
DIGITAL SYSTEM DESIGN LABORATORY

III Semester: ECE

Course Code Category Hours / Week Credits Maximum Marks

AECC06 Core
L T P C CIA SEE Total

0 0 2 1 30 70 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 28 Total Classes: 28

I. COURSE OVERVIEW:

The laboratory strives in researching the logic design and related fields. Digital logic testers are used to provide

students with practical training and familiarize themselves with the various functions of logic gates and using

integrated components to complete circuitry functions and develop an interest in digital logic and enlighten them

in the abilities of deduction. The lab allows students to conduct actual gate-level experiments to increase student

interest and develop skills to design digital gates using VHDL.

II. COURSE OBJECTIVES:

 The students will try to learn:

I. Design of combinational circuits using Verilog Hardware Description Language.

II. Implementation of Sequential circuits using Verilog Hardware Description Language.

III. Demonstration of different case studies for Verilog.

III. COURSE OUTCOMES:

After the completion of the course, studens should be able to

CO 1 Utilize the concept of Boolean algebra to verify the truth table of Boolean expressions using logic

gates in Hardware Description Language.

CO 2 Make use of dataflow, structural and behavioral modelling styles of HDL for simulating the

combinational logic circuits.

CO 3 Analyze the truth tables and characteristic equations of flip flops for the functional simulation and

timing analysis of sequential circuits.

CO 4 Construct the synchronous and asynchronous sequential circuits using the flip flops.

CO 5 Model a finite state machine with melay and moore machines for detecting a given sequence.

CO 6 Examine the functionality of real time traffic light controller, chess clock controller FSM, elevator

operations using HDL code.

IV. COURSE CONTENT:

EXERCISES FOR DIGITAL SYSTEM DESIGN LABORATORY

Note: Students are encouraged to bring their own laptops for laboratory

practice sessions.

1. Getting Started Exercises

1.1 Basic Gates

1. Install Xilinx vivado on your machine.

2. Write a VHDL program using vivado simulator for:

o Verifying the functionality of design under test (DUT) by writing test bench to pass the

stimulus

o Synthesize the register transfer logic (RTL) using Xilinx XST synthesis tool

o Elaborate the design and generate bit file to dump RTL code into the Zynq series and

ZedBoard FPGA

o Verify the functionality of the design under test (DUT) on FPGA board

1.2 AND–OR–INVERT AND OR-AND-INVERT LOGIC

Write VHDL code to implement the function expressed by the following logic equation
𝑌 = 𝑎0𝑏0 + 𝑎1𝑏1 + 𝑎2𝑏2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

Use only simple signal assignment statements in your VHDL data flow model.

Hints

Use and, or and compliment operators for implementation of the logic.

Input a0, a1, a2, a3, b0, b1, b2, b3;
Output y;

/** Data flow model for AOI logic */
entity AOI port (
 a0, a1, a2, a3, b0, b1, b2, b3: in std_logic;
 y: out std_logic);
end AOI;

/** architecture body */
architecture arch_AOI of AOI is

begin
 Y = not ((a0 & b0) | (a1 & b1) | (a2 & b2) | (a3 & b3));
 . . .

End arch_AOI;

//Write the test bench for providing the stumulus

entity tb_AOI port

end tb_AOI;

architecture arch_AOI of AOI is
 signal a0, a1, a2, a3, b0, b1, b2, b3: std_logic := ‘0’;
 signal y: std_logic;

 component AOI port (
 a0, a1, a2, a3, b0, b1, b2, b3: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: AOI port map (a0, a1, a2, a3, b0, b1, b2, b3, y);

 a0 = ‘0’; b0 = ‘0’;
 a1 = ‘0’; b1 = ‘0’;
 a2 = ‘0’; b2 = ‘0’;
 a3 = ‘0’; b3 = ‘0’;
 wait for 10 ns;

 a0 = ‘0’; b0 = ‘1’;
 a1 = ‘1’; b1 = ‘0’;
 a2 = ‘0’; b2 = ‘1’;
 a3 = ‘1’; b3 = ‘0’;
 wait for 10 ns;

 . . .
 . . .

 a0 = ‘1’; b0 = ‘1’;
 a1 = ‘1’; b1 = ‘1’;
 a2 = ‘1’; b2 = ‘1’;
 a3 = ‘1’; b3 = ‘1’;
 wait for 10 ns;

End architecture

// After post simulation

Simulate the design using Xilinx software

Plot the wave forms and verify the functionality of the design

Synthesize the design

Elaborate the design and dump the bit file into FPGA

Try
Develop a model for a general or- and-invert gate, with two std_logic vector input ports a and b and
a standard-logic output port y. The output of the gate is

1.3 Product of Sum Boolean expression

Write a program to perform product of sum which evaluates the given Boolean expressions and write

the test-bench to verify the functionality with all possible combinations of the input.

Hints

/**
 * Consider the POS expression for F = π(0, 1,2,4,8,9,10,12,13) */
Input a, b, c, d;
Output F;

Minimize the logic for the given F // POS logic
Implement the logic using basic gates

/** Declare the port signals */
entity POS port (
 a, b, c, d: in std_logic;
 f: out std_logic);
end POS;

/** architecture body */
architecture arch_POS of POS is

Begin
 Y = F(a, b, c, d);
 . . .

End arch_POS;

//Write the test bench for providing the stumulus

entity tb_POS port
end tb_POS;

architecture arch_POS of POS is
 signal a, b, c, d: std_logic := ‘0’;
 signal f: std_logic;

 component POS port (
 a, b, c, d: in std_logic;
 f: out std_logic);
 end component;

begin
 DUT: POS port map (a, b, c, d, f);

 a = ‘0’; b =’0’; c = ‘0’; d =’0’;
 wait 10 ns;

 a = ‘0’; b =’0’; c = ‘0’; d =’1’;
 wait 10 ns;

 . . .
 . . .

 a = ‘1’; b =’1’; c = ‘1’; d =’1’;
 wait 10 ns;

End architecture

Provide the stimulus for all 16 possible combinations starting from 0000 to 1111
Simulate the DUT with the given stimulus
Verify the output using waveforms
Synthesize the design
Elaborate the design and dump the bit file into FPGA

Try

Modify the POS expression including the don’t care cases F = π(0, 1,2,4,9,10,12,13) + d(3, 7, 11)

1.5 Sum of Product Boolean expression

Write a program to perform sum of product which evaluates the given Boolean expressions and write

the test-bench to verify the functionality with all possible combinations of the input.

Hints

/**
 * Consider the POS expression for F = Σ(0, 1,2,4,8,9,10,12,13) */
Input a, b, c, d;
Output F;

Minimize the logic for the given F // POS logic
Implement the logic using basic gates

/** Declare the port signals */
entity SOP port (
 a, b, c, d: in std_logic;
 f: out std_logic);
end SOP;

/** architecture body */
architecture arch_SOP of SOP is

Begin
 Y = F(a, b, c, d);
 . . .

End arch_SOP;

//Write the test bench for providing the stumulus

entity tb_SOP port
end tb_SOP;

architecture arch_SOP of SOP is
 signal a, b, c, d: std_logic := ‘0’;
 signal f: std_logic;

 component SOP port (
 a, b, c, d: in std_logic;
 f: out std_logic);
 end component;

begin
 DUT: SOP port map (a, b, c, d, f);

 a = ‘0’; b =’0’; c = ‘0’; d =’0’;
 wait 10 ns;

 a = ‘0’; b =’0’; c = ‘0’; d =’1’;
 wait 10 ns;

 . . .
 . . .

 a = ‘1’; b =’1’; c = ‘1’; d =’1’;
 wait 10 ns;

End architecture

Simulate the DUT with the given stimulus

Verify the output using waveforms

Synthesize the design

Elaborate the design and dump the bit file into FPGA

Try

Modify the POS expression including the don’t care conditions F = Σ(0, 1,2,4,9,10,12,13) + d(3, 7, 11)

1.6 Code Conversions

To familiarize students with code converters. The student should also become familiar with gray to
binary conversion, binary to gray conversion.
Given the sequence of three-bit Gray code as (000, 001, 011, 010, 110, 111, 101, 100)

A given Gray code number can be converted into its binary equivalent by going through the following
steps:
1. Begin with the most significant bit (MSB). The MSB of the binary number is the same as the MSB of
the Gray code number.
2. The bit next to the MSB (the second MSB) in the binary number is obtained by adding the MSB in
the binary number to the second MSB in the Gray code number and disregarding the carry, if any.
3. The third MSB in the binary number is obtained by adding the second MSB in the binary number to
the third MSB in the Gray code number. Again, carry, if any, is to be ignored.
4. The process continues until we obtain the LSB of the binary number.

Hints

/** Declare the port signals */
entity gray2binary port (
 gray_code: in std_logic_vector(3 downto 0);
 binary_code: out std_logic_vector(3 downto 0));
end gray2binary;

/** architecturebody */
architecture arch_gray2binary of gray2binary is

Begin
 binary_code[3] = gray_code[3];
 binary_code[2] = gray_code[3] xor gray_code[2];
 . . .

End arch_gray2binary;

//Write the test bench for providing the stumulus

entity tb_gray2binary port
end tb_gray2binary;

architecture arch_gray2binary of gray2binary is
 signal gray_code: std_logic_vector(3 downto 0) := “0000”;
 signal binary_code: std_logic_vector(3 downto 0);

 component gray2binary port (
 gray_code: in std_logic_vector(3 downto 0);
 binary_code: out std_logic_vector(3 downto 0));
 end component;

begin
 DUT: gray2binary port map (gray_code, binary_code);

 Process
 begin
 gray_code = gray_code + 1;
 Wait for 10 ns;

 End process;

End architecture

// After post simulation

Simulate the design using Xilinx software

Plot the wave forms and verify the functionality of the design

Synthesize the design

Elaborate the design and dump the bit file into FPGA

Try

1. Design and implement the binary to gray code conversion
2. Design and implement the binary to excess 3-code conversion
3. Design and implement the excess 3-code to binary conversion

2. Exercises on Gate Realization

To be proficient in programming, you need to be able to:

1 Construct basic logic gates realization using NAND gates and NOR gates

2 Utilize min no of 2 input NAND Gates to implement three input NAND gate using

3 Build a user defined logic gate for the given specifications

2.1 Basic gates realization using NAND gate

Realize the inverter gate logic using NAND gate

NAND gate is actually a combination of two logic gates i.e. AND gate followed by NOT gate. So its

output is complement of the output of an AND gate. This gate can have minimum two inputs. By using

only NAND gates, we can realize all logic functions: AND, OR, NOT, Ex-OR, Ex-NOR, NOR. So this gate

is also called as universal gate.

Hint

/** Declare the port signals */
entity inv_nand port (
 i: in std_logic;
 y: out std_logic);
end inv_nand;

/** architecture body */
architecture arch_inv_nand of inv_nand is

component nand_gate port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: nand_gate port map (i, i, y);
 . . .

End arch_inv_gate;

//Write the test bench for providing the stumulus

entity tb_inv_nand port
end tb_inv_nand;

architecture arch_inv_nand of inv_nand is
 signal i: std_logic := ‘0’;
 signal y: std_logic;

 component inv_nand port (
 i: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: inv_nand port map (i, y);

 i =’0’ after 10 ns;
 i =’1’ after 10 ns;

 . . .
 . . .

end architecture

Try

1. Realize the AND gate logic using NAND gate

2. Realize the OR gate logic using NAND gate

2.2 Gate realization using NOR gate

Realize the inverter gate logic using NOR gate

Hint

/** Gate level model for */
entity inv_nor port (
 i: in std_logic;
 y: out std_logic);
end inv_nor;

/** architecture body */
architecture arch_inv_nor of inv_nand is

component nor_gate port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: nor_gate port map (i, i, y);
 . . .

End arch_inv_nor;

//Write the test bench for providing the stumulus

entity tb_inv_nor port
end tb_inv_nor;

architecture arch_inv_nor of inv_nor is
 signal i: std_logic := ‘0’;
 signal y: std_logic;

 component inv_nor port (
 i: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: inv_nor port map (i, y);

 i =’0’ after 10 ns;
 i =’1’ after 10 ns;

 . . .
 . . .

End architecture

Try

1. Realize the AND gate logic using NOR gate

2. Realize the OR gate logic using NOR gate

2.3 XOR gate realization using minimum number of NAND gates

Realize XOR gate using minimum number of NAND gates

Hint

/** Declare the port signals */
entity xor_nand port (
 a, b: in std_logic;
 y: out std_logic);
end xor_nand;

/** architecture body */
architecture arch_xor_nand of xor_nand is

component nand_gate port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: nand_gate port map (a, b, y);
 . . .

End arch_xor_nand;

//Write the test bench for providing the stumulus

entity tb_xor_nand port
end tb_xor_nand;

architecture arch_xor_nand of xor_nand is
 signal a, b: std_logic := ‘0’;
 signal y: std_logic;

 component xor_nand port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: xor_nand port map (a, b, y);

 a =’0’ after 10 ns;
 b =’0’ after 10 ns;

 . . .
 . . .

End architecture

Try

Realize XNOR gate using minimum number of NAND gates

2.4 Three input NAND gate using min no of 2 input NAND Gate

To implement 3 input NAND gate realization using minimum number of NAND gates

a) A and B to the first NAND gate
b) Output of first Nand gate is given to the two inputs of the second NAND gate
(this basically realizes the inverter functionality)
c) Output of second NAND gate is given to the input of the third NAND gate, whose
otherinput is C ((A NAND B) NAND (A NAND B)) NAND C Thus, can be implemented using
'3'2-input NAND gates.

Hints:

Assume three inputs of the NAND gate are A, B and C and connect these inputs as

/** Declare the port signals */
entity nand3 port (
 a, b, c: in std_logic;
 y: out std_logic);
end nand3;

/** architecture body */
architecture arch_nand3 of nand3 is

component nand2_gate port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: nand2_gate port map (a, b, y);
 . . .

End arch_nand3;

//Write the test bench for providing the stumulus

entity tb_nand3 port
end tb_nand3;

architecture arch_tb_nand3 of tb_nand3 is
 signal a, b: std_logic := ‘0’;
 signal y: std_logic;

 component nand2 port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: nand2 port map (a, b, y);

 a =’0’ after 10 ns;
 b =’0’ after 10 ns;

 . . .
 . . .

 a = ‘1’ after 10 ns;
 b = ‘1’ after 10 ns;

End architecture

Try:

To implement XNOR gate realization using minimum number of NAND gates

2.5 User defined logic gate (Muller-C element cell)

Develop a behavioral model for a two-input Muller-C element cell, with two input ports and one output,

all of type bit. The inputs and outputs are initially ‘0’. When both inputs are ‘1’, the output changes to

‘1’. It stays ‘1’ until both inputs are ‘0’, at which time it changes back to ‘0’. Your model should have a

propagation delay for rising output transitions of 3.5 ns, and for falling output transitions of 2.5 ns.

Hints:

Assume three inputs of the NAND gate are A, B and C and connect these inputs as

Take inputs A and B
Extract the truth table and Boolean expression as per the specifications
Implement the gate using VHDL model
Write the logic for selecting the stimulus for verifying the logic

/** Declare the port signals */
entity mc_cell port (
 a, b, c: in std_logic;
 y: out std_logic);
end mc_cell;

/** architecture body */
architecture arch_mc_cell of mc_cell is

component mc_cell port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: nand2_gate port map (a, b, y);
 . . .

End arch_mc_cell;
//Write the test bench for providing the stumulus

entity tb_mc_cell port
end tb_mc_cell;

architecture arch_tb_mc_cell of tb_mc_cell is
 signal a, b: std_logic := ‘0’;
 signal y: std_logic;

 component mc_cell port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: mc_cell port map (a, b, y);

 a =’0’ after 10 ns;
 b =’0’ after 10 ns;

 . . .
 . . .

 a = ‘1’ after 10 ns;
 b = ‘1’ after 10 ns;

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

Try

Develop a behavioral model for a two-input Muller-C element cell, with two input ports and one output,

all of type bit. The inputs and outputs are initially ‘1’. When both inputs are ‘0’, the output changes to

‘0’. It stays ‘0’ until both inputs are ‘1’, at which time it changes back to ‘1’.

3. Exercises on Multiplexers and Demultiplexers

To be proficient in programming, you need implement the following digital circuits:

1. Implementation of 2x1, 4x1 multiplexers, demultiplexers

2. Realization of higher order multiplexers using lower order multiplexers

3. Realization of basic gates using 2x1 multiplexer

3.1 Implementation of 2x1, 4x1 multiplexers

Develop a behavioral model for a two-input multiplexer, with ports of type bit and a propagation delay

from data or select input to data output of 5 ns. You should declare a constant for the propagation

delay, rather than writing it as a literal in signal assignments in the model

The inputs to the MUX are data inputs I1, I0 and a one control input SEL(s) The single output is Y

Hints

/** Implementation of 2x1 multiplexer **/

Declare the inputs I0, I1 and S
Declare the output Y.

//Write the logic for selecting the data depends on the select line and pass

to the output

entity mux_2x1 port (
 i0, i1, s: in std_logic;
 y: out std_logic);
end mux_2x1;

/** architecture body */
architecture arch_mux_2x1 of mux_2x1 is

 component nand port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

 component inv port (
 i: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT1: inv port map (s, sb);
 DUT2: nand2_gate port map (i0, sb, s1); . . .

 . . .
 . . .

End arch_mux2x1;

//Write the test bench for providing the stumulus
entity tb_mux2x1 port
end tb_mux2x1;

architecture arch_tb_mux2x1 of tb_mc_mux2x1 is
 signal i0, i1, s: std_logic := ‘0’;
 signal y: std_logic;

 component mux2x1 port (
 i0, i1, s: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: mux2x1 port map (i0, i1, s, y);

 s =’0’ after 10 ns, ‘1’ after 10 ns;
 process
 begin
 i0 = ~i0;
 wait for 10ns;
 i1 = ~i1;
 wait for 15ns;

 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

Plot the wave form for all possible select lines

Synthesize the design

Elaborate the design and dump the bit file into FPGA

Try

Develop a behavioral model for a four-input multiplexer, with ports of type bit and a propagation delay
from data or select input to data output of 4.5 ns. You should declare a constant for the propagation
delay, rather than writing it as a literal in signal assignments in the model.

3.2 Implementation of 2x1, 4x1 demultiplexers

Build a behavioral model for a two-input demultiplexers, with ports of type bit and a propagation delay
from data or select input to data output of 5 ns.

Hints

/**
 Implementation of 2x1 demultiplexer.
 **/

Declare the inputs I and S
Declare the output Y0, Y1.

//Write the logic for selecting the data depends on the select line and pass

to the output

entity dmux_1x2 port (
 i, s: in std_logic;
 y0, y1: out std_logic);
end dmux_1x2;

/** architecture body */
architecture arch_dmux_1x2 of dmux_1x2 is

begin
 process(I,s)
 begin
 case S is
 when ‘0’: y0 = I; y1 = ‘z’;
 . . .
 . . .

End arch_dmux1x2;

//Write the test bench for providing the stumulus

entity tb_dmux1x2 port
end tb_dmux1x2;

architecture arch_tb_dmux1x2 of tb_dmux1x2 is

 signal i, s: std_logic := ‘0’;
 signal y0, y1: std_logic;

 component dmux1x2 port (
 i, s: in std_logic;
 y0, y1: out std_logic);
 end component;

begin
 DUT: dmux1x2 port map (i, s, y0, y1);

 s =’0’ after 10 ns, ‘1’ after 10 ns;
 process
 begin
 i = ~i;
 wait for 10ns;

 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

Plot the wave form for all possible select lines

Synthesize the design

Elaborate the design and dump the bit file into FPGA

Try

1 Modify the program to function as 1x4 demultiplexers

2 Modify the program to function as 1x8 demultiplexers

3.3 Realization of higher order multiplexers using lower order
multiplexers

Realize the higher order multiplexers using lower order multiplexers. Write the VHDL model for the

realized circuits. Simulate the test benches for the corresponding and verify the design under test by

plotting the waveforms. Figure 1 shows realization of 4x1 mux using 2x1 mux.

Figure 1: Realization of 4x1 mux using 2x1 mux

/**
 Realize the lower order multiplexers for design of higher order multiplexers.
 **/

In work library simulate the lower order multiplexer

For the realized higher order multiplexer, instance the component in the declaration
part of the architecture

By using positional or name mapping instance the component with the signals

Hint

//Write the logic for selecting the data depends on the select line and pass

to the output

entity mux_4x1 port (
 i0, i1, i2, i3: in std_logic;
 s: in std_logic_vector(1 donwto 0);
 y: out std_logic);
end mux_4x1;

/** architecture body */
architecture arch_mux_4x1 of mux_4x1 is

 component mux2x1 port (
 i0, i1, s: in std_logic;
 y: out std_logic);
 end component;
 // declare intermediate signals

begin
 DUT1: mux2x1 port map (i0, i1, s(0), s1);
 DUT2: mux2x1 port map (i2, i3, s(1), s2);
 . . .
 . . .
 . . .

End arch_mux4x1;

//Write the test bench for providing the stumulus

entity tb_mux4x1 port
end tb_mux4x1;

architecture arch_tb_mux4x1 of tb_mux4x1 is
 signal i0, i1, i2, i3: std_logic := ‘0’;
 signal s: std_logic_vector(1 donwto 0) := “00”;
 signal y: std_logic;

 component mux4x1 port (
 i0, i1, i2, i3: in std_logic;
 s: in std_logic_vector(1 donwto 0);
 y: out std_logic);
 end component;

begin
 DUT: mux4x1 port map (i0, i1, i2, i3, s, y);

 s =’00’ after 10 ns, ‘01’ after 10 ns . . .;
 process
 begin
 i0 = ~i0;
 wait for 10ns;
 i1 = ~i1;
 wait for 12ns;
 i2 = ~i2;
 wait for 14ns;
 i3 = ~i3;
 wait for 16ns;
 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

3.4 Realization of basic gates using 2x1 multiplexer

Realize all the basic gates like AND and inverter using 2x1 multiplexer

/** Realize the multiplexers for function as basic logic gates **/

In work library simulate the 2x1 multiplexer

For the realized basic gates using 2x1 multiplexer, instance the component in the
declaration part of the architecture

Hints

//Write the logic for selecting the data depends on the select line and pass

to the output

entity mux_and port (
 a, b: in std_logic;
 y: out std_logic);
end mux_2x1;

/** architecture body */
architecture arch_mux_and of mux_and is

 component mux2x1 port (
 i0, i1, s: in std_logic;
 y: out std_logic);
 end component;
 // declare intermediate signals

begin
 DUT1: mux2x1 port map (‘0’, b, a, y);
 . . .
 . . .
 . . .

End arch_mux_and;

//Write the test bench for providing the stumulus

entity tb_mux_and port
end tb_mux_and;

architecture arch_tb_mux_and of tb_mux_and is
 signal a, b: std_logic := ‘0’;
 signal y: std_logic;

 component mux_and port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

begin
 DUT: mux_and port map (a, b, y);

 process
 begin
 a = ~a;
 wait for 10ns;
 b = ~b;
 wait for 12ns;

 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

Try
1. Realize all the OR gate using 2x1 multiplexer
2. Realize all the basic gates like XOR and XNOR using 2x1 multiplexer

3. Realize all the inverter using 2x1 multiplexer

4. Exercises on decoders

To be proficient in programming, you need implement the following digital circuits

1. Implementation of 2 to 4 and 3 to 8 decoders

2. Implementation of 4 to 2 and 8 to 3 encoders

3. Realization of higher order decoders using lower order decoders

4. Realization of 8 to 3 priority encoder using 2x1 multiplexer

5. Develop a functional model of a BCD-to-seven-segment decoder for a light emitting diode (LED)

display.

4.1 Implementation of 2 to 4 decoder

Write the VHDL code for the circuit contains an input bundle of two input signals and an output bundle

of four decoded signals. The input bundle, i0, i1 represents decoder inputs. The output bus, Y0, Y1, Y2

and Y3, are used to indicate the decoded output for the two inputs. The relationship between the input

and output is shown in the table below. Use a selected signal assignment statement in the solution.

/**
 Implementation of 2 to 4 decoder.
 **/

Declare the inputs I0, I1.
Declare the output Y0, Y1, Y2 and Y3.

I1 I0 Y3 Y2 Y1 Y0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

Hints

//Write VHDL model for 2 to 4 decoder gate level model
entity dec2to4 port (
 i0, i1: in std_logic;
 y0, y1, y2, y3: out std_logic);
end dec2to4;

/** architecture body */
architecture arch_dec2to4 of dec2to4 is

 component nand_gate port (
 a, b: in std_logic;
 y: out std_logic);
 end component;
 // component declaration for inverter
 // declare intermediate signals

begin
 DUT1: nand_gate port map (ni1, ni0, y0);
 . . .
 . . .
 . . .
End arch_dec2to4;

//Write the test bench for providing the stumulus

entity tb_dec2to4 port
end tb_dec2to4;

architecture arch_tb_dec2to4 of tb_dec2to4 is
 signal i0, i1: std_logic := ‘0’;
 signal y0, y1, y2, y3: std_logic;

 component dec2x4 port (
 i0, i1: in std_logic;
 y0, y1, y2, y3: out std_logic);
 end component;

begin
 DUT: dec2to4 port map (i0,i1, y0, y1, y2, y3);

 process
 begin
 i0 = ~i0;
 wait for 10ns;
 i1 = ~i1;
 wait for 15ns;

 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

Try

1. Implement gate level model for 2 to 4 decoder. Plot the waveforms

2. Implement behavioral model for 2 to 4 decoder. Plot the waveforms

4.2 Implementation of 3 to 8 decoder

Build behavioral model to function as 3 to 8 decoder.

Hints

/** Behavioral model implementation of 3 to 8 decoder **/
Declare the inputs I0, I1, I2.
Declare the output Y0, Y1, Y2, Y3, Y4, Y5, Y6 and Y7.

//Write VHDL model for 2 to 4 decoder gate level model
entity dec3to8 port (
 i0, i1, i2: in std_logic;
 y0, y1, y2, y4, y5, y6, y7: out std_logic);
end dec3to8;

/** architecture body */
architecture arch_dec3to8 of dec3to8 is

 // declare intermediate signals
begin

 process(i0, i1, i2)
 begin
 { y0, y1, y2, y4, y5, y6, y7} = “00000000”;

 case {i2, i1, i0} is
 when “000” => Y0 <= ‘1’;
 when “001” => Y0 <= ‘1’;
 when “010” => Y0 <= ‘1’;
 . . .
 . . .
 . . .
 End case
 End process;

End arch_dec3to8;

//Write the test bench for providing the stumulus

entity tb_dec3to8 port
end tb_dec3to8;

architecture arch_tb_dec3to8 of tb_dec3to8 is
 signal i0, i1, i2: std_logic := ‘0’;
 signal y0, y1, y2, y3, y4, y5, y6, y7: std_logic;

 component dec3x8 port (
 i0, i1, i2: in std_logic;
 y0, y1, y2, y3, y4, y5, y6, y7: out std_logic);
 end component;

begin
 DUT: dec3to8 port map (i0, i1, i2, y0, y1, y2, y3, y4, y5, y6, y7);

 process
 begin
 i0 = ~i0;
 wait for 10ns;
 i1 = ~i1;
 wait for 15ns;

 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

Try

1. Construct a 4-to-16 line decoder with two 3-to-8 line decoders having active LOW ENABLE inputs
2. Implement the three-variable Boolean function 𝐹 = �̅�𝑐 + 𝑎�̅�𝑐 + 𝑎�̅�𝑐 using (i) an 8-to-1

multiplexer and (ii) a 4-to-1 multiplexer.

4.3 Realization of higher order multiplexers using lower order
multiplexers

Construct a 4-to-16 line decoder with two 3-to-8 line decoders having active LOW ENABLE inputs

Hints

/**
 Realize the lower order multiplexers for design of higher order multiplexers **/

In work library simulate the lower order multiplexer

For the realized higher order multiplexer, instance the component in the declaration
part of the architecture

By using positional or name mapping instance the component with the signals

Design a test bench

Write the logic for generating stimulus for the input signals

Plot the wave form for all possible select lines

Synthesize the design

Elaborate the design and dump the bit file into FPGA

Try

Construct a 3-to-8 line decoder with two 2-to-4 line decoders having active LOW ENABLE inputs

4.4 Realization of basic gates using 2x1 multiplexer

Realize all the basic gates like AND, OR, XOR, XNOR and inverter using 2x1 multiplexer

/** Realize the multiplexers for function as basic logic gates **/

In work library simulate the 2x1 multiplexer

For the realized basic gates using 2x1 multiplexer, instance the component in the
declaration part of the architecture

By using positional or name mapping instance the component with the signals

Design a test bench

Write the logic for generating stimulus for the input signals

Plot the wave form for all possible select lines

Synthesize the design

Elaborate the design and dump the bit file into FPGA

Try

Realization of BCD-to-seven-segment decoder for a light emitting diode (LED) display

Develop a functional model of a BCD-to-seven-segment decoder for a light emitting diode (LED)

display. The decoder has a 4-bit input that encodes a numeric digit between 0 and 9. There are seven

outputs indexed from ‘a’ to ‘g’, corresponding to the seven segments of the LED display as shown in

the margin. An output bit being ‘1’ causes the corresponding segment to illuminate. For each input

digit, the decoder activates the appropriate combination of segment outputs to form the displayed

representation of the digit.

Hint:
For example, for the input “0010”, which encodes the digit 2, the output is “1101101”. Your model
should use a selected signal assignment statement to describe the decoder function in truth-table
form

5. Exercises on encoders and priority encoders

To be proficient in programming, you need implement the following digital circuits

1. Implementation of 4 to 2 encoders

2. Implementation of 8 to 3 encoders

3. Build 8 to 3 priority encoder

4. Realization of 8 to 3 priority encoder using 2x1 multiplexer

5.1 Implementation of 4 to 2 encoder

An encoder is a digital circuit that converts a set of binary inputs into a unique binary code. The binary

code represents the position of the input and is used to identify the specific input that is active. Encoders

are commonly used in digital systems to convert a parallel set of inputs into a serial code.

The 4 to 2 Encoder consists of four inputs Y3, Y2, Y1 & Y0, and two outputs A1 & A0. At any time, only

one of these 4 inputs can be ‘1’ in order to get the respective binary code at the output. The figure

below shows the logic symbol of the 4 to 2 encoder.

/** Implementation of 4 to 2 decoder **/

Declare the inputs I0, I1, I2, I3.
Declare the output Y0 and Y1

I3 I2 I1 I0 Y1 Y0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

Hints

//Write VHDL model for 2 to 4 decoder gate level model
entity enc4to2 port (
 i : in STD_LOGIC_VECTOR(3 downto 0);
 y : out STD_LOGIC_VECTOR(1 downto 0));
end enc4to2;

architecture arch_enc4to2 of enc4to2 is
begin

 process(i)

 begin
 if (i="1000") then y <= "00";
 elsif (i="0100") then y <= "01";
 elsif (i="0010") then y <= "10";
 elsif (i="0001") then y <= "11";
 else y <= "ZZ";
 end if;
 end process;

End arch_enc4to2;

//Write the test bench for providing the stumulus

entity tb_enc4to2 port
end tb_enc4to2;

architecture arch_tb_enc4to2 of tb_enc4to2 is
 signal i: in STD_LOGIC_VECTOR(3 downto 0) := “0000”;
 signal y: out STD_LOGIC_VECTOR(1 downto 0);

 component enc4to2 port (
 i: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(1 downto 0));
 end component;

begin
 DUT: enc4to2 port map (i, y);

 process
 begin
 i = i + ‘1’;
 wait for 10ns;
 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

Try

1. Modify VHDL behavioral model with gate level model for 4 to 2 encoder. Plot the waveforms

2. Decimal to BCD Encoder

The decimal-to-binary encoder usually consists of 10 input lines and 4 output lines. Each input line

corresponds to each decimal digit and 4 outputs correspond to the BCD code. This encoder accepts

the decoded decimal data as an input and encodes it to the BCD output which is available on the

output lines.

3. Octal to Binary Encoder (8 to 3 Encoder)

The 8 to 3 Encoder or octal to Binary encoder consists of 8 inputs: Y7 to Y0 and 3 outputs: A2, A1 &

A0. Each input line corresponds to each octal digit and three outputs generate corresponding binary

code.

5.2 Implementation of 8 to 3 priority encoder

A 8 to 3 priority encoder has eight inputs Y7, Y6, Y5, Y4, Y3, Y2, Y1 & Y0 and two outputs A2, A1 and A0.

Here, the input, Y7 has the highest priority, whereas the input, Y0 has the lowest priority. In this case,

even if more than one input is ‘1’ at the same time, the output will be the binary code corresponding to

the input, which is having higher priority.

We considered one more output, V in order to know, whether the code available at outputs is valid or

not.

• If at least one input of the encoder is ‘1’, then the code available at outputs is a valid one. In this

case, the output, V will be equal to 1.

• If all the inputs of encoder are ‘0’, then the code available at outputs is not a valid one. In this case,

the output, V will be equal to 0.

The Truth table of 4 to 2 priority encoder is shown below.

/** Implementation of 4 to 2 decoder **/

Declare the inputs I0, I1, I2, I3.
Declare the output Y0 and Y1

I3 I2 I1 I0 Y1 Y0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 1 1

Hints

//Write VHDL model for 2 to 4 decoder gate level model
entity penc8to3 port (
 i : in STD_LOGIC_VECTOR(7 downto 0);
 y : out STD_LOGIC_VECTOR(2 downto 0));
end enc4to2;

architecture arch_penc8to3 of penc8to3 is
begin

 y <= "111" when i(7)='1' else
 "110" when i(6)='1' else
 "101" when i(5)='1' else
 "100" when i(4)='1' else
 "011" when i(3)='1' else
 "010" when i(2)='1' else
 "001" when i(1)='1' else
 "000";

End arch_penc8to3;

//Write the test bench for providing the stumulus

entity tb_penc8to3 port
end tb_penc8to3;

architecture arch_tb_penc8to3 of tb_penc8to3 is
 signal i : in STD_LOGIC_VECTOR(7 downto 0) := “00000000”;
 signal y : out STD_LOGIC_VECTOR(2 downto 0);

 component penc8to3 port (
 i : in STD_LOGIC_VECTOR(7 downto 0);
 y : out STD_LOGIC_VECTOR(2 downto 0));
 end component;

begin
 DUT: penc8to3 port map (i, y);

 process
 begin
 i = i + ‘1’;
 wait for 10ns;
 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

Try

1. Modify VHDL behavioral model with gate level model for 8 to 3 encoder. Plot the waveforms.

2. Realize 8 to 3 priority encoder using 2x1 mux and implement with VHDL gate level model

6. Exercises on Adders and Subtractors

To be proficient in programming, you need implement the following digital circuits

1 Implementation of half adder

2 Implementation of full adder

3 Realization of full adder using half adder

4 Design and implement 4-bit ripple carry adder

5 Implementation of half subtractor

6 Implementation of full subtractor

7 Realization of full subtractor using half subtractor

8 Realization of full subtractor using full adder

6.1 Implementation of half adder

Design a gate level circuit for half adder and verify for the following truth table and write a test bench

for verifying the functionality of the ha1f adder

A half adder has two inputs for the two bits to be added and two outputs one from the sum ‘ S’ and

other from the carry ‘ c’ into the higher adder position. Above circuit is called as a carry signal from

the addition of the less significant bits sum from the X-OR Gate the carry out from the AND gate.

Consider the inputs are A, B and outputs are Sum, Cout
A B Sum Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Hints

The code pattern for implementing half adder:

// Declare the port signals
Input a, b;
Output sum, cout

//Write VHDL model for half adder in behavioral flow model
entity ha_df port (
 a, b: in std_logic;
 sum, cout: out std_logic);
end ha_df;

/** architecture body */
architecture arch_ha_df of ha_df is

begin
 process(a, b)
 begin

 case {a, b} is
 when “00” => sum <= ‘0’; cout <= ‘0’;
 when “01” => sum <= ‘1’; cout <= ‘0’;
 when “10” => sum <= ‘1’; cout <= ‘0’;
 . . .
 . . .
 . . .
 End case
 End process;

End arch_ha_df;

//Write the test bench for providing the stumulus

entity tb_ha_df port
end tb_ha_df;

architecture arch_tb_ha_df of tb_ha_df is
 signal a, b: std_logic := ‘0’;
 signal sum, cout: std_logic;

 component ha_df port (
 a, b: in std_logic;
 sum, cout: out std_logic);
 end component;

begin
 DUT: ha_df port map (a, b, sum, cout);

 process
 begin
 a = ~a;
 wait for 10ns;
 b = ~b;
 wait for 15ns;

 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

6.2 Implementation of full adder

Design a gate level circuit for full adder and verify for the following truth table and write a test bench

for verifying the functionality of the full adder

Consider the inputs are A, B, C and outputs are Sum, Cout

A B C Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Hints

The pseudo code for printing full adder:

// Declare the port signals
Input a, b, c;
Output sum, cout
Work lib should consist of xor, and, or gates modules

//Write VHDL model for half adder in behavioral flow model
entity fa_gl port (
 a, b, cin: in std_logic;
 sum, cout: out std_logic);
end fa_gl;

/** architecture body */
architecture arch_fa_gl of ga_gl is
 component xor_gate port (
 a, b: in std_logic;
 y: out std_logic);
 end component;

 component declaration for or_gate, and_gate
begin

 u0: xor_gate port map(a, b, x1);
 u1: xor_gate port map(x1, cin, sum);
 . . .
 . . .

End arch_fa_gl;

//Write the test bench for providing the stumulus

entity tb_fa_gl port
end tb_fa_gl;

architecture arch_tb_fa_gl of tb_fa_gl is
 signal a, b, cin: std_logic := ‘0’;
 signal sum, cout: std_logic;

 component fa_gl port (
 a, b, cin: in std_logic;
 sum, cout: out std_logic);
 end component;

begin
 DUT: fa_gl port map (a, b, cin, sum, cout);

 process
 begin
 a = ~a;
 wait for 5ns;
 b = ~b;
 wait for 10ns;
 cin = ~cin;
 wait for 15ns;

 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

6.3 Realization of full adder using half adders

Design a gate level circuit for full adder using half adder and verify for the functionality and write a test

bench for verifying the functionality of the full adder

Hints

The pseudo code for printing full adder:

// Declare the port signals
Input a, b, c;
Output sum, cout

Work lib should consist of half adder, or_gate modules

entity fa_ha port (
 a, b, cin: in std_logic;
 sum, cout: out std_logic);
end fa_ha;

/** architecture body */
architecture arch_fa_ha of ga_ha is
 component ha_df port (
 a, b: in std_logic;
 y: out std_logic);
 end component;
 component declaration for or_gate, and_gate

begin

 u0: xor_gate port map(a, b, x1);
 u1: xor_gate port map(x1, cin, sum);
 . . .
 . . .

End arch_fa_gl;

//Write the test bench for providing the stumulus

entity tb_fa_gl port
end tb_fa_gl;

architecture arch_tb_fa_gl of tb_fa_gl is
 signal a, b, cin: std_logic := ‘0’;
 signal sum, cout: std_logic;

 component fa_gl port (
 a, b, cin: in std_logic;
 sum, cout: out std_logic);
 end component;

begin
 DUT: fa_gl port map (a, b, cin, sum, cout);

 process
 begin
 a = ~a;
 wait for 5ns;
 b = ~b;
 wait for 10ns;
 cin = ~cin;
 wait for 15ns;

 end process

End architecture

Plot the wave form for all possible select lines
Synthesize the design
Elaborate the design and dump the bit file into FPGA

6.4 Design and implement 4-bit ripple carry adder

Design a gate level circuit for ripple carry adder using full adder and verify for the functionality and write

a test bench for verifying the functionality of the ripple carry adder

Hints

The pseudo code for printing full adder:

// Declare the port signals
Input a, b; //vector of 4-bit size
Input cin;
Output sum; //vector of 4-bit size
Output cout;
// Declare xor gate, and gate
Component declaration for full adder

// instance xor gate, and gate
Port map for full adder

6.5 Implementation of half subtractor

Design a gate level circuit for half subtractor and verify for the following truth table and write a test

bench for verifying the functionality of the ha1f subtractor

Consider the inputs are A, B and outputs are Diff, Bout

A B Diff Bout
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

Hints

The code pattern for printing half subtractor:

// Declare the port signals
Input a, b;
Output diff, bout

// Declare xor gate, and gate
Component declaration for xor gate, and gate

// instance xor gate, and gate
Port map for xor gate
Port map for and gate

6.6 Implementation of full subtractor

Design a gate level circuit for full subtractor and verify for the following truth table and write a test

bench for verifying the functionality of the full subtractor

Consider the inputs are A, B, Bin and outputs are Diff, Bout

A B Bin Sum Bout
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Hints

The pseudo code for printing full subtractor:

// Declare the port signals
Input a, b, bin;
Output diff, bout

// Declare xor gate, and gate
Component declaration for xor gate, and gate

// instance xor gate, and gate
Port map for xor gate
Port map for and gate

6.7 Realization of full subtractor using half subtractor

Design a gate level circuit for full subtractor using half subtractor and verify for the functionality and

write a test bench for verifying the functionality of the full subtractor

Hints

The pseudo code for printing full subtractor:

// Declare the port signals
Input a, b, bin;
Output diff, bout

// Declare xor gate, and gate
Component declaration for half subtractor, and gate, or gate

// instance xor gate, and gate
Port map for half subtractor
Port map for and gate
Port map for or gate

Try

Design a gate level circuit for ripple carry adder using full adder and verify for the functionality and write

a test bench for verifying the functionality of the ha1f adder

Hints

The pseudo code for printing full adder:

// Declare the port signals
Input a, b; //vector of 4-bit size
Input cin;
Output sum; //vector of 4-bit size
Output cout;

// Declare xor gate, and gate
Component declaration for full adder

// instance xor gate, and gate
Port map for full adder

7. Exercises on barrel shifter and ALU

To be proficient in programming, you need implement the following digital circuits

1 Design a 4- bit barrel shifter with four select lines for supporting 16- functionalities

2 Implementation 8-bit ALU to perform the arithmetic, logical operations

7.1. 4- bit barrel shifter

A barrel shifter is a digital circuit that can shift a data word by a specified number of bits without use of
any sequential logic, only pure combinational logic. There are 3 type of bitwise shift operation: logical
shift, arithmetic shift, and circular shift (rotate). The data can be shifted to the left as well as to the right
circular shift.

Hints

Consider the port specification as

Input datain // 8 bit wide

Input sel // 3 bit wide to support 16 operations

Input dataout // 8 bit wide

The circuit allows rotating the input data word right, where the amount of rotating is selected by the

control inputs. The circuit can design by three stages of 2:1 multiplexer.

When all multiplexer select inputs are active (low), the input data passes straight through the cascade

of the multiplexers and the output data (q7…..q0) is equal to the input data (d7….. d0). When S2control

signal is selected, the first stage of multiplexers performs a rotate-right by one bit operation, due to

their inter-connection to the next lower input.

The second stage of multiplexers performs a rotate-right by two bits when S1 control signal is selected.

Here the corresponding multiplexer inputs are connected to their second next-lower input.

Finally, the third stage of multiplexers performs a rotate-right by four bits, when S0 control signal is

selected. The design uses a case statement to exhaustively list all combinations of the amt signal and

the corresponding rotated results.

Try:

1. Modify the barrel shifter by changing the number of select lines to 4 bit wide to support 16 different

functionalities

2. Modify the barrel shifter by changing the number of data lines to 16 bit wide to support 16 different

functionalities

7.2. 8- bit ALU

Arithmetic Logic Unit (ALU) is one of the most important digital logic components in CPUs. It normally

executes arithmetic operations such as addition, subtraction, multiplication, division, etc. and logic

operations such as and, or, xor, xnor, nand, nor, not, buffer, rotate and shift operations.

Hints

Consider the port specification as

Input A, B // 8 bit wide

Input sel // 4 bit wide to support 16 operations

Input dataout // 8 bit wide

// The logic and arithmetic operations being implemented in the ALU are as follows:

1. Arithmetic Addition: ALU_Out = A + B;

2. Arithmetic Subtraction ALU_Out = A - B;

3. Arithmetic Multiplication ALU_Out = A * B;

4. Arithmetic Division ALU_Out = A / B;

5. Logical Shift Left ALU_Out = A logical shifted left by 1;

6. Logical Shift Right ALU_Out = A logical shifted right by 1;

7. Rotate Left ALU_Out = A rotated left by 1;

8. Rotate Right ALU_Out = A rotated right by 1;

9. Logical AND ALU_Out = A AND B;

10. Logical OR ALU_Out = A OR B;

11. Logical XOR ALU_Out = A XOR B;

12. Logical NOR ALU_Out = A NOR B;

13. Logical NAND ALU_Out = A NAND B;

14. Logical XNOR ALU_Out = A XNOR B;

15. Greater comparison ALU_Out = 1 if A > B else 0;

16. Equal comparison

ALU_Out = 1 A = B else 0;

The second stage of multiplexers performs a rotate-right by two bits when S1 control signal is selected.

Here the corresponding multiplexer inputs are connected to their second next-lower input.

Finally, the third stage of multiplexers performs a rotate-right by four bits, when S0 control signal is

selected. The design uses a case statement to exhaustively list all combinations of the amt signal and

the corresponding rotated results.

Try:

1. Modify the ALU by changing the number of select lines to 4 bit wide to support 16 different

functionalities

2. Modify the ALU by changing the number of data lines to 16 bit wide to support 16 different

functionalities

8. Exercises on Latches and Flip-flops

To be proficient in programming, you need implement the following sequential logic circuits

1 Implementation of SR latch, JK latch, D latch and T latch

2 Implementation of JK flip-flop, D flip-flop and T flip-flop

3 Realization of D flip-flop using D latch

4 Realization of D flip-flop using JK flip-flop

5 Realization of T flip-flop using JK flip-flop

6 Realization of T flip-flop using D flip-flop

8.1 SR latch, JK latch, D latch and T latch

Construct an SR latch using NOR gates. Verify its operation and demonstrate the circuit.

Write an entity declaration for a positive level-triggered SR-latch with asynchronous active-low preset

and clear inputs, and Q and outputs. Include concurrent assertion statements and passive processes as

necessary in the entity declaration to verify that

• The preset and clear inputs are not activated simultaneously,

• The setup time of 6 ns from the J and K inputs to the rising clock edge is observed,

• The hold time of 2 ns for the J and K inputs after the rising clock edge is observed and

• The minimum pulse width of 5 ns on each of the clock, preset and clear inputs is observed.

Write a gate level architecture body for the SR latch and a test bench that exercises the statements in

the entity declaration.

Hints

// Declare port signal

Input rst_l, clk;
Input s, r;

Output q, qb;

// Component declaration of NAND gates
Component NAND_gate (input a, b; output y);

// component instance in the architecture body of VHDL program
NAND_gate port map(s, qb, q);
NAND_gate port map(r, q, qb);

// Test bench for SR latch
Design a test bench to provide the stimulus for the inputs s, r
Generate a clk signal with 5MHz frequency
Generate the reset logic to reset the latch at initial

Try

1. Construct SR latch using NAND gates. Verify its operation and demonstrate the circuit

2. Construct JK latch using NAND gates. Verify its operation and demonstrate the circuit

3. Construct D latch using NAND gates. Verify its operation and demonstrate the circuit

4. Construct T latch using NAND gates. Verify its operation and demonstrate the circuit

8.2 JK flip-flop, D flip-flop and T flip-flop

Construct flip-flops using latches and verify its operation and demonstrate the circuit.

Write an entity declaration for a positive edge-triggered JK-flipflop with asynchronous

active-low preset and clear inputs, and Q and outputs. Include concurrent assertion

statements and passive processes as necessary in the entity declaration to verify that

• The preset and clear inputs are not activated simultaneously,

• The setup time of 6 ns from the J and K inputs to the rising clock edge is observed,

• The hold time of 2 ns for the J and K inputs after the rising clock edge is observed

and

• The minimum pulse width of 5 ns on each of the clock, preset and clear inputs is

observed.

Write a structural architecture body for the flipflop and a test bench that exercises the

statements in the entity declaration.

Hints

The pseudo code for SR latch

// Declare port signal

Input rst_l, clk;
Input s, r;

Output q, qb;

// Component declaration of NAND gates
Component NAND_gate (input a, b; output y);

// component instance in the architecture body of VHDL program
NAND_gate port map(s, qb, q);
NAND_gate port map(r, q, qb);

// Test bench for SR latch
Design a test bench to provide the stimulus for the inputs s, r
Generate a clk signal with 5MHz frequency
Generate the reset logic to reset the latch at initial

Try

Design 2-bit register

Write component instantiation statements to model the structure shown by the schematic diagram in

Figure. Assume that the entity ttl_74x74 and the corresponding architecture basic have been analyzed

into the library work. Figure 2 shows the 2-bit register.

Figure 2: 2-bit register.

9. Exercises on counters and shift registers

To be proficient in programming, you need implement the following sequential logic circuits

1 4-bit synchronous counter with synchronous reset

2 Decade counter

3 4-bit serial in serial out shift register (SISO)

9.1: 4-bit synchronous counter with synchronous reset

Build an entity for a 4-bit counter with synchronous reset input. Include a process in the entity

declaration that measures the duration of each reset pulse and reports the duration at the end of each

pulse.

Hints

/** Declare the port signals */
entity counter_synrst port (
 clk, rst: in std_logic;
 q: out std_logic_vector(3 downto 0));
end counter_synrst;

/** architecturebody */
architecture arch_counter_synrst of counter_synrst is

Begin
 Process (clk, rst)
 Begin

 If clk’event and clk = ‘1’ then
 If rst then
 q = “0000”;
 else
 q = q + 1;
 end if;
 end process

End arch_counter_synrst;

//Write the test bench for providing the stumulus

entity tb_counter_synrst port
end tb_counter_synrst;

architecture arch_tb_counter_synrst of tb_counter_synrst is

 signal clk, rst: std_logic := ‘0’;
 signal q: std_logic_vector(3 downto 0);

 component counter_synrst port (
 clk, rst: in std_logic;
 q: out std_logic_vector(3 downto 0));
 end component;

begin

 DUT: counter_synrst port map (gray_code, binary_code);

 Process
 begin
 clk = ~clk;
 Wait for 10 ns;
 end process;

 Process
 begin
 rst = ‘0’;
 Wait for 10 ns;
 rst = ‘1’;
 wait;
 end process;

end architecture

// After post simulation

Simulate the design using Xilinx software

Plot the wave forms and verify the functionality of the design

Synthesize the design

Try

1 Design 4-bit synchronous counter with asynchronous reset

2 Design 4-bit asynchronous counter with synchronous reset

3 Design 4-bit asynchronous counter with asynchronous reset

9.2 Decade counter with asynchronous reset

Construct an entity for a decade counter with asynchronous reset input. Include a process in the entity

declaration that measures the duration of each reset pulse and reports the duration at the end of each

pulse.

Hints

/** Declare the port signals */
entity dec_counter_asynrst port (
 clk, rst: in std_logic;
 q: out std_logic_vector(3 downto 0));
end dec_counter_asynrst;

/** architecturebody */
architecture arch_dec_counter_asynrst of dec_counter_asynrst is

Begin
 Process (clk, rst)
 Begin

 If rst then
 q = “0000”;
 elif clk’event and clk = ‘1’ then
 if (q = “1010”) then
 q = “0000”;
 else
 q = q + 1;
 end if;

 end if;
 end process

End arch_dec_counter_asynrst;

//Write the test bench for providing the stumulus

entity tb_dec_counter_asynrst port
end tb_dec_counter_asynrst;

architecture arch_tb_dec_counter_asynrst of tb_dec_counter_asynrst is

 signal clk, rst: std_logic := ‘0’;
 signal q: std_logic_vector(3 downto 0);

 component dec_counter_asynrst port (
 clk, rst: in std_logic;
 q: out std_logic_vector(3 downto 0));
 end component;

begin

 DUT: dec_counter_asynrst port map (clk, rst, q);

 Process
 begin
 clk = ~clk;
 Wait for 10 ns;
 end process;

 Process
 begin
 rst = ‘0’;
 Wait for 10 ns;
 rst = ‘1’;
 wait;
 end process;

end architecture

// After post simulation

Simulate the design using Xilinx software

Plot the wave forms and verify the functionality of the design

Synthesize the design
Elaborate the design and create bit file
Dump the bit file in zybo fpga

Try

1 Design decade synchronous counter with synchronous reset

2 Design counter to count the events from 3 to 12

9.3 4-bit serial in serial out shift register (SISO)

In digital systems it is often necessary to have circuits that can shift the bits of a vector by one or more

bit positions to the left or right. Design a circuit that can shift a four-bit vector W = w3w2w1w0 one bit

position to the right when a control signal Shift is equal to 1. Let the outputs of the circuit be a four-bit

vector Y = y3y2y1y0 and a signal k, such that if Shift = 1 then y3 = 0, y2 = w3, y1 = w2, y0 = w1, and k

= w0. If Shift = 0 then Y = W and k = 0.

Build an entity for a shift register to drive the resister serially and output the data serially. Write a test

bench architecture to simulate and verify the design.

Hints

/** Declare the port signals */
entity siso port (
 clk, rst: in std_logic;
 sin : in std_logic;
 q: out std_logic_vector(3 downto 0));
end siso;

/** architecturebody */
architecture arch_siso of siso is

Begin
 Process (clk, rst)
 Begin

 If rst then
 q = “0000”;
 elif clk’event and clk = ‘1’ then
 q[3] = sin;
 q[2] = q[3];
 q[1] = q[2];
 q[0] = q[1];

 end if;
 end process

End arch_siso;

//Write the test bench for providing the stumulus

entity tb_siso port
end tb_siso;

architecture arch_tb_siso of tb_siso is

 signal clk, rst: std_logic := ‘0’;
 signal sin: std_logic := ‘0’;
 signal q: std_logic_vector(3 downto 0);

 component siso port (
 clk, rst: in std_logic;
 sin : in std_logic;
 q: out std_logic_vector(3 downto 0));
 end component;

begin

 DUT: siso port map (clk, rst, sin, q);

 Process
 begin
 clk = ~clk;
 Wait for 10 ns;
 end process;

 Process
 begin
 rst = ‘0’;
 Wait for 10 ns;

 rst = ‘1’;
 wait;
 end process;

 Process
 begin
 sin = ~sin;
 Wait for 25 ns;
 end process;

end architecture

// After post simulation

Simulate the design using Xilinx software

Plot the wave forms and verify the functionality of the design

Synthesize the design
Elaborate the design and create bit file
Dump the bit file in zybo FPGA

Try

1 Design 4-bit serial in parallel out shift register (SIPO)

2 Design 4-bit parallel in serial out shift register (PISO)

3 Design 4-bit parallel in parallel out shift register (PIPO)

10. Exercises on case study: Pseudo random generator

To be proficient in programming, you need implement the following finite state machines

1 Pseudo random number generator using LFSR

2 Pseudo random number generator for CRC logic

10.1 Pseudo random number generator using LFSR

Build Pseudo random number generator using LFSRAn LFSR is a shift register that, when clocked,

advances the signal through the register from one bit to the next most-significant bit. Some of the

outputs are combined in exclusive-OR configuration to form a feedback mechanism. A linear feedback

shift register can be formed by performing exclusive-OR on the outputs of two or more of the flip-flops

together and feeding those outputs back into the input of one of the flip-flops.

Linear feedback shift registers make extremely good pseudorandom pattern generators. When the

outputs of the flip-flops are loaded with a seed value (anything except all 0s, which would cause the

LFSR to produce all 0 patterns) and when the LFSR is clocked, it will generate a pseudorandom pattern

of 1s and 0s. Note that the only signal necessary to generate the test patterns is the clock.

Hints

Step 1:

The linear feedback shift register is implemented as a series of Flip-Flops inside
of an FPGA that are wired together as a shift register.
Several taps off of the shift register chain are used as inputs to either an XOR or
XNOR gate.
The output of this gate is then used as feedback to the beginning of the shift
register chain, hence the Feedback in LFSR.

Step 2:
When an LFSR is running, the pattern that is being generated by the individual Flip-
Flops is pseudo-random, meaning that it’s close to random. It’s not completely
random because from any state of the LFSR pattern and can predict the next state.

Step 3:
Longer LFSRs will take longer to run through all iterations. The longest possible
number of iterations for an LFSR of N-bits is 2N-1.

Step 4:
That pattern is all 0’s when using XOR gates, or all 1’s when using XNOR gates as
your feedback gate.

Try:

1. Pseudo random number generator for 8-bit CRC logic

2. Pseudo random number generator for 12-bit CRC logic

3. Pseudo random number generator for 16-bit CRC logic

11. Exercises on CARRY-LOOK AHEAD ADDER

11.1 Carry look ahead adder

Build 4- bit carry look ahead adder (CLA) and justify the speed of operation CLA is more than ripple

carry adder

Develop a functional model of a 3-bit carry-look-ahead adder. The adder has two 3-bit data inputs, a (2

downto 0) and b(3 downto 0); a 3-bit data output, s (2 downto 0); a carry input, c_in; a carry output,

c_out; a carry generate output, g; and a carry propagate output, p. The adder is described by the logic

equations and associated propagation delays: where the Gi are the intermediate carry generate signals,

the Pi are the intermediate carry propagate signals and the Ci are the intermediate carry signals. C–1 is

c_in and C3 is cout. Your model should use the expanded equation to calculate the intermediate carries,

which are then used to calculate the sums.

 𝑠𝑖 = 𝑎𝑖 ⊕ 𝑏𝑖 ⊕ 𝑐𝑖−1

 𝑔𝑖 = 𝑎𝑖 . 𝑏𝑖

 𝑝𝑖 = 𝑎𝑖 + 𝑏𝑖

 𝑐𝑖 = 𝑔𝑖 + 𝑝𝑖 𝑐𝑖−1

Hints

/** Declare the port signals */
entity cla port (
 a, b: in std_logic-vector(2 downto 0);
 sum: out std_logic_vector(2 downto 0);
 cout: out std_logic);
end cla;

/** architecturebody */
architecture arch_cla of cla is

Begin
 g0 = a[0] & b[0];
 p0 = a[0] | b[0];
 c1 = g0 + p0 & c0;

End arch_cla;

//Write the test bench for providing the stumulus

entity tb_cla port
end tb_cla;

architecture arch_tb_cla of tb_cla is

 signal a, b: std_logic_vector(2 downto 0) := “000”;
 signal cin: std_logic := ‘0’;
 signal sum: std_logic_vector(s downto 0);

 component cla port (
 a, b: in std_logic-vector(2 downto 0);
 sum: out std_logic_vector(2 downto 0);
 cout: out std_logic);
 end component;

begin

 DUT: cla port map (clk, rst, sin, q);

 Process
 begin
 a = a + “0110”
 wait for 10 ns;
 b = b + “1010”
 end process;

end architecture

// After post simulation

Simulate the design using Xilinx software

Plot the wave forms and verify the functionality of the design

Synthesize the design
Elaborate the design and create bit file
Dump the bit file in zybo FPGA

Try:

1. Design and implement 4-bit carry look ahead adder

2. Design and implement 4-bit ripple carry adder

12. Exercises on VENDING MACHINE CONTROLLER

Vending-Machine Controller sells candy bars for 25 cents. The inputs are nickel_in, dime_in, and

quarter_in, indicating the type of coin that was deposited, plus clock (clk) and reset (rst), to which the

circuit responds with the outputs candy_out, to dispense a candy bar, plus nickel_out or dime_out,

asserted when change is due. Design this circuit using the FSM approach. Also, estimate the number of

flip-flops that will be required. Figure 3. Shows the block level diagram representation of vending

machine controller and Figure 4 shows the state diagram of the vending machine.

Figure 3: The vending machine controller block diagram

Figure 4: State diagram of the vending machine controller

/** VHDL model for gray counter */

entity vend_mach is
port(Clk, rst : in std_logic;
 Ni_in, Dime_in, Quarter_in : in std_logic;
 Candy_out, Ni_out, Dime_out : out std_logic
);
end vend_mach;

architecture Behavioral of vend_mach is

--type of state machine and signal declaration.
type state_type is (st0, st5, st10, st15, st20, st25, st30, st35, st40, st45);
signal next_state : state_type;

begin

Vending

machine

Controller

Ni_in

Dime_in

Quarter_in

rst

clk

Candy_out

Ni_out

Dime_out

process(Clk, rst)
begin
 if(rising_edge(Clk)) then
 case next_s is
 when st0 =>
 if(Ni_in) then
 next_state <= st5;
 elsif(Dime_in) then
 next_state <= st10;
 elsif(Quarter_in) then
 next_state <= st25;
 end if;
 when st5 =>
 . . .
 . . .
 . . .
 end case;
 end if;
end process;

end Behavioral;

Try

1. Implement the vending machine using Melay finite state machine

13. Exercises on Gray-Encoded Counter

Design a 0-to-8 counter with Gray-encoded outputs.

a) Draw the state transition diagram.

b) Estimate the number of flip-flops that will be needed.

c) Write the VHDL code, then compile and simulate it.

d) Check whether the number of DFFs inferred by the compiler matches your prediction.

/** VHDL model for gray counter */
entity graycounter is
 generic (n: integer := 6);
 port (clk, rst, en: in std_logic;
 output: out std_logic_vector (n-1 downto 0));
end graycounter;

architecture graycounter_beh of graycounter is
 signal currstate, nextstate, hold, next_hold: std_logic_vector (n-1 downto 0);
begin

 statereg: process (clk)
 begin
 if (clk = '1' and clk'event) then
 if (rst = '1') then
 currstate <= (others =>'0');
 elsif (en = '1') then
 currstate <= nextstate;
 end if;
 end if;
 end process;

 hold <= currstate xor ('0' & hold(n-1 downto 1));
 next_hold <= std_logic_vector(unsigned(hold) + 1);
 nextstate <= next_hold xor ('0' & next_hold(n-1 downto 1));
 output <= currstate;

end graycounter_beh;

/** VHDL test bench */
entity testbench is
end testbench;

architecture arch of testbench is
 component graycounter is
 generic (n: integer := 6);
 port (clk, rst, en: in std_logic;
 output: out std_logic_vector (n-1 downto 0));
 end component;

 signal clk_s, rst_s, en_s: std_logic;
 signal output_s: std_logic_vector(5 downto 0);

begin
 comptotest: graycounter generic map (6) port map (clk_s, rst_s, en_s, output_s);

 clk_proc: process
 begin
 clk_s <= '1';
 wait for 10 ns;
 clk_s <= '0';
 wait for 10 ns;
 end process clk_proc;

 vector_proc: process
 begin
 rst_s <= '1';
 wait until clk_s='1' and clk_s'event;
 wait for 5 ns;
 rst_s <= '0';
 en_s <= '1';
 for index in 0 to 3 loop
 wait until clk_s='1' and clk_s'event;
 end loop;
 wait for 5 ns;
 wait;
 end process vector_proc;

end arch;

Try

1. Design a counter with Johnson-encoded output instead of Gray-encoded.

2. Design a counter with one-hot output instead of Gray output.

3. Modify the counter designed, such that the circuit stays in each state during T ¼ 1 s, with the

output displayed on a seven segment display. Assume that the clock frequency is 50 MHz.

14. Exercises on RAM design

Write an entity declaration for a lookup table RAM modeled at an abstract level. The RAM has an address

input of type look_up_index, which is an integer range from 0 to 31, and a data output of type real.

Include declarations within the declarative part of the entity to define the RAM contents, initialized to

numbers of your choice.

/** Declare the port signals */
entity single_port_RAM is
 generic (
 addr_width : integer := 2;
 data_width : integer := 3
);

 port(
 clk: in std_logic;
 we : in std_logic;
 addr : in std_logic_vector(addr_width-1 downto 0);
 din : in std_logic_vector(data_width-1 downto 0);
 dout : out std_logic_vector(data_width-1 downto 0)
);
end single_port_RAM;

architecture arch of single_port_RAM is
 type ram_type is array (2**addr_width-1 downto 0) of std_logic_vector (data_width-
1 downto 0);
 signal ram_single_port : ram_type;

begin
 process(clk)
 begin
 if (clk'event and clk='1') then
 if (we='1') then -- write data to address 'addr'
 --convert 'addr' type to integer from std_logic_vector
 ram_single_port(to_integer(unsigned(addr))) <= din;
 end if;
 end if;
 end process;

 -- read data from address 'addr'
 -- convert 'addr' type to integer from std_logic_vector
 dout<=ram_single_port(to_integer(unsigned(addr)));
end arch;

Try

1. Extend the functionality of RAM memory block by allowing write and read operations to construct

RAM block of size 16 x 8 RAM.

15. Final Notes

The only way to learn programming is program, program and program on challenging problems. The

problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging

problems available – used in training for various programming contests (such as International Collegiate

Programming Contest (ICPC), International Olympiad in Informatics (IOI)). Check out these sites:

• Cadence certifications (https://www.cadence.com/en_US/home/training/become-cadence-

certified.html#dds0

• National Institute of Electronics and Information Technology

(https://reg.nielitchennai.edu.in)

Student can have any one of the following certifications:

• NPTEL – Digital design

• NPTEL – HDL programming

V. TEXT BOOKS:

1 Wen-Long Chin, “Principles of Verilog Digital Design”, CRC Press, 1st edition, 2022

2 Charles Roth, “Digital System Design using VHDL”, Tata McGraw Hill, 2nd edition, 2012.

3 M. Morris Mano and Michael D. Ciletti, “Digital Design”, Pearson Education, 6th edition, 2018.

4 John F Wakerly, “Digital Design Principles and practices”, Pearson Education, 4th edition, 2008

VI. REFERENCES

1 Mohammad Karim, Xinghao Chen, “Digital Design: Basic Concepts and Principles”, CRC

Press, 2nd edition, 2007.

2 Samir Palnitkar, “Verilog HDL: A Guide to Digital Design and Synthesis”, Pearson

Education, 2nd edition, 2003.

