customers;

 LOOP

 FETCH c_customers into c_id, c_name, c_salary;

 EXIT WHEN c_customers%notfound;

 dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_salary);

 END LOOP;

 CLOSE c_customers;

END;

/

Try:

Create cursor to delete the employee whose salary is more than 24000

Hint:

Use DDL and DML commands with cursors to delete the employee.

V. REFERENCE BOOKS:

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, “Database System Concepts”, Mc raw-Hill, 4th edition,2002.

2. Ivan Bayross, “SQL, PL/SQL The programming language of oracle”, BPB publications, 4th Revised edition, 2010.

VI. WEB REFERENCE:

I. Ramez Elmasri, Shamkant, B. Navathe, “Database Systems”, Pearson Education, 6th edition, 2013.

II. Peter Rob, Carles Coronel, “Database System Concepts”, Cengage Learning, 7th edition, 2008.

III. M L Gillenson, “Introduction to Database Management”, Wiley Student edition,2012.

