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COURSE CONTENT 

FOUNDATIONS OF MACHINE LEARNING LABORATORY  

IV Semester: CSE (AI & ML) 

Course Code Category Hours / Week Credits Maximum Marks 

ACAC04 Core 
L T P C CIA SEE Total 

1 0 2 2 30 70 100 

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 45 Total Classes: 45 

  Prerequisite: Python Programming 

  I. COURSE OVERVIEW: 

This course introduces the fundamental concepts and methods of machine learning, including the description and 

analysis of several modern algorithms, their theoretical basis, and the illustration of their applications. Machine 

learning as a field is now incredibly pervasive, with applications spanning from business intelligence to text and 

speech processing, bioinformatics, and other areas in real-world products and services. This will familiarize students 

with a broad cross-section of models and algorithms for machine learning, and prepare students for research or industry 

application of machine learning techniques. 

 

II. COURSE OBJECTIVES: 

The students will try to learn: 

I. The supervised learning algorithms for solving learning problems such as classification and 

prediction.  

II. The need of unsupervised learning for specific data. 

III. The implementation of supervised and unsupervised learning algorithms with the help of python 

library functions. 

 

III. COURSE OUTCOMES: 
At the end of the course students should be able to: 

 

CO1       Demonstrate the characteristics of Machine Learning that make it useful to solve real-world 

problems using Python. 

CO2 Make use of Supervised Learning Algorithm for Classification Model and Decision Tree Learning. 

CO3 Build a Prediction Model by using Linear Regression Techniques and Ensemble Techniques. 

CO4 Make use of Bayesian Learning for Classification Model and outline Unsupervised learning 

Algorithms for determining hidden patterns in data. 

CO5 Discuss the methodology of Clustering and EM Algorithms to understand the Linear and Non-Linear 

data. 

CO6 Discuss the methodology of Neural Networks and Support Vector Machines to classify the Linear 

and Non-Linear data. 
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IV. COURSE CONTENT: 

 

EXERCISES FOR FOUNDATIONS OF MACHINE LEARNING 

LABORATORY 

 

 

Note: Students are encouraged to bring their own laptops for laboratory 

practice sessions. 
 

1.  Getting Started Exercises 

1.1 Missing Values  

In the present era, where data plays a pivotal role, businesses and organizations of all sizes 

encounter a substantial volume of data. However, ensuring the accuracy and reliability of this 

data is vital for making well-informed decisions and extracting meaningful information. 

Understand data consistency checks as being a set of expert rules to check whether a 

characteristic follows an expected behavior. The goal of this exercise is to increase the data 

consistency and quality by finding and removing errors like missing entries from data. 

Input: Data Frame with missing values 

 

Output: Data frame filled with missing values, value zero or with any other value.    

Explanation: Handle missing values (say NA or NaN) using Pandas. To make detecting missing 

values easier (and across different array dtypes), Pandas provides the isnull( ) and notnull( ) 

functions,  which are also methods on Series and DataFrame objects. The fillna function can “fill 

in” NA values with non-null data in a couple of ways. 

Hint: 

# import the pandas library 
import pandas as pd 
import numpy as np 
 
df = pd.DataFrame(np.random.randn(5,3), index=[‘a’, ‘c’, ‘e’, ‘f’, ‘h’], 

columns=[‘one’,’two’,’three’]) 
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df = df.reindex([‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’] 
 
# Print the dataframe 
     

 

Try: Write the code to fill missing data with NaN and NaN with a Scalar Value 

1.2 Feature Selection 

Chemical analysis of wines grown in the same region and to determine the quantities of 13 

constituents found in each of the three types of wines. Perform the feature selection by selecting 

the subset of the most relevant features from the original features set by removing the 

redundant, irrelevant, or noisy feature. 

Input: wine.csv dataset  and pima Indians diabetes dataset 

 

Output: heatmap showing the correlation of all the features of the dataset. 

Explanation: Load the dataset first before loading the variables. Implement the code for Pearson 

Correlation and observe the results. If the value is near to 1 that means those two features are 

correlated and we can drop any one of them. 

Hint: 

# Importing the libraries 
import pandas as pd 
import numpy as np 
import seaborn as sns 
import matplotlib.pyplot as plt 
%matplotlib inline 
 
# Read the csv file and print the dataframe 

 

Try: Write the code to implement the Pearson Correlation and perform Chi-square test 

 

1.3 Encoding the categorical data. 

It has been observed that machine learning models do not understand any forms of data except 

integers. But there are many applications that need categorical data as input which will be in 
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the form of strings and object data types. So, being a machine learning engineer, develop the 

code to convert the categorical data to numeric form.  

Input: A finite set of categorical data represented as strings or categories. 

 

Output: Encoded data frame  

Hint: 

import category_encoders as ce 
import pandas as pd 
train df=pd.DataFrame({‘Degree’:[‘High school’, ‘Masters’,’Diploma’, 
‘Bachelores’, ‘Masters’, ‘PhD’, ‘High school’, ‘High school’]}) 
 
# Create object for ordinal encoding 
 
Encoder = ce.OrdinalEncoder(cols=[‘Degree’],return_df=True, mapping = 
[{col:’Degree’, ‘mapping’:{‘None’:0,’High 
school’:1,’Diploma’:2,’Bachelors’:3,’Masters’:4,’PhD’:5}}]) 
 
# Print the Original data 

 
Try: Write the code to implement the one hot encoding and dump encoding. 

 

1.4 Conversion of raw data into a clean data set 

Data scientists process and analyze data using several methods and tools, such as statistical models, 

machine learning algorithms, and data visualization software. Data science seeks to uncover patterns 

in data that can help with decision-making, process improvement, and the creation of new 

opportunities. For achieving better results from the applied model in Machine Learning projects the 

format of the data must be in a proper manner. Some specified Machine Learning models need 

information in a specified format. The goal of this exercise is that the data set should be formatted in 

such a way that more than one Machine Learning and Deep Learning algorithm are executed in one 

data set, and the best out of them is chosen. Initialize the minmax scalar and learn the statistical 

parameters for each of the data and transforming. 

Input: Pima Indian Diabetes dataset 

 

Output: Rescaled dataset with outcomes proportionality.  
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Explanation: Pre-processing refers to the transformations applied to our data before feeding it to the 

algorithm. Data preprocessing is a technique that is used to convert raw data into a clean data set. In 

other words, whenever the data is gathered from different sources it is collected in raw format which is 

not feasible for analysis. 

Hint: 

# import the necessary libraries 
import pandas as pd 
import scipy 
import numpy as np 
from sklearn.preprocessing import MinMaxScaler 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
# Load the dataset 
df = pd.read_csv(‘csv file path’) 
print(df.head() 
 
# Write the code to check the dataset information and perform the statistical 
analysis by checking and dropping the outliers. 
. 
. 
. 
# Use Correlation, check the outcomes proportionality, and separate the independent 
features and target variable.  
. 
. 
# Initialize the MinMaxScalar and learning the statistical parameters  
scaler = MinMaxScaler(features_range=(0,1)) 
rescaledX = scaler.fit_transform(X) 
rescaledX[:5] 
 

 
Try: Apply Normalization and Standardization techniques on the above same dataset and 

generate the heat map. 

 

1.5 Feature Scaling 

In most cases, we shall work with datasets whose features are not on the same scale. Some features often 

have tremendous values, and others have small values. Suppose we implement our machine learning 

model on such datasets. In that case, features with tremendous values dominate those with small values, 

and the machine learning model treats those with small values as if they don’t exist (their influence on the 

data is not accounted for). To ensure this is not the case, we need to scale our features on the same range, 

i.e., within the interval of -3 and 3. 

 

Input: Breast Cancer Dataset (csv file) 
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Output: Scaled values for ‘Age’ and ‘Salary’ columns. 

Explanation: Load the dataset, take care of missing values, and transform the text data into numeric data. 

Split the dataset into training and testing sets and perform the feature scaling.  

Hint: 

from sklearn.preprocessing import StandardScalar 

sc = StandardScaler() 

# Apply the feature scaling on the features other than dummy variables 

x_train[:, 3:] = sc.fit_trandorm(x_train[:, 3:]) 

x_test[:, 3:] = sc.fit_tranform(x_test[:, 3:])    

 

Try: Output the training and testing values. Visualize the results with different plots.  

 

2.  Data Integration and Visualization 

2.1 Data Integration, Transformation and Visualization 

In today’s world of technology and smart business decisions, data integration plays a significant role. 

Integrating data generated from multiple applications and working on it has become the flagship of some 

of the IT projects run by various organizations around the world. The need for improving data accessibility 

has given rise to the idea of Data integration. The goal of this exercise is to perform some of the basic 

transformations and visualize the data. 

Input: Superstore Sales Dataset with Orders, Returns, and People data. 

Output: An integrated dataset, basic filtering outcomes, and a histogram 

Explanation: 

The dataset I will use for this tutorial is the superstore sales dataset. This dataset contains information on 

the sales made by a fictional retail outlet in the USA. The dataset is provided in .xls format and the data is 

spread across three different sheets: 

• Orders: This is the main table in the dataset and contains information for each order such as the 

order id, the store location, the quantity, and the profit. 

• Returns: This table contains a list of order id’s which have been returned. 

• People: This table contains the names of the regional manager for each region contained within 

the orders table. 

We can think of these sheets as three tables in a database. We can easily read each of these sheets into 

memory using pandas and examine the first few lines as demonstrated below. 

Hint: 

import pandas as pd 
orders = pd.read_excel('./data/input_data/superstore.xls', sheet_name='Orders') 
returns = pd.read_excel('./data/input_data/superstore.xls', sheet_name='Returns') 
people = pd.read_excel('./data/input_data/superstore.xls', sheet_name='People') 
 
# View the first few lines of the data 



7 
 

orders.head() 
returns.head() 

 

people.head() 

 
 

Joining the data sources together 

If you load and explore the data sources, you will notice that the orders table shares common fields with 

both the returns (Order ID) and people (Region) tables. These relationships mean that we can combine 

the three data sources into a single “master” table using a join. 

Pandas make joining tables very simple through the merge. This allows us to join two tables using two or 

more columns and specify the type of join (inner, left, right, outer) we wish to use. 

merged_df = orders.merge( 

    returns, how='left', on='Order ID' 

    ).merge(people, on='Region') 

The code above demonstrates how one would go about joining our three data sources together into one 

master table (merged_df). A few key points to note: 

1. The dataframe we apply the. merge method to (orders in our case) is considered the left table in 

the join while the dataframe inside the parenthesis (returns and people in our case) are considered 

the right. 

2. We can perform both joins in a single line by simply chaining the. merge() operations together. 

3. By default, the merge method preforms an inner join. However, since the returns table only 

contained information on returned orders an inner join here would mean that we would have lost 

all the non-returned orders from the orders dataset. As a result of this we had to specify that we 

wanted to use a left join. Since we knew that all regions in the orders dataset appear in the people 

dataset, we were comfortable using an inner join when merging the people dataset. If you are 

unfamiliar with these joins, see below for a visual explanation. 
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Some Basic Filtering 

 

Once we have our datasets merged, the next logical step might be to filter out rows which relate to 

returned orders (i.e order ID’s which exist in the returns table) as we might consider these invalid for our 

analysis. 

Pandas make filtering incredibly easy using the loc method. This method allows us to access a column, or 

a group of columns using a boolean index. When using the loc method, we declare our boolean index as 

the first input, followed by the group of columns we wish to select from the filtered subset. 

In the example below, I use the loc method to filter the dataframe based on rows which have a NA value 

for the column’Returned’ (since these are the ID’s which are not in the returned table). I then specify that 

I want to select all columns using the : slicer. 

not_returned_df = merged_df.loc[merged_df['Returned'].isna(), :] 

 
 

In addition to performing simple filtering base on the values in one column we can also chain logic 

together across multiple columns. Using the code below, we can extend our example from above to 

identify the order ID’s of non-returned items in the city of Jacksonville. 

 

Hint: 

not_returned_jax = merged_df.loc[ 
    (merged_df['Returned'].isna()) &  
    (merged_df['City'] == 'Jacksonville'),  
    'Order ID' 
] 
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Aggregating the dataset 

When exploring a dataset, it is often useful to aggregate the data up to a particular column value and 

view the data at a higher level. 

For example, if we want to explore the mean profit per item in each region, we can use the groupby 

method (illustrated below) to group the dataset by the region column before specifying that we want to 

see the mean of the “Profit” column. 

Hint: 

agg_example_1 = not_returned_df.groupby( 

    by='Region' 

)['Profit'].mean() 

 
 

I have illustrated this in the example below by aggregating the data up to region level before calculating 

the mean profit and median sales within each region. 

Hint: 

agg_example_2 = not_returned_df.groupby( 

    by='Region' 

).agg({'Profit':'mean', 'Sales':'median'}) 

Pivoting and Unpivoting the dataset 
Like aggregating the dataset, a pivot can often be useful when summarizing a dataset for a report. Pivoting 

involves turning a single column into multiple columns (1 for each value in the original column). This idea 

can be difficult to understand but let’s illustrate this by using the pivot method in pandas. In our example 

we use the groupby method to calculate the profit per manager for each product category before using 

a pivot to display the results in a more readable format. 

 

Hint: 



10 
 

# group by person and category to aggregate 

data_for_pivot = not_returned_df.groupby( 

    by=['Person', 'Category'] 

)['Profit'].sum().reset_index() 

 

# Perform pivot 

data_for_pivot = pd.DataFrame( 

    data_for_pivot.pivot( 

        index='Category',  

        columns='Person',  

        values='Profit' 

).to_records()) 

data_for_pivot 

 

Hint: 

unpivoted_data = data_for_pivot.melt(id_vars=['Category']) 

unpivoted_data.columns = ['category', 'person', 'profit']  

unpivoted_data 

 
 

Apply a custom function to a dataframe. 

Oftentimes when transforming a dataset, we will want to apply a function we have created to a dataframe. 

Some examples of this include: 

• A function that will convert an address column to coordinates. 

• A function that will create a binary flag based on some logical condition. 
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• A function that will convert a text column to a vector representation. 

Pandas allows us to do this using the apply method with lambda. This method will simply loop through 

each row of the data and apply our function to the column(s) we specify. For example, we can use the 

code below to create a "special_offer" column by applying a function which determines if an item has a 

discount rate of > 50%, and if so it returns a 1. 

Hint: 

def special_offer(discount): 

      if discount > 0.5: 

        return 1 

    else: 

        return 0 

 

not_returned_df.loc[:, 'special_offer'] = not_returned_df.apply( 

    lambda row: special_offer(row['Discount']), axis=1 

) 

Note that when applying a custom function it is important to include the lambda within the method. It is 

also important to note that setting axis = 1 indicates that we want to loop through the dataframe row-

wise instead of column-wise. 

 

While it is great to be able to leverage the apply method for custom functions on our dataframe, it is 

important to remember that this method is essentially just looping through every row of the dataframe 

and applying the function over and over. This can often result in long wait times when dealing with larger 

datasets so it is important to be smart about how and when we use the method. 

For example, when creating a binary column it is more computationally efficient to create a column filled 

with zeros, then use the loc method to filter to the columns which meet our criteria and set them to one. 

You will see in the code and output below that using this method for our simple function takes much less 

time than the apply method approach. 

Hint: 

# Apply approach 

start_time_loc = time.time() 

not_returned_df.loc[:, 'special_offer'] = 0 

# loc approach 

not_returned_df.loc[not_returned_df['Discount'] > 0.5, 'special_offer'] = 1 

print ("Time to run .loc method:", time.time() - start_time_loc) 
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Plotting a dataframe 

Visualization is a key part of the data exploration process and should be used in every data science task. 

While modules such as matplotlib, seaborn, and plotly allow us to produce some lovely, clean visuals for 

reports and presentations, sometimes we just want to pull together something quick and examine a 

particular feature in our dataset. In these cases, I will always try to use the pandas plot method as it is 

incredibly simple and effective. 

In the examples below you can see how we can apply this method to very easily to create a histogram of 

sales prices (< 1000 due to large tail) and a scatter plot (sales vs discount). These types of visuals can be 

extremely helpful when understanding how a dataset is distributed, identifying outliers, and 

understanding correlations. 

Hint: 

ax = not_returned_df.loc[not_returned_df['Sales'] < 1000, 
'Sales'].plot.hist(bins=50) 

fig = ax.get_figure() 

 

ax = not_returned_df.plot.scatter(x='Sales', y='Discount') 

fig = ax.get_figure() 

 
Try: 

1. Join the datasets together in such a way that you are only left with information for returned 

orders. 

2. Filter the dataset to find orders with a sales value < 500 in the bookcases or tables sub-category. 

3. Aggregate the data to show the mean profit per sub-category. 
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4. Aggregate and pivot the data to show the profit for each shipping method (rows) in each sub-

category (columns) 

5. Create a function which identifies if an item was shipped within 3 days of ordering and apply it to 

the dataset. 

6. Create a bar plot of the number of orders per category. 

2.2 Data Reduction 

Since data mining is a technique that is used to handle huge amounts of data. While working with a huge 

volume of data, analysis became harder in such cases. The goal of this exercise is to use the data reduction 

technique and aims to increase storage efficiency, reduce data storage and analysis costs. 

Input: Iris Dataset 

Output: Dataset with removed features whose variance doesn’t meet the threshold. 

Explanation: 

Data reduction is also called dimensionality reduction. This reduces the size of data by encoding 

mechanisms. It can be lossy or lossless. If after reconstruction from compressed data, original data can be 

retrieved, such reduction is called lossless reduction else it is called lossy reduction. The two effective 

methods of dimensionality reduction are: Wavelet transforms and PCA (Principal Component Analysis). 

PCA is sensitive to the relative scaling of the original variables. 

 

Hint: 

url=”iris dataset file path’ 
# load dataset into Pandas Dataframe 
 
df.head( ) 

 

Hint: 

from sklearn.decomposition import PCA 
pca = PCA(n_components=2) 
pct = pca.fit_transform(x) 
principle_df = pd.DataFrame(pct, columns=[‘pc1’, ‘pc2’]) 
finaldf = pd.concat([principal_df, df[[‘target’]]], axis=1) 
 
# Read the top 5 records of the dataset 
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The explained variance tells you how much information (variance) can be attributed to each of the principal 

components. This is important as while you can convert 4-dimensional space to 2-dimensional space, you 

lose some of the variance (information) when you do this. By using the attribute explained_variance_ratio_, 

you can see that the first principal component contains 72.77% of the variance and the second principal 

component contains 23.03% of the variance. Together, the two components contain 95.80% of the 

information. 

 

PCA Projected to 3D. 
The original data has 4 columns (sepal length, sepal width, petal length, and petal width). Here, the code 

projects the original data which is 4 dimensional into 3 dimensions. The new components are just the three 

main dimensions of variation. 

Hint: 

pca = PCA(n_components=3) 

# Use fit function to transform X 

principal_Df1 = pd.DataFrame(data = principalComponents, 

 columns = [‘principal component1’, ‘principal component2’, ‘principal 
component3’,]) 

finalD_f1.head(5) 
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Variance Threshold 

Variance Threshold is a simple baseline approach to feature selection. It removes all features whose 

variance doesn’t meet some threshold. By default, it removes all zero-variance features. Our dataset has no 

zero-variance feature, so our data isn’t affected here. 

 

Hint: 

sel_variance_threshold = VarianceThreshold( ) 

X_train_remove_variance = sel_variance_threshold.fit_tranform(X_train) 

X_train_remove_variance.shape 

# Variance thresholf is applied but since the noise valued columns have non-zero 
variance, they aren’t deleted. 

 

Try: Imagine you have 1000 predictor features and 1 target feature in a machine learning problem. You 

must select the 100 most important features based on the relationship between input features and the 

target features. Develop the code to state whether the problem belongs to dimensionality reduction or 

not. 

 
2.3 Data Visualization 

In today’s world, a lot of data is being generated daily. And sometimes to analyze this data for certain 

trends, patterns may become difficult if the data is in its raw format. To overcome this data visualization 

comes into play. Data visualization provides a good, organized pictorial representation of the data 

which makes it easier to understand, observe, and analyze. The goal of this exercise is to understand 

how to visualize data using Python. 

Input: Tips Dataset 

Output: Different data plots 

Explanation:  
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Python provides various libraries that come with different features for visualizing data. All these libraries 

come with different features and can support various types of graphs. In this tutorial, we will be 

discussing four such libraries. 

• Matplotlib 

• Seaborn 

• Bokeh 

• Plotly 
Tips database is the record of the tip given by the customers in a restaurant for two and a half months 

in the early 1990s. It contains 6 columns such as total_bill, tip, sex, smoker, day, time, size.  

Hint: 

import pandas as pd 

   

# Write the code to read the database here 

  

# printing the top 10 rows 

display(data.head(10)) 

 
Matplotlib is an easy-to-use, low-level data visualization library that is built on NumPy arrays. It consists 

of various plots like scatter plot, line plot, histogram, etc. Matplotlib provides a lot of flexibility.  

After installing Matplotlib, let’s see the most used plots using this library. 

Scatter Plot 

Scatter plots are used to observe relationships between variables and uses dots to represent the 

relationship between them. The scatter() method in the matplotlib library is used to draw a scatter plot. 

 

Hint: 

import pandas as pd 

import matplotlib.pyplot as plt 

  

# reading the database 

data = pd.read_csv("tips.csv") 
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# Write the code to display the scatter plot with day against tip 

  

# Adding Title to the Plot 

plt.title("Scatter Plot") 

  

# Setting the X and Y labels 

plt.xlabel('Day') 

plt.ylabel('Tip') 

  

# Write the statement to show the plot 
 

 
This graph can be more meaningful if we can add colors and change the size of the points. We can do 

this by using the c and s parameter respectively of the scatter function. We can also show the color bar 

using the colorbar() method. 

Hint: 

import pandas as pd 
import matplotlib.pyplot as plt 
  

# reading the database 

data = pd.read_csv("tips.csv") 
  

# Scatter plot with day against tip 

plt.scatter(data['day'], data['tip'], c=data['size'], 

            s=data['total_bill']) 

# Write the code to add Title to the Plot 
  

# Set the X, Y labels and print the plot 

https://www.geeksforgeeks.org/matplotlib-pyplot-colorbar-function-in-python/
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Line Chart 

Line Chart is used to represent a relationship between two data X and Y on a different axis. It is 

plotted using the plot() function.  

 

Hint: 

import pandas as pd 

import matplotlib.pyplot as plt 
  

# Write the code to read the database and display the Scatter plot with day 

against tip 

  

# Adding Title to the Plot 

plt.title("Scatter Plot") 

  

# Setting the X and Y labels 
plt.xlabel('Day') 
plt.ylabel('Tip') 
plt.show() 
 

 

https://www.geeksforgeeks.org/line-chart-in-matplotlib-python/
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Bar Chart 

A bar plot or bar chart is a graph that represents the category of data with rectangular bars with lengths 

and heights that is proportional to the values which they represent. It can be created using 

the bar() method. 

 

Hint: 

import pandas as pd 

import matplotlib.pyplot as plt 

  

# reading the database 

data = pd.read_csv("tips.csv") 

  

# Writ the code to display the bar chart with a title and a day against tip 

  

# Setting the X and Y labels 

plt.xlabel('Day') 

plt.ylabel('Tip') 

  

# Adding the legends 

plt.show() 
 

 

Histogram 

A histogram is basically used to represent data in the form of some groups. It is a type of bar plot where 

the X-axis represents the bin ranges while the Y-axis gives information about frequency. 

The hist() function is used to compute and create a histogram. In histogram, if we pass categorical data 

then it will automatically compute the frequency of that data i.e. how often each value occurred.  

 

Hint: 

import pandas as pd 
import matplotlib.pyplot as plt 
 

# reading the database 

data = pd.read_csv("tips.csv") 

# histogram of total_bills 

plt.hist(data['total_bill']) 

https://www.geeksforgeeks.org/bar-plot-in-matplotlib/
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plt.title("Histogram") 
  
# Write the statement to add the legends and display the chart 

 
 

 
 

Hint: 

# importing packages 
import seaborn as sns 
import matplotlib.pyplot as plt 
import pandas as pd 
  
# reading the database 
data = pd.read_csv("tips.csv") 
  
# Write the code to display the line chart using only data attribute 
 

 
 

Hint: 

# importing packages such as seaborn, matplotlib, and pandas 

  

# reading the database 

data = pd.read_csv("tips.csv") 

  

sns.barplot(x='day',y='tip', data=data, 

            hue='sex') 

plt.show() 
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Try:  

Develop the code to plot the visualizations like histogram, scatter plot, line chart, bar chart and 

other interactive data visualizations for different datasets. 

 

3. Theory of Concept Learning 

3.1 Find-S Algorithm 

FIND S Algorithm is used to find the Maximally Specific Hypothesis. Using the Find-S algorithm 

gives a single maximally specific hypothesis for the given set of training examples. 
  

 

 

 
Input:  

 
Output: The final maximally specific hypothesis is <Sunny, Warm, ?, Strong, ?, ?> 
Hint: 

# 1st iteration 

h0 = (ø, ø, ø, ø, ø, ø, ø) 

X1 = <Sunny, Warm, Normal, Strong, Warm, Same> 

h1 = <Sunny, Warm, Normal, Strong, Warm, Same> 

 

# 2nd iteration 

h1 = <Sunny, Warm, Normal, Strong, Warm, Same> 

X2 = <Sunny, Warm, High, Strong, Warm, Same> 

h2 = <Sunny, Warm, ?, Strong, Warm, Same> 

 

#Find the final maximally specific hypothesis 
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Try:  

 
For the above training set find out, 

How many concepts are possible for this instance space? 

How many hypotheses can be expressed by the hypothesis language? 

Apply the FIND-S algorithm by hand on the given training set. 

 

 

3.2 Candidate Elimination Algorithm 

Candidate Elimination Algorithm is used to find the set of consistent hypotheses, that is Version space. 

 

 

 

 

 

Input:  

 
 
Output: Version Space by Candidate Elimination Algorithm for given data set is:  S: G: (Small, ?, Circle) 

 

Hint: 

# Initialization 

S0: (0, 0, 0) Most Specific Boundary 

G0: (?,  ?,  ?) Most Generic Boundary 

 

# 1st example 

S1: (0, 0, 0) 

G1: (Small, ?, ?), (?, Blue, ?), (?, ?, Triangle) 
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# 2nd iteration 

h1 = <Sunny, Warm, Normal, Strong, Warm, Same> 

X2 = <Sunny, Warm, High, Strong, Warm, Same> 

h2 = <Sunny, Warm, ?, Strong, Warm, Same> 

 

#Version Space by Candidate Elimination Algorithm for given data set 
 
Try: 

  
Find the version Space by Candidate Elimination Algorithm for given data set. 

 

4.  Supervised Learning Algorithms (Regression) 

4.1 Linear Regression 

Let's say we're the owners of a candy store, Willy Wonka’s Candy, and we want to do a better job of 

predicting how much our customers will spend this week, to stock our shelves more appropriately. To get 

even more specific, let’s explore one specific customer named George. George is a 65-year-old mechanic 

who has children and spent $10 at our store last week. The goal of this exercise is to have a simple model 

to predict how much George will spend at Willy Wonka’s Candy this week. 

Input: Custom Dataset 

Output: Performance metric values including MSE, RMSE, MAE, and R2. 

Explanation: 

Linear Regression is one of the most widely used Artificial Intelligence algorithms in real-life Machine 

Learning problems — thanks to its simplicity, interpretability, and speed. In the next few minutes, we’ll 

understand what’s behind the working of this algorithm. 

Linear regression is a statistical method used to model the relationship between a dependent variable 

and one or more independent variables. It is a popular technique for predicting the value of the 

dependent variable based on the values of the independent variables. Linear regression assumes that 

there is a linear relationship between the dependent variable and the independent variables, which means 

that a change in one independent variable leads to a proportional change in the dependent variable. 

In regression, the difference between the real value of the dependent variable(yi) and the predicted 

value(predicted) is called the residuals. 
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# Equation To Calculate the Random Error 

εi =  ypredicted –   yi 

where ypredicted =   B0 + B1 Xi 

 
Example Dataset 
Suppose we have a dataset containing information about houses in a particular city. The dataset has 
the following columns: 
Size (in square feet) 
Number of Bedrooms 
Price (in thousands of dollars) 
Here are the first few rows of the dataset: 

 

We want to use this dataset to build a linear regression model that can predict the price of a house based 

on its size and number of bedrooms. To calculate Evaluation Metrics, we first make predictions using our 

linear regression model and then calculate the Evaluation Metrics 

Hint: 

#Import The LinearRegression from sklearn 

from sklearn.linear_model import LinearRegression 

# Load the dataset 

X = [[1500, 3], [2000, 4], [1200, 2], [1700, 3]] 
y = [250, 350, 180, 280] 
 

# Fit the linear regression model and make the predictions on the same data 

1 Mean Squared Error (MSE): 

2. Root Mean Squared Error (RMSE): 

3 Mean Absolute Error (MAE): 

4 R-Squared (R2): 

Hint: 

from sklearn.metrics import mean_squared_error 

# y_pred are the predicted values of the dependent variables 

# y_actual are the actual values of the dependent variables 
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mse = mean_squared_error(y_actual, y_pred) 

print(“Mean Squared Error (MSE) = “, mse) 

# Output MSE 

18.75 

Hint: 

from sklearn.metrics import mean_squared_error 

import numpy as np 

# y_pred are the predicted values of the dependent variables 

# y_actual are the actual values of the dependent variables 
mse = mean_squared_error(y_actual, y_pred) 
rmse = np.sqrt(mse) 
print(“Mean Squared Error (MSE) = “, mse) 

 

# Output RMSE 

2.8421709 

# Equation For MAE is 

MAE = (1/n) * ∑|y_pred - y_actual| 

MAE gives a measure of how well the model predicts the dependent variable. A lower MAE indicates a 

better prediction. 

# Output MAE 

18.75 

Hint: 

from sklearn.metrics import r2_score 

# y_pred are the predicted values of the dependent variables 
# y_actual are the actual values of the dependent variables 
 
mse = r2_score(y_actual, y_pred) 
print(“R-Squared (R2) score = “, r2) 

 
# Output R-Square 

1.0 

Try: There are several evaluation metrics that can be used to assess the performance of a linear regression 

model. MSE, RMSE, and MAE give a measure of how well the model fits the data and predicts the 

dependent variable, while R2 measures how well the model explains the variation in the dependent 
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variable. Run any machine learning model and use multiple evaluation metrics to ensure that the model 

is accurate and reliable. 

4.2 Logistic Regression 

Let's say we're the owners of a candy store, Willy Wonka’s Candy, and we want to do a better job of 

predicting how much our customers will spend this week, to stock our shelves more appropriately. To get 

even more specific, let’s explore one specific customer named George. George is a 65-year-old mechanic 

who has children and spent $10 at our store last week.  The goal of this exercise is to predict whether 

George will be a high spender. 

Input: Custom Dataset 

Output: Predict whether George will be the high spender with optimal accuracy. 

Explanation: 

Logistic Regression is one of the most widely used Artificial Intelligence algorithms in real-life Machine 

Learning problems — thanks to its simplicity, interpretability, and speed. In the next few minutes, we’ll 

understand what’s behind the working of this algorithm. 

In logistic regression, the dependent variable is binary, meaning it can only take on two values, typically 

labeled as 0 or 1. The independent variables can be either continuous or categorical. 

Assume we have a binary classification problem, and we are given the predicted probabilities and the true 

labels for a set of instances: 

Hint: 
import numpy as np 
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, 
roc_auc_score, confusion_metrix 
 
# predicted probabilities 
y_pred = np.array([0.3, 0.6, 0.8, 0.2, 0.4, 0.9, 0.1, 0.7, 0.5, 0.6]) 
 
# true labels 
y_true = np.array( [0, 1, 1, 0, 0, 1, 0, 1, 0, 1] ) 

 

4 Accuracy: 

 

Hint: 

# Calculate accuracy 

accuracy = accuracy_score(y_true, np.round(y_pred) ) 
print(f”Accuracy: {accuracy: .3f}”) 

  

Hint: 
# Calculate the confusion matrix and print the TP and FN values 

 

Hint: 

## Import The libraries  
from sklearn.datasets import load_iris 
from sklearn.linear_model import LogisticRegression 
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from sklearn.metrics import accuracy_score, precision_score, recall_score, 
f1_score, roc_auc_score, log_loss 
from sklearn.model_selection import train_test_split 
 
# Load iris dataset 
iris = load_iris() 
 
# Set features and target 
X = iris.data 
y = iris.target 
 
# Split data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Train a logistic regression model and make predictions on the testing set 
 
# Compute evaluation metrics 
accuracy = accuracy_score(y_test, y_pred) 
precision = precision_score(y_test, y_pred, average='weighted') 
recall = recall_score(y_test, y_pred, average='weighted') 
f1 = f1_score(y_test, y_pred, average='weighted') 
auc_roc = roc_auc_score(y_test, clf.predict_proba(X_test), multi_class='ovr') 
logloss = log_loss(y_test, clf.predict_proba(X_test)) 
 
# Print evaluation metrics 
print('Accuracy:', accuracy) 
print('Precision:', precision) 
print('Recall:', recall) 
print('F1 score:', f1) 
print('AUC-ROC:', auc_roc) 
print('Log Loss:', logloss) 

 

# Output: 

Accuracy: 1.0 

Precision: 1.0 

Recall: 1.0 

F1 score: 1.0 

AUC-ROC: 1.0 

Log Loss: 0.04542674063376945 

 

Try: Use the same code and apply on different datasets and do the comparative analysis for different 

performance metrics. 

4.3 Polynomial Regression 

A good result is provided if a linear model is applied to a linear database, as is the case with simple linear 

regression. However, a drastic output is produced if the same model is applied to a non-linear dataset 

with no modifications. These cause an increase in the loss function, high error rates, and a decrease in 

accuracy. The goal of this exercise is to prove the need of polynomial regression for the data points that 

are not arranged in a linear fashion. 
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Input: Generate some sample data points. 

Output: Performance metric values for RMSE, R2, and Adjusted R2. 

Explanation: 

Regression analysis is a statistical technique used to estimate the relationship between a dependent 

variable to one or more independent variables. And a linear regression model may not provide accurate 

results. In such cases, polynomial regression can be used. 

This is a type of regression analysis that models the relationship between the independent variable to the 

dependent variable as an nth-degree polynomial. 

Let’s take a closer look at each of these evaluation metrics and how they can be calculated in Python using 

the scikit-learn library: 

Hint: 

#Import libraries 
import numpy as np 
from sklearn.metrics import mean_squared_error, r2_score 
from sklearn.preprocessing import PolynomialFeatures 
from sklearn.linear_model import LinearRegression 
 
# Generate some sample data 
x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).reshape(-1, 1) 
y = np.array([4, 5, 6, 9, 10, 11, 12, 13, 14, 15]).reshape(-1, 1) 
 
# Fit a polynomial regression model of degree 2 and make predictions on the test data 
 
# Calculate evaluation metrics 
mse = mean_squared_error(y, y_pred) 
rmse = np.sqrt(mse) 
r2 = r2_score(y, y_pred) 
n = len(y) 
p = 2 # number of predictors (degree of polynomial + 1) 
adj_r2 = 1 - ((1-r2)*(n-1)/(n-p-1)) 
 
print("Mean Squared Error (MSE):", mse) 
print("Root Mean Squared Error (RMSE):", rmse) 
print("R-squared (R2) Score:", r2) 
print("Adjusted R-squared Score:", adj_r2) 

 

#The output of the code is as follows: 

Mean Squared Error (MSE): 0.21013158229031288 

Root Mean Squared Error (RMSE): 0.45828318396667815 

R-squared (R2) Score: 0.9493669629929204 

Adjusted R-squared Score: 0.9365232252020057 

 

Try: One of the main challenges of polynomial regression is overfitting. If the degree of the polynomial is 

too high, the model may fit the training data too closely and may not generalize well to new data. Justify 

by implementing the code for the same statement. 
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4.4 Quantile Regression 

The goal of this exercise is to focus on estimating the conditional quantiles of the dependent variable, 

rather than just the conditional mean, and provide insights into the shape and variability of the 

distribution of the dependent variable. 

Input: Boston Dataset 

Output: Quantile Specific Coefficients (QuantReg Regression Results) 

Explanation: 

In Machine Learning, Quantile regression is a statistical technique used to model the relationship between 

a dependent variable and one or more independent variables, by estimating the conditional quantiles of 

the dependent variable. 

The Equation for Quantile Regression 

Following is the equation of quantile regression in machine learning 

#The equation for quantile regression 

Q(y | x) = xβ(q) 

where, 

Q(y | x) is the q-th quantile of the conditional distribution of y given x 

β(q) is the vector of regression coefficients for the q-th quantile, and 

x is the vector of independent variables. 

In this equation, q represents the desired quantile, such as the 10th, 25th, 50th, 75th, or 90th percentile. 

The coefficient vector β(q) provides information on the effect of the independent variables on the q-th 

quantile of the dependent variable. 

Hint: 

# Import necessary modules 
from sklearn.datasets import load_boston 
from sklearn.linear_model import QuantileRegressor 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_absolute_error, mean_squared_error 
 
# load Boston Housing dataset 
boston = load_boston() 
X = boston.data 
y = boston.target 
 
# split data into training and test sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# fit quantile regression model 
q = 0.5 # example quantile 
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model = QuantileRegressor(alpha=q) 
model.fit(X_train, y_train) 
 
# make predictions on test set 
y_pred = model.predict(X_test) 
 
# compute evaluation metrics 
mae = mean_absolute_error(y_test, y_pred) 
mse = mean_squared_error(y_test, y_pred) 
rmse = np.sqrt(mse) 
 
# compute pinball loss 
quantiles = [0.1, 0.5, 0.9] # example quantiles 
weights = [1, 2, 1] # example weights 
total_loss = 0 
for i, q in enumerate(quantiles): 
    total_loss += pinball_loss(y_test, y_pred, q, weights[i]) 
pinball = total_loss / sum(weights) 
 
# Write the code to print evaluation metrics here 

 

# Output 
MAE: 3.107693208614685 
MSE: 19.109698966683236 
RMSE: 4.369178006574176 
Pinball Loss: 2.579571985038757 

 

Try: What is the relationship between total household income and the proportion of income that is 

spent on food? Engel's law is an observation in economics stating that as income rises, the proportion 

of income spent on food falls, even if absolute expenditure on food rises. Apply quantile regression to 

these data and determine which food expense can cover 90% of families (for 100 families with a given 

income) when not interested in the mean food expense. 

5.  Supervised Learning Algorithms (Classification) 

5.1 Identifying the ZIP code from handwriting digits on an envelope.  

Here the input is a scan of the handwriting, and the desired output is the actual digits in the zip code. To 

create a dataset for building a machine learning model, you need to collect many envelopes. Then you 

can read the zip codes yourself and store the digits as your desired outcomes. 

Input: Scan of the handwriting, load the Digits dataset into the notebook 

 

Output: Actual digits in the ZIP code and predict the accuracy of the KNN classifier  
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Explanation: Recognizing the handwritten digits (0 to 9) using the famous digits data set from Scikit-Learn, 

using a classifier called Logistic Regression. 

Input: Load the digits dataset into the notebook 

Hint: 

import pandas as pd 
import numpy as np 
from sklearn import svm 
from sklearn import datasets 
from sklearn.model_selection import train_test_split 
import matplotlib.pyplot as plt 
%matplotlib inline 
     # Write the code to understand the dataset and evaluate the accuracy of a     

classification model 
     … 
 
      

 
Try: Develop a supervised machine learning model to identify the actual digits on a number 

plate.  

 

5.2 Classifying Iris Species 

Let’s assume that a hobby botanist is interested in distinguishing the species of some iris flowers that she 

has found. She has collected some measurements associated with each iris: the length and width of the 

petals and the length and width of the sepals, all measured in centimeters. She also has the measurements 

of some irises that have been previously identified by an expert botanist as belonging to the species 

setosa, versicolor, or virginica. For these measurements, she can be certain of which species each iris 

belongs to. Let’s assume that these are the only species our hobby botanist will encounter in the wild. Our 

goal is to build a machine learning model that can learn from the measurements of these irises whose 

species is known, so that we can predict the species for a new iris.  

 

Input: Iris Dataset 

 
  

Output: Different species of irises ( 3-class classification)  

 

Explanation: In this problem, we want to predict one of several options (the species of iris). This 

is an example of a classification problem. The possible outputs (different species of irises) are 
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called classes. Every iris in the dataset belongs to one of three classes, so this problem is a three-

class classification problem. 

 

Hint: 
from sklearn.datasets import load_iris  
iris_dataset = load_iris()  
 
# Display keys and values  
Print(“Keys of iris_dataset: \n{}”.format(iris_dataset.keys()))  
  
# See that array contains measurements for 150 different flowers and inspect the 
data. 
# Build a machine learning model from this data that can predict the species of iris 
for a new set of measurements. 
. 
. 
from sklearn.neighbors import KNeighborsClassifier  
knn = KNeighborsClassifier(n_neighbors=1) 
. 
. 
# Write the code to make the prediction and evaluate the model 

 
Try: Conduct the 2-class classification for different datasets and compare the performance of 

the machine learning algorithm. 

 

5.3 K-Nearest Neighbors 

The k in k-nearest neighbors signifies that instead of using only the closest neighbor to the new data 

point, we can consider any fixed number k of neighbors in the training (for example, the closest three or 

five neighbors). Then, we can make a prediction using the majority class among these neighbors. k-nearest 

neighbors’ classifier is easy to understand. To make a prediction for a new data point, the algorithm finds 

the point in the training set that is closest to the new point. Then it assigns the label of this training point 

to the new data point. 

 

Input: Breast_cancer dataset  
 

Output: Test set accuracy: 0.86 

 

Explanation: The knn object encapsulates the algorithm that will be used to build the model from the 

training data, as well as the algorithm to make predictions on new data points. It will also hold the 

information that the algorithm has extracted from the training data. In the case of KNeighbors Classifier, 

it will just store the training set. 

 

Hint: 

import required libraries 
 
from sklearn.datasets import load_breast_cancer  
cancer = load_breast_cancer()  
print("cancer.keys(): \n{}".format(cancer.keys())) … 
print("Shape of cancer data: {}".format(cancer.data.shape)) 
print("Sample counts per class:\n{}".format( 
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            {n: v for n, v in zip(cancer.target_names, np.bincount(cancer.target))})) 
print("Feature names:\n{}".format(cancer.feature_names)) 
from sklearn.datasets import load_boston 
boston = load_boston()  
print("Data shape: {}".format(boston.data.shape)) 
 
# Plot the results of the classifier for values of n-neighbors with 1 and 3. 
 
from sklearn.model_selection import train_test_split  
X, y = mglearn.datasets.make_forge()  
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) 
from sklearn.neighbors import KNeighborsClassifier 
 clf = KNeighborsClassifier(n_neighbors=3) 
clf.fit(X_train, y_train) 
 
# Write the code to print the test accuracy and the number of correct predictions 

 
Try: Produce the code to visualize the decision boundaries for one, three, and nine neighbors 

 

5.4 Naive Bayes Classifiers 

Naive Bayes classifiers are a family of classifiers that are quite similar to the linear models. The reason that 

naive Bayes models are so efficient is that they learn parameters by looking at each feature individually 

and collect simple per-class statistics from each feature. There are three kinds of naive Bayes classifiers 

implemented in scikit- learn: GaussianNB, BernoulliNB, and MultinomialNB. GaussianNB can be applied 

to 

any continuous data, while BernoulliNB assumes binary data and MultinomialNB assumes count data (that 

is, that each feature represents an integer count of some‐thing, like how often a word appears in a 

sentence). BernoulliNB and MultinomialNB are mostly used in text data classification. 

 

Input: X = np.array([[0, 1, 0, 1], 

                                 [1, 0, 1, 1], 

                                 [0, 0, 0, 1], 

                                 [1, 0, 1, 0]]) 

           y = np.array([0, 1, 0, 1]) 

 

Output: Feature counts: 
               {0: array([0, 1, 0, 2]), 1: array([2, 0, 2, 1])} 
 
Explanation: Here, we have four data points, with four binary features each. There are two classes, 0 and 

1. For class 0 (the first and third data points), the first feature is zero two times and nonzero zero times, 

the second feature is zero one time and nonzero one time, and so on. These same counts are then 

calculated for the data points in the second class. 

 

Hint: 

counts = {}  
for label in np.unique(y): 
counts[label] = X[y == label].sum(axis=0) 
print("Feature counts:\n{}".format(counts)) 

 
Try: Produce the code to build Gaussian naive Bayes classifiers using Iris data. 



34 
 

 

5.5 Decision Trees 

Decision trees are widely used models for classification and regression tasks. Essentially, they learn a 

hierarchy of if/else questions, leading to a decision. 

To distinguish between the following four animals: bears, hawks, penguins, and dolphins. Your goal is to 

get to the right answer by asking as few if/else questions as possible. You might start off by asking whether 

the animal has feathers, a question that narrows down your possible animals to just two. If the answer is 

“yes,” you can ask another question that could help you distinguish between hawks and penguins. 

 

Input: Breast Cancer dataset 

We import the dataset and split it into training and a test part. Then we build a model using the default 

setting of fully developing the tree.   

 

Output: Accuracy on training set: 1.000 

               Accuracy on test set: 0.937 

 

Hint: 

from sklearn.tree import DecisionTreeClassifier  
cancer = load_breast_cancer() 
X_train, X_test, y_train, y_test = train_test_split(  
     cancer.data, cancer.target, stratify=cancer.target, random_state=42) 
tree = DecisionTreeClassifier(random_state=0) 
tree.fit(X_train, y_train) 
 
# Write the code to display the training and testing accuracy. 

 
Try: Produce the code to build Gaussian naive Bayes classifiers using Iris data. 

 

6.  More on Supervised Learning Techniques and its 

Performance Evaluation 

6.1 k-neighbors Regression 

There is also a regression variant of the k-nearest neighbors’ algorithm. Again, let’s start by using the 
single nearest neighbor, this time using the wave dataset. We’ve added three test data points as green 
stars on the x-axis. The prediction using a single neighbor is just the target value of the nearest neighbor. 
The goal of this exercise is to compare the prediction made by nearest k-neighbors regression for 
different values. 

Input: Wave Dataset 

Output: Comparing predictions made by nearest neighbors regression for different values of 
n_neighbors 

Explanation: 

• In k-NN regression, the output is the property value for the object. This value is the average of the 

values of k nearest neighbors. If k = 1, then the output is simply assigned to the value of that single 

nearest neighbor. 

mglearn.plots.plot_knn_regression(n_neighbors=3) 
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The k-nearest neighbors algorithm for regression is implemented in the KNeighbors Regressor class in 
scikit-learn. It’s used similarly to KNeighborsClassifier: 
 
Hint: 

from sklearn.neighbors import KNeighborsRegressor  
X, y = mglearn.datasets.make_wave(n_samples=40)  
# Split the wave dataset into a training and a test set  
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)  
 
# Instantiate the model and set the number of neighbors to consider to 3  
reg = KNeighborsRegressor(n_neighbors=3)  
 
# Fit the model using the training data and training targets  

 
Now we can make predictions on the test set: 
 
print("Test set predictions:\n{}".format(reg.predict(X_test))) 

 
Test set predictions: [-0.054 0.357 1.137 -1.894 -1.139 -1.631 0.357 0.912 -0.447 -1.139] 
 
We can also evaluate the model using the score method, which for regressors returns the R 2 score. The 
R 2 score, also known as the coefficient of determination, is a measure of goodness of a prediction for 
a regression model and yields a score between 0 and 1. A value of 1 corresponds to a perfect prediction, 
and a value of 0 corresponds to a constant model that just predicts the mean of the training set 
responses, y_train: 
 
print("Test set R^2: {:.2f}".format(reg.score(X_test, y_test))) 

 
Test set R^2: 0.83 
 
Here, the score is 0.83, which indicates a relatively good model fit. 
 
Try: Analyze the performance of KNeighborsRegressor for one-dimensional dataset, create the testing 
set consisting of many points on the line and do the comparative analysis for different data points. 
 

6.2 Linear Models for Classification 

Let's say we're the owners of a candy store, Willy Wonka’s Candy, and we want to do a better job of 

predicting how much our customers will spend this week, to stock our shelves more appropriately. To get 

even more specific, let’s explore one specific customer named George. George is a 65-year-old mechanic 

who has children and spent $10 at our store last week. We’re going to try to predict the following: 
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• How much George will spend this week (hint: this is regression because it is a dollar amount). 

• Whether George will be a “high spender,” which we’ve defined as someone who will spend at 

least $25 at Willy Wonka's Candy this week (hint: this is a classification, because we’re predicting 

a distinct category, high spender or not). 

Input: make_blobs dataset 

Output: Apply linear and logistic regression and visualize the results. 

Explanation: 

Linear models are also extensively used for classification. Let’s look at binary classification first. In this 

case, a prediction is made using the following formula: 

 

ŷ = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0 

 

Hint: 

from sklearn.linear_model import LogisticRegression  
from sklearn.svm import LinearSVC  
X, y = mglearn.datasets.make_forge()  
fig, axes = plt.subplots(1, 2, figsize=(10, 3))  
for model, ax in zip([LinearSVC(), LogisticRegression()], axes): clf = model.fit(X, 
y)  
mglearn.plots.plot_2d_separator(clf, X, fill=False, eps=0.5, ax=ax, alpha=.7)  
mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)  
ax.set_title("{}".format(clf.__class__.__name__))  
ax.set_xlabel("Feature 0")  
ax.set_ylabel("Feature 1")  
axes[0].legend() 
mglearn.plots.plot_linear_svc_regularization() 

 

Try: Analyze the LinearLogistic in detail using Breast Cancer dataset and compare the results. 

 

6.3 Linear Models for Multi-Class Classification 

Many linear classification models are for binary classification only, and don’t extend naturally to the 

multiclass case (except for logistic regression). A common technique to extend a binary classification 

algorithm to a multiclass classification algorithm is the one-vs.-rest approach. The goal of this exercise 

is to implement a three-class classification model and visualize the predictions for all the regions. 

Input: make_blobs dataset 

Output: Visualize the multi-class decision boundaries derived from the three one-vs-rest  classifiers 

Explanation: 

In the one-vs.-rest approach, a binary model is learned for each class that tries to separate that class from 

all the other classes, resulting in as many binary models as there are classes. To make a prediction, all 

binary classifiers are run on a test point. The classifier that has the highest score on its single class “wins,” 

and this class label is returned as the prediction. 
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Having one binary classifier per class results in having one vector of coefficients (w) and one intercept 

(b) for each class. The class for which the result of the classification confidence formula given here is 

highest is the assigned class label: 

w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b 

Hint: 

from sklearn.datasets import make_blobs  
X, y = make_blobs(random_state=42)  
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)  
plt.xlabel("Feature 0")  
plt.ylabel("Feature 1")  
plt.legend(["Class 0", "Class 1", "Class 2"]) 

 

 
 

Now, we train a LinearSVC classifier on the dataset: 

 

Hint: 

linear_svm = LinearSVC().fit(X, y)  

print("Coefficient shape: ", linear_svm.coef_.shape)  

print("Intercept shape: ", linear_svm.intercept_.shape) 

 
 
# Now, we train a LinearSVC classifier on the dataset: 
 
print("Coefficient shape: ", linear_svm.coef_.shape)  
print("Intercept shape: ", linear_svm.intercept_.shape) 

 
Coefficient shape: (3, 2)  
Intercept shape: (3,) 

 
 
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)  
line = np.linspace(-15, 15)  
for coef, intercept, color in zip(linear_svm.coef_, linear_svm.intercept_, ['b', 
'r', 'g']):  

plt.plot(line, -(line * coef[0] + intercept) / coef[1], c=color)  
plt.ylim(-10, 15)  
plt.xlim(-10, 8)  
plt.xlabel("Feature 0")  
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plt.ylabel("Feature 1")  
plt.legend(['Class 0', 'Class 1', 'Class 2', 'Line class 0', 'Line class 1', 'Line 
class 2'], loc=(1.01, 0.3)) 
 

 

 
 

mglearn.plots.plot_2d_classification(linear_svm, X, fill=True, alpha=.7) 
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)  
line = np.linspace(-15, 15)  
for coef, intercept, color in zip(linear_svm.coef_, linear_svm.intercept_, ['b', 'r', 
'g']):  

plt.plot(line, -(line * coef[0] + intercept) / coef[1], c=color)  
plt.legend(['Class 0', 'Class 1', 'Class 2', 'Line class 0', 'Line class 1', 'Line 
class 2'], loc=(1.01, 0.3)) plt.xlabel("Feature 0") plt.ylabel("Feature 1") 
 

 
Try: Consider any dataset and perform the text classification using support vector machine 

technique. 

 

6.4 Support vector Machine 

Support vector machines are used for classification in “Linear models for classification”. support vector 

machines (often just referred to as SVMs) are an extension that allows for more complex models that 

are not defined simply by hyper planes in the input space. 

Input: Breast Cancer dataset 

We import the dataset and split it into training and a test part. Then we build a model using the default 
setting of fully developing the tree.   
 
Output: Accuracy on training set: 1.000 
               Accuracy on test set: 0.63 

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=0)  
svc = SVC() 
 
# Use the fit function here to fit the training datasets 
 
print("Accuracy on training set: {:.2f}".format(svc.score(X_train, y_train))) 
print("Accuracy on test set: {:.2f}".format(svc.score(X_test, y_test))) 
 
Try: Produce the code to preprocess the data set and to find minimum and maximum for each feature. 
 

6.5 Confusion Matrix 

 Classification Problems are solved using Supervised Machine learning algorithms. In these problems, 

our goal is to categories an object using its features. For e.g, identify a fruit using its taste, color and size 

or check out if a patient has a disease or not using symptoms. Building a model is not a onetime deal, 

we have to do many experiments and record the output and check the performance of the model on 

each experiment. The goal of this exercise is to implement the code to evaluate values of various 

performance metrics that can assess the efficiency of a supervised learning model. 
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Input: Iris dataset 

 

Output: Confusion matrix with accuracy, precision, and recall values including F1-Score. Obtain the 

optimal values for the mentioned metrics. 

 

Explanation:  

 

A confusion matrix, also known as an error matrix, is a special table structure that permits visualization of 

the performance of an algorithm, often a supervised learning one, in the field of machine learning and 

more precisely the problem of statistical classification! 

Precision and recall are two important metrics used in machine learning, information retrieval, and other 

fields to evaluate the performance of a binary classification model. 

The learning objective of precision and recall is to understand how well a model can correctly classify 

instances of a particular class (positive class) while avoiding false positives and false negatives. Specifically, 

precision measures the proportion of true positive predictions out of all positive predictions made by the 

model, while recall measures the proportion of true positive predictions out of all actual positive instances 

in the dataset. 

Here’s an example of a confusion matrix: 

 

An example code snippet for calculating the confusion matrix using scikit-learn library with iris data set: 

Hint: 

# Import modules 
from sklearn.datasets import load_iris 
from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, 
recall_score, f1_score 
from sklearn.model_selection import train_test_split 
from sklearn.neighbors import KNeighborsClassifier 
 
# Load the Iris dataset 
iris = load_iris() 
 
# Split the data into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, 
test_size=0.3, random_state=42) 
 
# Train a K-Nearest Neighbors classifier with k=3 
knn = KNeighborsClassifier(n_neighbors=3) 
knn.fit(X_train, y_train) 
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# Make predictions on the test set 
y_pred = knn.predict(X_test) 
 
# Calculate the confusion matrix 
cm = confusion_matrix(y_test, y_pred) 
print("Confusion Matrix:") 
print(cm) 
 
# Calculate accuracy, precision, recall, and F1 score 
 
print(f"Accuracy: {acc:.3f}") 
print(f"Precision: {prec:.3f}") 
print(f"Recall: {rec:.3f}") 
print(f"F1 Score: {f1:.3f}") 

 

The output of the above code is as below: 

# Output: 

Confusion Matrix: 

[[19  0  0] 

 [ 0 12  1] 

 [ 0  1 12]] 

Accuracy: 0.956 

Precision: 0.959 

Recall: 0.956 

F1 Score: 0.956 

 

Accuracy is a common metric used in classification tasks to measure the overall correctness of the model’s 

predictions. It is defined as the number of correct predictions divided by the total number of predictions 

made: 

# Calculating accuracy 

accuracy = (true positives + true negatives) / (true positives + true negatives + 

false positives + false negatives) 

Precision is a metric used in classification tasks to measure the accuracy of positive predictions made by 

a model. It is defined as the number of true positives divided by the sum of true positives and false 

positives: 

# Precision 

precision = true positives / (true positives + false positives) 

Recall is a metric used in classification tasks to measure the ability of a model to correctly identify all 

positive instances in the data. It is defined as the number of true positives divided by the sum of true 

positives and false negatives: 

# Recall 
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recall = true positives / (true positives + false negatives) 

F1 score is a metric used in classification tasks that combines precision and recall into a single score. It is 

the harmonic mean of precision and recall, and is defined as: 

# F1 score 

F1_score = 2 * (precision * recall) / (precision + recall) 

False Positive Rate (FPR) and True Negative Rate (TNR) are two additional metrics commonly used in 

binary classification tasks, especially when dealing with imbalanced datasets. 

False Positive Rate (FPR) is the proportion of negative instances that were incorrectly classified as positive 

by the model. It is calculated as: 

# FPR 

FPR = false positives / (true negatives + false positives) 

In other words, FPR measures the rate at which the model falsely predicts the positive class when the true 

class is negative. 

True Negative Rate (TNR), also known as specificity, is the proportion of negative instances that were 

correctly classified as negative by the model. It is calculated as: 

# TNR 

TNR = true negatives / (true negatives + false positives) 

In other words, TNR measures the rate at which the model correctly predicts the negative class when the 

true class is negative. 

Both FPR and TNR are important metrics to consider when evaluating the performance of a binary 

classifier, especially when the negative class is the minority class in an imbalanced dataset. A good model 

should have a low FPR and a high TNR, indicating that it is able to correctly identify negative instances 

while minimizing the number of false positives. 

Try: Evaluate the performance of any classification model and analyze how good the model is in 

predicting the test data. 

6.6 Controlling Complexity of Decision Trees 

Typically, building a tree as described here and continuing until all leaves are pure leads to models that 

are very complex and highly overfit to the training data. The presence of pure leaves means that a tree is 

100% accurate on the training set; each data point in the training set is in a leaf that has the correct 

majority class. The goal of this exercise is to implement strategies to prevent overfitting using 

DecisionTreeClassifier and DecisionTreeRegressor. 

Input: Breast Cancer Dataset 

Output: Build a model using the default setting of fully developing the tree. Obtain the training and testing 

accuracy more than 95%. 
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Explanation: 

There are two common strategies to prevent overfitting: stopping the creation of the tree early (also called 

pre-pruning) or building the tree but then removing or collapsing nodes that contain little information 

(also called post-pruning or just pruning). Possible criteria for pre-pruning include limiting the maximum 

depth of the tree, limiting the maximum number of leaves, or requiring a minimum number of points in 

a node to keep splitting it. 

Hint: 

from sklearn.tree import DecisionTreeClassifier  
cancer = load_breast_cancer()  
X_train, X_test, y_train, y_test = train_test_split( cancer.data, cancer.target, 
stratify=cancer.target, random_state=42)  
tree = DecisionTreeClassifier(random_state=0) tree.fit(X_train, y_train)  
 
# Write the code here to display the training and testing accuracies 
 

Try: Implement the code for at least three different datasets and compare the results. 

7.  Ensemble Learning Algorithms  

 

7.1 Ensemble Methods 

Ensembles are methods that combine multiple machine learning models to create more powerful 
models. There are many models in the machine learning literature that belong to this category, but 
there are two ensemble models that have proven to be effective on a wide range of datasets for 
classification and regression, both of which use decision trees as their building blocks: random forests 
and gradient boos‐ted decision trees. 

The gradient boosted regression tree is another ensemble method that combines multiple decision trees 
to create a more powerful model. Despite the “regression” in the name, these models can be used for 
regression and classification. In contrast to the random forest approach, gradient boosting works by 
building trees in a serial manner, where each tree tries to correct the mistakes of the previous one. 

Input: Breast Cancer dataset 

As the training set accuracy is 100%, we are likely to be overfitting. To reduce overfit‐ ting, we could 
either apply stronger pre-pruning by limiting the maximum depth or lower the learning rate: 
 
Output: Accuracy on training set: 1.000 
               Accuracy on test set: 0.958 
 

Hint: 

from sklearn.ensemble import GradientBoostingClassifier 
X_train, X_test, y_train, y_test = train_test_split( cancer.data, cancer.target, random_state=0) 
 
# Use the GradientBoostingClassifier with a random state of 0 and use the fit function on the training 
dataset before displaying the training and testing accuracies. 
 
print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train))) 
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print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test))) 
 
Try: Produce the code to overcome he overfitting problem. 
 

7.2 Random forests 

The idea behind random forests is that each tree might do a relatively good job of predicting but will 
likely be overfit on part of the data. If we build many trees, all of which work well and overfit in different 
ways, we can reduce the amount of overfitting by averaging their results. This reduction in overfitting, 
while retaining the predictive power of the trees, can be shown using rigorous mathematics. 

There are two ways in which the trees in a random forest are randomized: by selecting the data points 

used to build a tree and by select‐ing the features in each split test. 

Input: Breast Cancer dataset 

We import the dataset and split it into training and a test part. Then we build a model using the default 
setting of fully developing the tree.   

 

Output: Accuracy on training set: 1.000 
               Accuracy on test set: 0.972 
 
Hint: 

from sklearn.tree import DecisionTreeClassifier  
cancer = load_breast_cancer() 
 
# Perform the dataset split process and apply the DecisionTreeClassifier with a random 
state 0. 
 

tree.fit(X_train, y_train) 
print("Accuracy on training set: {:.3f}".format(tree.score(X_train, 
y_train))) 
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)) 
 
Try: Produce a code to compare the predictions of the decision tree and the linear regression model. 

 

8.  Unsupervised Learning Algorithms  

 

8.1 Preparing data for unsupervised learning. 

There is also a regression variant of the k-nearest neighbors’ algorithm. Let’s start by using the single 

nearest neighbor, this time using the wave dataset. There are three test data points as green stars on the 

x-axis. The prediction using a single neighbor is just the target value of the nearest neighbor. 

 

Input: The Iris dataset 

 

Output: Predict which class the iris belongs with higher accuracy. 
 

Explanation:  
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In clustering, the data is divided into several groups with similar traits.  

 

In the image above, the left is raw data without classification, while the right is clustered based on its 

features. When an input is given which is to be predicted then it checks in the cluster it belongs to which 

class based on its features, and the prediction is made. 

 

We use the scikit-learn library in Python to load the Iris dataset and matplotlib for data visualization. 

 

Hint: 

# Importing Modules 

from sklearn import datasets 
import matplotlib.pyplot as plt 
 
# Loading dataset 
# Available methods on dataset 
 
print(dir(iris_df)) 
# Features 

print(iris_df.feature_names) 
 
# Write the code to display the Targets and Target Names 
 
# Dataset Slicing 
x_axis = iris_df.data[:, 0]  # Sepal Length 
y_axis = iris_df.data[:, 2]  # Sepal Width 
 

# Plotting 
plt.scatter(x_axis, y_axis, c=iris_df.target) 
plt.show() 
 

Try: Select at least three different datasets and do the comparative analysis  

 

8.2  K-Means Clustering 

Every Machine Learning engineer wants to achieve accurate predictions with their algorithms. K-Means 

clustering is one of the unsupervised algorithms where the available input data does not have a labeled 
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response. Clustering is a type of unsupervised learning wherein data points are grouped into different 

sets based on their degree of similarity. The goal of this exercise is to find the optimal number of clusters 

using the elbow method. 

 
Input: Mall_Customers_data.csv dataset 

 

Output: Find the optimal number of clusters and visualize each cluster with a different color. 

 

Explanation: 
K-Means clustering is an unsupervised learning algorithm. There is no labeled data for this clustering, 

unlike in supervised learning. K-Means performs the division of objects into clusters that share similarities 

and are dissimilar to the objects belonging to another cluster.  

The term ‘K’ is a number. You need to tell the system how many clusters you need to create. For example, 

K = 2 refers to two clusters. There is a way of finding out what is the best or optimum value of K for a 

given data.  

 

1. Data Pre-Processing. Import the libraries, datasets, and extract the independent variables. 

 

Hint: 

# importing libraries     
import numpy as nm     
import matplotlib.pyplot as mtp     
import pandas as pd     
# Importing the dataset   
dataset = pd.read_csv('Mall_Customers_data.csv')   
x = dataset.iloc[:, [3, 4]].values  

 

2. Find the optimal number of clusters using the elbow method. Here’s the code you use: 

 

Hint: 
# Write the code to find optimal number of clusters using the elbow method   
from sklearn.cluster import KMeans   
wcss_list= []   
 
#Initializing the list for the values of WCSS 
   
#Using for loop for iterations from 1 to 10.   
for i in range(1, 11):   
    kmeans = KMeans(n_clusters=i, init='k-means++', random_state= 42)   
    kmeans.fit(x)   
    wcss_list.append(kmeans.inertia_)   
mtp.plot(range(1, 11), wcss_list)   
mtp.title('The Elobw Method Graph')   
mtp.xlabel('Number of clusters(k)')   
mtp.ylabel('wcss_list')   

mtp.show()  

 

3. Train the K-means algorithm on the training dataset. Use the same two lines of code used in the 

previous section. However, instead of using i, use 5, because there are 5 clusters that need to be formed.  

 

Hint: 
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#training the K-means model on a dataset   
kmeans = KMeans(n_clusters=5, init='k-means++', random_state= 42)   
y_predict= kmeans.fit_predict(x)  

 

4. Visualize the Clusters. Since this model has five clusters, we need to visualize each one. 

 

Hint: 

# Write the code to visualize the clusters   

 

Try: Select any dataset that belongs to their scores and categorize them into grades like A, B, and C.  

 

 

8.3  Gaussian Mixture Models 

In K-Means, we do what is called “hard labeling”, where we simply add the label of the maximum 

probability. However, certain data points that exist at the boundary of clusters may simply have similar 

probabilities of being on either cluster. In such circumstances, we look at all the probabilities instead of the 

max probability. This is known as “soft labeling”. The goal of this exercise is to implement the clustering 

technique to perform the ‘hard labelling’.  

 

Input: Iris dataset 

 

Output: Visualize the different clusters with different colors.  

 

Hint: 

from sklearn.mixture import GaussianMixture 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
import numpy as np 
%matplotlib inline 
 
# Write the code here to apply the Gaussian Mixture model and fit it for 3 components. 
 
proba_lists = gmm.predict_proba(X)#Plotting 
colored_arrays = np.matrix(proba_lists) 
colored_tuples = [tuple(i.tolist()[0]) for i in colored_arrays] 
fig = plt.figure(1, figsize=(7,7)) 
ax = Axes3D(fig, rect=[0, 0, 0.95, 1], elev=48, azim=134) 
ax.scatter(X[:, 3], X[:, 0], X[:, 2], 
          c=colored_tuples, edgecolor="k", s=50) 
ax.set_xlabel("Petal width") 
ax.set_ylabel("Sepal length") 
ax.set_zlabel("Petal length") 
plt.title("Gaussian Mixture Model", fontsize=14) 
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Explanation: 

For the above Gaussian Mixture Model, the colors of the datapoints are based on the Gaussian probability 

of being near the cluster. The RGB values are based on the nearness to each of the red, blue, and green 

clusters. If you look at the datapoints near the boundary of the blue and red cluster, you shall see purple, 

indicating the datapoints are close to either cluster. 

 

Try: Prove experimentally how Gaussian Discriminant analysis is more robust than logistic regression with 

a limited volume of data. 

 

8.4  Hidden Markov Model 

In a Markov Model, we look for states and the probability of the next state given the current state. The goal 

of this exercise is to implement hidden Markov model and perform the clustering. 

 

Input: Boston Dataset 

 

Output: Visualize the performance of HMM model 

 

Explanation:  

 

An example below is of a dog’s life in Markov Model. 

 
 

Let’s assume the dog is sick. Given the current state, there is a 0.6 chance it will continue being sick the 

next hour, 0.4 that it is sleeping, 05 pooping, 0.1 eating and 0.4 that it will be healthy again. In an HMM, 

you provide how many states there may be inside the timeseries data for the model to compute. An 

example of the Boston house prices dataset is given below with 3 states. 
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Hint: 
from hmmlearn import hmm 
import numpy as np 
%matplotlib inline 
 
from sklearn import datasets#Data 
boston = datasets.load_boston() 
ts_data = boston.data[1,:]#HMM Model 
gm = hmm.GaussianHMM(n_components=3) 
gm.fit(ts_data.reshape(-1, 1)) 
states = gm.predict(ts_data.reshape(-1, 1))#Plot 
color_dict = {0:"r",1:"g",2:"b"} 
color_array = [color_dict[i] for i in states] 
plt.scatter(range(len(ts_data)), ts_data, c=color_array) 
plt.title("HMM Model") 

 

 
 

Try: Let’s say that we want to model a word BOOK. We investigate data set and notice that there are three 

time series corresponding to BOOK. We’ll base our HMM on those three examples. One important step to 

take before training is deciding on the number of states. We can do that empirically. If we look at the plot 

of one of data points of the word BOOK we can conclude that there are three sequences through which 

speaker’s hands are transitioning. 

 

8.5 Hierarchical Clustering 

Suppose Walmart has collected customer data based on past transactions such as customer, gender, age, 

annual income, spending score, and shopped item category. With the availability of all these parameters, 

Walmart’s marketing team has sufficient information to explain customers’ spending habits. Now image 

Walmart is launching a campaign targeting customers interested in luxurious items. They have special 

offers to attract them to the store but extending them to all customers will not make sense since not all 

customers are interested in luxurious items. The goal of this exercise is to explore the potential of 

clustering algorithms to accomplish the above task. 

 

Input: seed_less_rows dataset 

 

Output: Visualize the clustering process using a dendrogram.  

 

Explanation: 

As its name implies, hierarchical clustering is an algorithm that builds a hierarchy of clusters. This algorithm 

begins with all the data assigned to a cluster, then the two closest clusters are joined into the same cluster. 

The algorithm ends when only a single cluster is left. The completion of hierarchical clustering can be 
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shown using dendrogram. Now let’s look at an example of hierarchical clustering using grain data. The 

dataset can be found here. 
 
Hint: 

# Import the Modules like cluster hierarchy, linkage, and dendrogram 

import matplotlib.pyplot as plt 
import pandas as pd 
 
# Reading the DataFrame 

seeds_df = pd.read_csv( 
    "https://raw.githubusercontent.com/vihar/unsupervised-learning-with-
python/master/seeds-less-rows.csv") 
 
# Remove the grain species from the DataFrame, save for later 

varieties = list(seeds_df.pop('grain_variety')) 

# Extract the measurements as a NumPy array 

samples = seeds_df.values 

""" 

Perform hierarchical clustering on samples using the linkage() function with the 
method='complete' keyword argument. Assign the result to mergings. 
""" 
mergings = linkage(samples, method='complete') 
 
""" 
Plot a dendrogram using the dendrogram() function on mergings, 
specifying the keyword arguments labels=varieties, leaf_rotation=90, 
and leaf_font_size=6. 
""" 

dendrogram(mergings, 
           labels=varieties, 
           leaf_rotation=90, 
           leaf_font_size=6, 
           ) 
 
plt.show() 



50 
 

 

 

Try: Hierarchical clustering requires both a distance and linkage method. Make use of euclidean distance 

and the Ward linkage method and attempts to minimize the variance between clusters. 

 

8.6 DBSCAN Clustering 

Suppose we have an e-commerce, and we want to improve our sales by recommending relevant products 

to our customers. We don’t know exactly what our customers are looking for but based on a data set we 

can predict and recommend a relevant product to a specific customer. The goal of this exercise is to apply 

the DBSCAN to our data set (based on the e-commerce database) and find clusters based on the products 

that the users have bought. 

 

Input: Customer/Iris Dataset 

 

Output: Visualization showing the implementation of DBSCAN Clustering 

 

Explanation: 

Density-based spatial clustering of applications with noise, or DBSCAN, is a popular clustering algorithm 

used as a replacement for k-means in predictive analytics. To run it doesn’t require an input for the 

number of clusters, but it does need to tune two other parameters. 

Hint: 

# Importing Modules 

from sklearn.datasets import load_iris 
import matplotlib.pyplot as plt 
from sklearn.cluster import DBSCAN 
from sklearn.decomposition import PCA 
 
# Load Dataset 

iris = load_iris() 

# Declaring Model 

dbscan = DBSCAN() 

# Fitting 
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dbscan.fit(iris.data) 

# Perform the transformation using PCA 

 
# Plot based on Class 
for i in range(0, pca_2d.shape[0]): 
    if dbscan.labels_[i] == 0: 
        c1 = plt.scatter(pca_2d[i, 0], pca_2d[i, 1], c='r', marker='+') 
    elif dbscan.labels_[i] == 1: 
        c2 = plt.scatter(pca_2d[i, 0], pca_2d[i, 1], c='g', marker='o') 
    elif dbscan.labels_[i] == -1: 
        c3 = plt.scatter(pca_2d[i, 0], pca_2d[i, 1], c='b', marker='*') 
 

plt.legend([c1, c2, c3], ['Cluster 1', 'Cluster 2', 'Noise']) 
plt.title('DBSCAN finds 2 clusters and Noise') 
plt.show() 

 

 
 

 
Try: use another dimensionality reduction method (e.g. PCA for dense data or TruncatedSVD for sparse 

data) to reduce the number of dimensions to a reasonable amount (e.g. 50) if the number of features is 

very high. 

9.  Dimensionality Reduction Techniques 

9.1 Algorithm Optimization using PCA 

While you can speed up the fitting of a machine learning algorithm by changing the optimization 

algorithm, a more common way to speed up the algorithm is to use principal component analysis (PCA). 

If you’re learning algorithm is too slow because the input dimension is too high, then using PCA to speed 

it up can be a reasonable choice. The goal of this exercise is to use PCA technique and improve the 

performance of an algorithm. 

 

Input: Iris Dataset 

 

Output: Visualize the 2D projection with two components of PCA graph.  

 

Explanation: 

Principal component analysis (PCA) is a method of reducing the dimensionality of data and is used to 

improve data visualization and speed up machine learning model training. 
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To understand the value of using PCA for data visualization, the first part of this tutorial post goes over 

a basic visualization of the Iris data set after applying PCA. The second part explores how to use PCA 

to speed up a machine learning algorithm (logistic regression) on the Modified National Institute of 

Standards and Technology (MNIST) data set. 

 

STEP 1: LOAD THE IRIS DATA SET 

 

Hint: 

import pandas as pd 

url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" 

# load dataset into Pandas DataFrame 

df = pd.read_csv(url, names=['sepal length','sepal width','petal length','petal 

width','target']) 

 

 
  

STEP 2: STANDARDIZE THE DATA 

 

Hint: 

from sklearn.preprocessing import StandardScaler 
features = ['sepal length', 'sepal width', 'petal length', 'petal width'] 
# Separating out the features 

x = df.loc[:, features].values 

# Separate the target and standardize the features 

 

 
 

The array x (visualized by a pandas dataframe) before and after standardization. | Image: Michael Galarnyk. 

  

STEP 3: PCA PROJECTION TO 2D 
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Hint: 
from sklearn.decomposition import PCA 
pca = PCA(n_components=2) 
principalComponents = pca.fit_transform(x) 
principalDf = pd.DataFrame(data = principalComponents 
             , columns = ['principal component 1', 'principal component 2']) 

 

 
 

PCA and keeping the top two principal components 

 

finalDf = pd.concat([principalDf, df[['target']]], axis = 1) 

 

Concatenating DataFrame along axis = 1. finalDf is the final DataFrame before plotting the data. 

 

 
Concatenating DataFrames along columns to make finalDf before graphing. | Image: Michael Galarnyk 

  

STEP 4: VISUALIZE 2D PROJECTION 

 

Hint: 
fig = plt.figure(figsize = (8,8)) 
ax = fig.add_subplot(1,1,1)  
ax.set_xlabel('Principal Component 1', fontsize = 15) 
ax.set_ylabel('Principal Component 2', fontsize = 15) 
ax.set_title('2 component PCA', fontsize = 20) 
 
targets = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'] 
colors = ['r', 'g', 'b'] 
for target, color in zip(targets,colors): 
    indicesToKeep = finalDf['target'] == target 
    ax.scatter(finalDf.loc[indicesToKeep, 'principal component 1'] 
               , finalDf.loc[indicesToKeep, 'principal component 2'] 
               , c = color 
               , s = 50) 
ax.legend(targets) 
ax.grid() 
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A two component PCA graph. | Image: Michael Galarnyk 

 

Try: Apply the same technique on MNIST dataset and compare the results. 

 

9.2 T-SNE Clustering 

Imagine you get a dataset with hundreds of features (variables) and have little understanding about the 

domain the data belongs to. You are expected to identify hidden patterns in the data, explore and analyze 

the dataset. And not just that, you must find out if there is a pattern in the data – is it signal or is it just 

noise? The goal of this exercise is to prove that t-SNE algorithm is a good fit for dimensionality reduction. 

 

Input: Iris Dataset 

Output: Visualization showing the four features of Iris dataset by applying t-SNE model 

 

Explanation: 

One of the unsupervised learning methods for visualization is t-distributed stochastic neighbor 

embedding, or t-SNE. It maps high-dimensional space into a two or three-dimensional space which can 

then be visualized. Specifically, it models each high-dimensional object by a two- or three-dimensional 

point in such a way that similar objects are modeled by nearby points and dissimilar objects are modeled 

by distant points with high probability. 

Hint: 

# Importing Modules 

from sklearn import datasets 
from sklearn.manifold import TSNE 
import matplotlib.pyplot as plt 
 
# Loading dataset 
iris_df = datasets.load_iris() 
 
# Define and Fit the model here 
 
# Plotting 2d t-Sne 
x_axis = transformed[:, 0] 
y_axis = transformed[:, 1] 
 

plt.scatter(x_axis, y_axis, c=iris_df.target) 
plt.show() 
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Violet: Setosa, Green: Versicolor, Yellow: Virginica 

Here, the Iris dataset has four features (4d) and is transformed and represented in the two-dimensional 

figure. Similarly, t-SNE model can be applied to a dataset which has n-features. 

Try: Make use of Scikit-learn implementation of PCA and perform the dimensionality reduction. 

 

10.  Semi supervised Learning Techniques 

 

10.1 Label Propagation in Semi Supervised Learning 
Predict customer interests based on the information about other customers. Here, you can apply the 

variation of continuity assumption — if two people are connected on social media, for example, it’s highly 

likely that they will share similar interests. The goal of this exercise is to apply the label propagation 

algorithm and represent the labeled and unlabeled data in the form of graphs. 

Input: Iris Dataset 

 

Output: Improve the accuracy of a machine learning model by leveraging both labeled and unlabeled 

data. 

 

Explanation: 

 

Semi-supervised learning is a type of machine learning that combines both labeled and unlabeled data 

to improve the accuracy of a model. In traditional supervised learning, a large amount of labeled data is 

required for training a model, whereas in unsupervised learning, only unlabeled data is used. 

 

In this example, we will use a small subset of the iris dataset for labeled data and the remaining data as 

unlabeled data. 

 
Hint: 
# Import necessary modules 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
from sklearn.semi_supervised import LabelSpreading 
from sklearn.metrics import accuracy_score 
 
# Load the iris dataset 
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iris = load_iris() 
 
# Split the data into labeled and unlabeled subset. Later create the 
Label Spreading model 
X_labeled, X_unlabeled, y_labeled, y_unlabeled = 
train_test_split(iris.data, iris.target, test_size=0.8, 
stratify=iris.target) 
 
 
# Fit the model using both labeled and unlabeled data 
model.fit(X_labeled, y_labeled) 
 
# Predict labels for the unlabeled data 
y_pred = model.predict(X_unlabeled) 
 
# Compute the accuracy of the model and print the same 
 
Yields below output. 
# Output: 
Accuracy: 0.975 

 

Try: Improve the accuracy of a machine learning model by leveraging both labeled and unlabeled data 

for different split ratios. 

 

10.2 Label Propagation Algorithm 

A popular approach to semi-supervised learning is to create a graph that connects examples in the 

training dataset and propagate known labels through the edges of the graph to label unlabeled examples. 

The goal of this exercise is to implement semi-supervised learning, the label propagation algorithm for 

classification predictive modeling. 

 

Input: Define your own dataset 

Output: Achieve an optimal classification accuracy   

 

Explanation: 

Label Propagation is a semi-supervised learning algorithm. The algorithm was proposed in the 2002 

technical report by Xiaojin Zhu and Zoubin Ghahramani titled “Learning from Labeled and Unlabeled Data 

with Label Propagation.” The intuition for the algorithm is that a graph is created that connects all 

examples (rows) in the dataset based on their distance, such as Euclidean distance. Nodes in the graph 

then have label soft labels or label distribution based on the labels or label distributions of examples 

connected nearby in the graph. 

 

Hint: 

# define dataset 

X, y = make_classification(n_samples=1000, n_features=2, n_informative=2, 

n_redundant=0, random_state=1) 

 

Next, we will split the dataset into train and test datasets with an equal 50-50 split (e.g. 500 rows in 

each). 

 



57 
 

Hint: 

# split into train and test 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.50, 

random_state=1, stratify=y) 

Finally, we will split the training dataset in half again into a portion that will have labels and a portion that 

we will pretend is unlabeled. 

 

Hint: 

... 

# split train into labeled and unlabeled 

 

Tying this together, the complete example of preparing the semi-supervised learning dataset is listed 

below. 

 

Hint: 

# prepare semi-supervised learning dataset 

from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
 
# define dataset 

X, y = make_classification(n_samples=1000, n_features=2, n_informative=2, 

n_redundant=0, random_state=1) 

# split into train and test 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.50, 

random_state=1, stratify=y) 

# split train into labeled and unlabeled 

X_train_lab, X_test_unlab, y_train_lab, y_test_unlab = train_test_split(X_train, 

y_train, test_size=0.50, random_state=1, stratify=y_train) 

# Summarize training set and testing set size 

 

Running the example prepares the dataset and then summarizes the shape of each of the three 

portions. 

The results confirm that we have a test dataset of 500 rows, a labeled training dataset of 250 rows, and 

250 rows of unlabeled data. 

 
Labeled Train Set: (250, 2) (250,) 
Unlabeled Train Set: (250, 2) (250,) 
Test Set: (500, 2) (500,) 

 
In this case, we will use a logistic regression algorithm fit on the labeled portion of the training dataset. 
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Hint: 

... 

# define model 

model = LogisticRegression() 

 

# fit model on labeled dataset 

model.fit(X_train_lab, y_train_lab) 

 

The model can then be used to make predictions on the entire hold out test dataset and evaluated using 

classification accuracy. 

 

Hint: 

... 

# make predictions on hold out test set 
yhat = model.predict(X_test) 
 
# calculate score for test set 
score = accuracy_score(y_test, yhat) 
 
# summarize score 
print('Accuracy: %.3f' % (score*100)) 

 

Tying this together, the complete example of evaluating a supervised learning algorithm on the semi-

supervised learning dataset is listed below. 

 

Hint: 

# baseline performance on the semi-supervised learning dataset 

from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
from sklearn.linear_model import LogisticRegression 
 
# define dataset 

X, y = make_classification(n_samples=1000, n_features=2, n_informative=2, 

n_redundant=0, random_state=1) 

# split into train and test 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.50, 

random_state=1, stratify=y) 

# split train into labeled and unlabeled 

X_train_lab, X_test_unlab, y_train_lab, y_test_unlab = train_test_split(X_train, 

y_train, test_size=0.50, random_state=1, stratify=y_train) 
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# define model 

model = LogisticRegression() 

# fit model on labeled dataset 

model.fit(X_train_lab, y_train_lab) 

# make predictions on hold out test set 
yhat = model.predict(X_test) 
 
# calculate score for test set 
score = accuracy_score(y_test, yhat) 
 
# summarize score 
print('Accuracy: %.3f' % (score*100)) 

 
Running the algorithm fits the model on the labeled training dataset and evaluates it on the holdout 

dataset and prints the classification accuracy. 

Note: Your results may vary given the stochastic nature of the algorithm or evaluation procedure, or 

differences in numerical precision. Consider running the example a few times and compare the average 

outcome. 

In this case, we can see that the algorithm achieved a classification accuracy of about 84.8 percent. 

We would expect an effective semi-supervised learning algorithm to achieve better accuracy than this. 

 
Accuracy: 84.800 

Label Propagation for Semi-Supervised Learning 

Hint: 

... 

# define model 
model = LabelPropagation() 

# fit model on training dataset 

model.fit(..., ...) 

# make predictions on hold out test set 

yhat = model.predict(...) 

 
... 

# get labels for entire training dataset data 

tran_labels = model.transduction_ 

 

... 
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# create the training dataset input 

X_train_mixed = concatenate((X_train_lab, X_test_unlab)) 

 

We can then create a list of -1 valued (unlabeled) for each row in the unlabeled portion of the training 

dataset. 

 
... 

# create "no label" for unlabeled data 

nolabel = [-1 for _ in range(len(y_test_unlab))] 

 
This list can then be concatenated with the labels from the labeled portion of the training dataset to 

correspond with the input array for the training dataset. 

 
... 

# recombine training dataset labels 

y_train_mixed = concatenate((y_train_lab, nolabel)) 

We can now train the LabelPropagation model on the entire training dataset. 

 

Hint: 

... 

# define model 

model = LabelPropagation() 

# fit model on training dataset 

model.fit(X_train_mixed, y_train_mixed) 

 

Next, we can use the model to make predictions on the holdout dataset and evaluate the model using 

classification accuracy. 

 

Hint: 

# make predictions on hold out test set 

yhat = model.predict(X_test) 

# calculate score for test set 

score = accuracy_score(y_test, yhat) 

 

# summarize score 

print('Accuracy: %.3f' % (score*100)) 
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Tying this together, the complete example of evaluating label propagation on the semi-supervised 

learning dataset is listed below. 

 

Hint: 

# evaluate label propagation on the semi-supervised learning dataset 

from numpy import concatenate 
from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
from sklearn.semi_supervised import LabelPropagation 
 
# define dataset 

X, y = make_classification(n_samples=1000, n_features=2, n_informative=2, 

n_redundant=0, random_state=1) 

# split into train and test 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.50, 

random_state=1, stratify=y) 

# split train into labeled and unlabeled 

X_train_lab, X_test_unlab, y_train_lab, y_test_unlab = train_test_split(X_train, 

y_train, test_size=0.50, random_state=1, stratify=y_train) 

# create the training dataset input 

X_train_mixed = concatenate((X_train_lab, X_test_unlab)) 

# create "no label" for unlabeled data 

nolabel = [-1 for _ in range(len(y_test_unlab))] 

# recombine training dataset labels 

y_train_mixed = concatenate((y_train_lab, nolabel)) 

# Define the model, fit it to the training dataset and make the predictions on hold 

out test set. 

 
# calculate score for test set 
score = accuracy_score(y_test, yhat) 
 
# summarize score 
print('Accuracy: %.3f' % (score*100)) 

 

Running the algorithm fits the model on the entire training dataset and evaluates it on the holdout dataset 

and prints the classification accuracy. 
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Try: Apply the label propagation technique on a different dataset and compare the results to interpret 

the difference. 

 

 

10.3 Estimate labels for the training dataset 

Consider the following problem of given sets of unlabeled observations, each set with known label 

proportions, predict the labels of another set of observations, possibly with known label proportions. This 

problem occurs in areas like e-commerce, politics, spam filtering and improper content detection. We 

present consistent estimators which can reconstruct the correct labels with high probability in a uniform 

convergence sense. The goal of this exercise is to generate the estimate labels for the training set using 

consistent estimators. 

 

Input: Any unlabeled dataset 

 

Output: Labeled dataset 

 

Explanation: 

We can then use these labels along with all the input data to train and evaluate a supervised learning 

algorithm, such as a logistic regression model. The hope is that the supervised learning model fit on the 

entire training dataset would achieve even better performance than the semi-supervised learning model 

alone. 

 

Hint: 

... 

# define supervised learning model 

model2 = LogisticRegression() 

# fit supervised learning model on entire training dataset 

model2.fit(X_train_mixed, tran_labels) 

# make predictions on hold out test set 

yhat = model2.predict(X_test) 

# calculate score for test set 

score = accuracy_score(y_test, yhat) 

# summarize score 

print('Accuracy: %.3f' % (score*100)) 

 

Tying this together, the complete example of using the estimated training set labels to train and evaluate 

a supervised learning model is listed below. 

 

Hint: 
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# Evaluate logistic regression fit on label propagation for semi-supervised 

learning 

from numpy import concatenate 
from sklearn.datasets import make_classification 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import accuracy_score 
from sklearn.semi_supervised import LabelPropagation 
from sklearn.linear_model import LogisticRegression 
 
# define dataset 

X, y = make_classification(n_samples=1000, n_features=2, n_informative=2, 

n_redundant=0, random_state=1) 

# split into train and test 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.50, 

random_state=1, stratify=y) 

# split train into labeled and unlabeled 

X_train_lab, X_test_unlab, y_train_lab, y_test_unlab = train_test_split(X_train, 

y_train, test_size=0.50, random_state=1, stratify=y_train) 

# create the training dataset input 

X_train_mixed = concatenate((X_train_lab, X_test_unlab)) 

# create "no label" for unlabeled data 

nolabel = [-1 for _ in range(len(y_test_unlab))] 

# Recombine training dataset labels 

y_train_mixed = concatenate((y_train_lab, nolabel)) 

# define model 

model = LabelPropagation() 

# fit model on training dataset 

model.fit(X_train_mixed, y_train_mixed) 

# Get labels for entire training dataset data and define the supervised learning 

model. 

# Fit supervised learning model on entire training dataset 

model2.fit(X_train_mixed, tran_labels) 

# Make predictions on hold out test set 
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yhat = model2.predict(X_test) 

# Calculate score for test set 

score = accuracy_score(y_test, yhat) 

# Summarize score 

print('Accuracy: %.3f' % (score*100)) 

 

Running the algorithm fits the semi-supervised model on the entire training dataset, then fits a supervised 

learning model on the entire training dataset with inferred labels and evaluates it on the holdout dataset, 

printing the classification accuracy. 

 

Note: Your results may vary given the stochastic nature of the algorithm or evaluation procedure, or 

differences in numerical precision. Consider running the example a few times and compare the average 

outcome. 

In this case, we can see that this hierarchical approach of the semi-supervised model followed by 

supervised model achieves a classification accuracy of about 86.2 percent on the holdout dataset, even 

better than the semi-supervised learning used alone that achieved an accuracy of about 85.6 percent. 

 

Accuracy: 86.200 

 

Try: Achieve better results by tuning the hyperparameters of the LabelPropogation Model. 

 

10.4 Decision Boundary of Semi-Supervised Classifier Vs SVM 

The decision boundaries generated by SVM, Label Spreading, and Self-training on a dataset of iris were 

compared. The results show that these methods can learn good boundaries even if there are only a few 

labeled pieces of information. Note that training with 100% of the data is not included since it is 

functionally identical to doing so with the SVC. The goal of this exercise is to demonstrate the label 

spreading and self-training can learn good boundaries. 

 

Input: Iris Dataset 

Output: Obtain 100% with self-trained data and SVC 

Explanation: 

A comparison for the decision boundaries generated on the iris dataset by Label Spreading, Self-training 

and SVM. This example demonstrates that Label Spreading and Self-training can learn good boundaries 

even when small amounts of labeled data are available. Note that Self-training with 100% of the data is 

omitted as it is functionally identical to training the SVC on 100% of the data. 
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Hint: 
import matplotlib.pyplot as plt 
import numpy as np 
 
from sklearn import datasets 
from sklearn.semi_supervised import LabelSpreading, SelfTrainingClassifier 
from sklearn.svm import SVC 
 
iris = datasets.load_iris() 
 
X = iris.data[:, :2] 
y = iris.target 
 
# step size in the mesh 
h = 0.02 
 
rng = np.random.RandomState(0) 
y_rand = rng.rand(y.shape[0]) 
y_30 = np.copy(y) 
y_30[y_rand < 0.3] = -1  # set random samples to be unlabeled 
y_50 = np.copy(y) 
y_50[y_rand < 0.5] = -1 
# we create an instance of SVM and fit out data. We do not scale our 
# data since we want to plot the support vectors 
ls30 = (LabelSpreading().fit(X, y_30), y_30, "Label Spreading 30% data") 
ls50 = (LabelSpreading().fit(X, y_50), y_50, "Label Spreading 50% data") 
ls100 = (LabelSpreading().fit(X, y), y, "Label Spreading 100% data") 
 
# Define the base classifier for self-training is identical to the SVC 
 
# create a mesh to plot in 
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) 
 
color_map = {-1: (1, 1, 1), 0: (0, 0, 0.9), 1: (1, 0, 0), 2: (0.8, 0.6, 0)} 
 
classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc) 
for i, (clf, y_train, title) in enumerate(classifiers): 

https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html#sklearn.semi_supervised.LabelSpreading
https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.SelfTrainingClassifier.html#sklearn.semi_supervised.SelfTrainingClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html#sklearn.datasets.load_iris
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://numpy.org/doc/stable/reference/generated/numpy.copy.html#numpy.copy
https://numpy.org/doc/stable/reference/generated/numpy.copy.html#numpy.copy
https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html#sklearn.semi_supervised.LabelSpreading
https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html#sklearn.semi_supervised.LabelSpreading
https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html#sklearn.semi_supervised.LabelSpreading
https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html#numpy.meshgrid
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
https://numpy.org/doc/stable/reference/generated/numpy.arange.html#numpy.arange
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    # Plot the decision boundary. For that, we will assign a color to each 
    # point in the mesh [x_min, x_max]x[y_min, y_max]. 
    plt.subplot(3, 2, i + 1) 
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) 
 
    # Put the result into a color plot 
    Z = Z.reshape(xx.shape) 
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) 
    plt.axis("off") 
 
    # Plot also the training points 
    colors = [color_map[y] for y in y_train] 
    plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors="black") 
 
    plt.title(title) 
 
plt.suptitle("Unlabeled points are colored white", y=0.1) 
plt.show() 

 

Try: Make use of at least three other datasets and do the comparative study on the results obtained. 

 

10.5 Label Propagation Learning a Complex Structure 

The decision boundaries generated by SVM, Label Spreading, and Self-training on a dataset of iris were 

compared. The results show that these methods can learn good boundaries even if there are only a few 

labeled pieces of information. Note that training with 100% of the data is not included since it is 

functionally identical to doing so with the SVC. The goal of this exercise is to demonstrate the label 

spreading and self-training can learn good boundaries. 

 

Input: make_circles dataset 

 

Output: Obtain 100% with self-trained data 

 

Explanation: 

Example of LabelPropagation learning a complex internal structure to demonstrate “manifold learning”. 

The outer circle should be labeled “red” and the inner circle “blue”. Because both label groups lie inside 

their own distinct shape, we can see that the labels propagate correctly around the circle. 

We generate a dataset with two concentric circles. In addition, a label is associated with each sample of 

the dataset that is: 0 (belonging to the outer circle), 1 (belonging to the inner circle), and -1 (unknown). 

Here, all labels but two are tagged as unknown. 

Hint: 

import numpy as np 
 
from sklearn.datasets import make_circles 
 
n_samples = 200 
X, y = make_circles(n_samples=n_samples, shuffle=False) 
outer, inner = 0, 1 
labels = np.full(n_samples, -1.0) 
labels[0] = outer 

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.subplot.html#matplotlib.pyplot.subplot
https://numpy.org/doc/stable/reference/generated/numpy.c_.html#numpy.c_
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.contourf.html#matplotlib.pyplot.contourf
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.axis.html#matplotlib.pyplot.axis
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.title.html#matplotlib.pyplot.title
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.suptitle.html#matplotlib.pyplot.suptitle
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show


67 
 

labels[-1] = inner 

 
Hint: 

import matplotlib.pyplot as plt 
 
plt.figure(figsize=(4, 4)) 
plt.scatter( 
    X[labels == outer, 0], 
    X[labels == outer, 1], 
    color="navy", 
    marker="s", 
    lw=0, 
    label="outer labeled", 
    s=10, 
) 
plt.scatter( 
    X[labels == inner, 0], 
    X[labels == inner, 1], 
    color="c", 
    marker="s", 
    lw=0, 
    label="inner labeled", 
    s=10, 
) 
plt.scatter( 
    X[labels == -1, 0], 
    X[labels == -1, 1], 
    color="darkorange", 
    marker=".", 
    label="unlabeled", 
) 
plt.legend(scatterpoints=1, shadow=False, loc="center") 
_ = plt.title("Raw data (2 classes=outer and inner)") 

 

 
 
The aim of LabelSpreading is to associate a label to sample where the label is initially unknown. 

from sklearn.semi_supervised import LabelSpreading 
 
label_spread = LabelSpreading(kernel="knn", alpha=0.8) 
label_spread.fit(X, labels) 
LabelSpreading(alpha=0.8, kernel='knn') 

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.title.html#matplotlib.pyplot.title
https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html#sklearn.semi_supervised.LabelSpreading
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Now, we can check which labels have been associated with each sample when the label was unknown. 

 
Hint: 
output_labels = label_spread.transduction_ 
output_label_array = np.asarray(output_labels) 
outer_numbers = np.where(output_label_array == outer)[0] 
inner_numbers = np.where(output_label_array == inner)[0] 
 
plt.figure(figsize=(4, 4)) 
plt.scatter( 
    X[outer_numbers, 0], 
    X[outer_numbers, 1], 
    color="navy", 
    marker="s", 
    lw=0, 
    s=10, 
    label="outer learned", 
) 
plt.scatter( 
    X[inner_numbers, 0], 
    X[inner_numbers, 1], 
    color="c", 
    marker="s", 
    lw=0, 
    s=10, 
    label="inner learned", 
) 
plt.legend(scatterpoints=1, shadow=False, loc="center") 
plt.title("Labels learned with Label Spreading (KNN)") 
plt.show() 

 

 
 

Try: Implement the code to perform the efficient non-parametric function induction in semi-supervised 

learning.  

 

11.  Reinforcement Learning Techniques and Its Application 

11.1 Working of RL Algorithm 

In some situations, there is a lot of data available out there. However, algorithms aren’t available to teach 

machines the logic to arrive at the desired output. This is where machine learning comes to the 

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.figure.html#matplotlib.pyplot.figure
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter
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rescue. Machine learning is the technology that, given the inputs and the desired outputs, will arrive at 

the logic or the algorithm to predict the output for an unforeseen or new input. The goal of this exercise 

is to develop the code to implement the RL algorithm. 

Input: The state of the agent, environment, and the actions to be performed. 

Output: Rewards accumulated by the agent in each step up to 20 steps which is the upper limit 

defined.  

Explanation: 

In a nutshell, RL is the branch of machine learning in which a machine learns from experience and takes 

proper decisions to maximize its reward or, in other words, to get the best reward possible. The machine 

is called the agent here. For every action it takes, it receives an award if it was the right action, failing 

which, it receives a punishment if it was the wrong action. 

The best and the most common example of RL is how pet dogs are trained to get the stick and come back 

to their master! Every time the dog fails to get the stick or gets the wrong stick, it will not get its treat 

otherwise it will be rewarded with its delicious treats. The dog, quite obviously, aims to maximize the 

number of treats it gets because it loves enjoying its food! In this case, the dog is referred to as the agent. 

Agent: 

 

To check if the action taken by the agent was correct or wrong, logic will be involved. But, here, let’s 

choose one of the rewards randomly using the random package. Let’s begin by importing it: 

 

import random 

 

With the above understanding, let us define the environment class as follows: 

 

Hint: 
#create Environment class 
 
class MyEnvironment: 
def __init__(self): 
self.remaining_steps=20 
 
def get_observation(self): 
return [1.0,2.0,1.0] 
 
def get_actions(self): 
return [-1,1] 
 
def check_is_done(self): 
return self.remaining_steps==0 
 
def action(self,int): 
if self.check_is_done(): 
raise Exception("Game over") 
self.remaining_steps-=1 
 
return random.random() 

 
myAgent: 
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With this knowledge, the agent class can be defined as follows: 

 

Hint: 
class myAgent: 
   def __init__(self): 
     self.total_rewards=0.0 
   def step(self,ob:MyEnvironment): 
     curr_obs=ob.get_observation() 
     print(curr_obs) 
     curr_action=ob.get_actions() 
     print(curr_action) 
     curr_reward=ob.action(random.choice(curr_action)) 
     self.total_rewards+=curr_reward 
     print("Total rewards so far= %.3f "%self.total_rewards) 

 

Finally, create objects of the above classes and execute as follows: 

 

if __name__=='__main__': 
 obj=MyEnvironment() 
 agent=myAgent() 
 step_number=0 
 
while not obj.check_is_done(): 
 step_number+=1 
 print("Step-",step_number) 
 agent.step(obj) 
print("Total reward is %.3f "%agent.total_rewards) 

 

Results 

Running the above code, we will get the rewards accumulated by the agent in each step up to 20 steps 

which is the upper limit defined by us. Here is a snapshot of what I got: 

 

 

Try: Implement the reinforcement learning technique with an OpenAI’s gym, specially with MountainCar-

v0 environment. 
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11.2 Q-Learning Technique 

Most of the machine learning algorithms are trained based on the training dataset and show their 

efficiency by understanding the unseen data. These algorithms are touted as the future of Machine 

Learning as these eliminate the cost of collecting and cleaning the data. Reinforcement Learning is a 

type of Machine Learning paradigm in which a learning algorithm is trained not on preset data but 

rather based on a feedback system. The goal of this exercise is to implement a basic Reinforcement 

Learning algorithm which is called the Q-Learning technique. In this exercise, we attempt to teach a bot 

to reach its destination using the Q-Learning technique. 

Input: A state or an input state 

Output: The most efficient path to reach its destination by a bot 

Explanation: 

Training an RL model is an iterative process because the agent keeps on learning from its experience. It 

keeps exploring the environment. Here, the agent faces a trade-off between experience and exploration: 

At a given time, should the agent explore the environment and decide its next action, or should it decide 

its next action based on its previous experience? 

 

While training an RL model, firstly, scores are assigned to all the grids in the environment. The agent 

explores all the possible paths and learns from experience, again, aiming to maximize this total score it 

achieves by choosing among the grids.  

The agent keeps exploring until it gets a negative reward. It stops at this point, realizing,”Oh! I was not 

supposed to go this way. I was wrong.” 

 

Step 1: Importing the required libraries. 

Hint: 

import numpy as np 
import pylab as pl 
import networkx as nx 

 
Step 2: Defining and visualizing the graph. 

 

Hint: 

edges = [(0, 1), (1, 5), (5, 6), (5, 4), (1, 2),  
         (1, 3), (9, 10), (2, 4), (0, 6), (6, 7), 
         (8, 9), (7, 8), (1, 7), (3, 9)] 
goal = 10 
G = nx.Graph() 
G.add_edges_from(edges) 
pos = nx.spring_layout(G) 
nx.draw_networkx_nodes(G, pos) 
nx.draw_networkx_edges(G, pos) 
nx.draw_networkx_labels(G, pos) 
pl.show() 
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Note: The above graph may not look the same on reproduction of the code because 

the networkx library in python produces a random graph from the given edges. 

 

Step 3: Defining the reward the system for the bot 
 

Hint: 

MATRIX_SIZE = 11 
M = np.matrix(np.ones(shape =(MATRIX_SIZE, MATRIX_SIZE))) 
M *= -1 
for point in edges: 
    print(point) 
    if point[1] == goal: 
        M[point] = 100 
    else: 
        M[point] = 0 
   
    if point[0] == goal: 
        M[point[::-1]] = 100 
    else: 
        M[point[::-1]]= 0 
        # reverse of point 
M[goal, goal]= 100 
print(M) 
# add goal point round trip 

 

 
Step 4: Defining some utility functions to be used in the training. 

 

Hint: 

Q = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE])) 
gamma = 0.75 

https://networkx.github.io/documentation/stable/
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# learning parameter 
initial_state = 1 
# Determines the available actions for a given state 
def available_actions(state): 
    current_state_row = M[state, ] 
    available_action = np.where(current_state_row >= 0)[1] 
    return available_action 
 available_action = available_actions(initial_state) 
# Chooses one of the available actions at random 
 
# Updates the Q-Matrix according to the path chosen 
 update(initial_state, action, gamma) 

 
Step 5: Training and evaluating the bot using the Q-Matrix 

 

Hint: 

scores = [] 
for i in range(1000): 
    current_state = np.random.randint(0, int(Q.shape[0])) 
    available_action = available_actions(current_state) 
    action = sample_next_action(available_action) 
    score = update(current_state, action, gamma) 
    scores.append(score) 
# print("Trained Q matrix:") 
# print(Q / np.max(Q)*100) 
# You can uncomment the above two lines to view the trained Q matrix 
# Testing 
current_state = 0 
steps = [current_state] 
while current_state != 10: 
     next_step_index = np.where(Q[current_state, ] == np.max(Q[current_state, 
]))[1] 
    if next_step_index.shape[0] > 1: 
        next_step_index = int(np.random.choice(next_step_index, size = 1)) 
    else: 
        next_step_index = int(next_step_index) 
    steps.append(next_step_index) 
    current_state = next_step_index 
print("Most efficient path:") 
print(steps) 
pl.plot(scores) 
pl.xlabel('No of iterations') 
pl.ylabel('Reward gained') 
pl.show() 
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Step 6: Defining and visualizing the new graph with the environmental clues. 

 

Hint: 
 

# Defining the locations of the police and the drug traces  

 

 
Note: The above graph may look a bit different from the previous graph but they, in fact, are the same 

graphs. This is due to the random placement of nodes by the networkx library. 

 

Step 7: Defining some utility functions for the training process 

 

Hint: 

Q = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE])) 
env_police = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE])) 
env_drugs = np.matrix(np.zeros([MATRIX_SIZE, MATRIX_SIZE])) 
initial_state = 1 
# Same as above 
def available_actions(state): 
    current_state_row = M[state, ] 
    av_action = np.where(current_state_row >= 0)[1] 
    return av_action 
# Same as above 
def sample_next_action(available_actions_range): 
    next_action = int(np.random.choice(available_action, 1)) 
    return next_action 
# Exploring the environment 
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def collect_environmental_data(action): 
    found = [] 
    if action in police: 
        found.append('p') 
    if action in drug_traces: 
        found.append('d') 
    return (found) 
available_action = available_actions(initial_state) 
action = sample_next_action(available_action) 
def update(current_state, action, gamma): 
  max_index = np.where(Q[action, ] == np.max(Q[action, ]))[1] 
  if max_index.shape[0] > 1: 
      max_index = int(np.random.choice(max_index, size = 1)) 
  else: 
      max_index = int(max_index) 
  max_value = Q[action, max_index] 
  Q[current_state, action] = M[current_state, action] + gamma * max_value 
  environment = collect_environmental_data(action) 
  if 'p' in environment: 
    env_police[current_state, action] += 1 
  if 'd' in environment: 
    env_drugs[current_state, action] += 1 
  if (np.max(Q) > 0): 
    return(np.sum(Q / np.max(Q)*100)) 
  else: 
    return (0) 
# Same as above 
update(initial_state, action, gamma) 
def available_actions_with_env_help(state): 
    current_state_row = M[state, ] 
    av_action = np.where(current_state_row >= 0)[1] 
# if there are multiple routes, dis-favor anything negative 
    env_pos_row = env_matrix_snap[state, av_action] 
    if (np.sum(env_pos_row < 0)): 
# can we remove the negative directions from av_act? 
        temp_av_action = av_action[np.array(env_pos_row)[0]>= 0] 
        if len(temp_av_action) > 0: 
            av_action = temp_av_action 
    return av_action 
# Determines the available actions according to the environment 

 
Step 8: Visualizing the Environmental matrices 

 

Hint: 

scores = [] 
for i in range(1000): 
    current_state = np.random.randint(0, int(Q.shape[0])) 
    available_action = available_actions(current_state) 
    action = sample_next_action(available_action) 
    score = update(current_state, action, gamma) 
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# Print environmental matrices  

 

 
Step 9: Training and evaluating the model 

 

Hint: 

scores = [] 
for i in range(1000): 
    current_state = np.random.randint(0, int(Q.shape[0])) 
    available_action = available_actions_with_env_help(current_state) 
    action = sample_next_action(available_action) 
    score = update(current_state, action, gamma) 
    scores.append(score) 
pl.plot(scores) 
pl.xlabel('Number of iterations') 
pl.ylabel('Reward gained') 
pl.show() 
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Try: Implement the Q Algorithm and Agent (Q Learning) and build Q Table by including all the 

possible discrete states. 

 

11.3 Deep Q-Networks 

Consider, that there is an AI agent present within a maze environment, and its goal is to find a reward. 

The agent interacts with the environment by performing some actions, and based on those actions, the 

state of the agent gets changed, and it also receives a reward or penalty as feedback. 

 

Input: 1. Install the random package and choose the rewards 

2. Environment and Action classes 

Output: Perform exactly 10 steps and make the agent to again as many rewards as possible. 

Explanation:  

The field of reinforcement learning is made up of several algorithms that each take different approaches. 

The differences are mainly due to their strategies for exploring their environments. Some of the important 

Reinforcement learning algorithms are listed as follows. 

• Q-learning 

• Deep Q-Networks 

 
#Importing the random package 
import random 

We use two classes, Environment and Agent in our model. 

The environment class represents the agent’s environment. The class must have member functions to get 

the current observation or state where the agent is, what are the points for reward and punishment, and 

keep track of how many more steps are left that the agent can take before the game is over. In this 

example, consider a game that the agent must finish in at most ten steps. 

Hint: 
#Creating the Environment class 
 
class Environment: 
  def init(self): 
    self.steps_left=10 
  def get_observation(self): 



78 
 

    return [1.0,2.0,1.0] 
  def get_actions(self): 
    return [-1,1] 
  def check_is_done(self): 
    return self.steps_left==0 
  def action(self,int): 
    if self.check_is_done(): 
      raise Exception("Game over") 
    self.steps_left-=1 
    return random.random() 

The agent class is simpler compared to the environment class. The agent collects rewards given to it by 

its environment and makes an action. For this, we will need a data member and a member function. 

Hint: 

#Creating the Agent class 
class Agent: 
  def init(self): 
  self.total_rewards=0.0 
  def step(self,ob:Environment): 
    curr_obs=ob.get_observation() 
    #print(curr_obs,end=" ") 
    curr_action=ob.get_actions() 
    #print(curr_action) 
    curr_reward=ob.action(random.choice(curr_action)) 
    self.total_rewards+=curr_reward 
    #print("Total rewards so far= %.3f "%self.total_rewards) 

Until the game is not over, which is checked by the while loop, the agent takes an action by invoking the 

step function of the Agent class by passing obj which refers to the agent’s environment. The reward here 

can be positive(in case of 1) or negative(in case of -1) and will be added to the total rewards of the agent. 

if name=='main': 
  obj=Environment() 
  agent=Agent() 
  step_number=0 
  while not obj.check_is_done(): 
    step_number+=1 
 
#print("Step-",step_number, end=" ") 
    agent.step(obj) 
  print("Total reward is %.3f "%agent.total_rewards) 
 
Output: 

 

On executing the code, we will get the rewards accumulated by the agent in each and every step up to 

10 steps. The output differs with each time we play the game. 

Try: Perform the sequence of actions that will eventually generate the maximum total reward using 

Markov Decision Process. 
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11.4 Q-Learning with Discount Factor 

The concept of reinforcement learning is a type of machine learning that allows agents to learn to behave 

in an environment by giving them rewards. The agent can interact with the environment and act based 

on its current condition. The goal of this exercise is to implement reinforcement learning is to help agents 

develop a policy that will allow them to maximize their reward over time. This type of machine learning is 

commonly used in various fields such as gaming and robotics. It can help improve an agent's decision-

making skills. 

Input: Environment with OpenAI Gym Library 

Output: Q-Table Matrix with maximum number of rewards 

Explanation: 

Reinforcement Learning is a subfield of machine learning where an agent learns to act in an environment 

by receiving feedback in the form of rewards. The agent interacts with the environment, takes actions 

based on its current state, and receives a reward for the action it takes. The agent’s objective is to learn a 

policy that maximizes the cumulative reward over time. Reinforcement Learning is used in various domains 

such as robotics, gaming, and recommendation systems. It is advantageous because it enables agents to 

improve their decision-making abilities through experience. 

Here’s code example of how RL works, implemented in Python using the OpenAI Gym library: 

1 Import the necessary libraries: 

 

Hint: 

# pip install gym 
import gym 
import numpy as np 

 

2 Create an environment:  

# Creating the env 
env = gym .make('CartPole-v1') 
 

3 Define the parameters:  

# Extracting the number of dimensions  
 

 

4 Initialize the Q-table: 

# Initialize the Q-table 
 
Q = np.zeros((n_states, n_actions)) 

 
5 Set the hyperparameters:  

 
Hint: 
# Learning rate 
alpha = 0.1   
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# Discount factor 
gamma = 0.99  
 
# Exploration rate 
epsilon = 0.1  

 
6 Train the agent using Q-learning: 

 
Hint: 
# Setting the number of episodes 
n_episodes = 10000 
 
# Train the agent using Q-learning 

 

7 Test the agent: 
# Test the agent 
n_episodes = 100 
total_reward = 0 
 
for episode in range(n_episodes): 
    state = env.reset() 
    done = False 
 
    while not done: 
        #chooses the action with the highest Q-value 
        action = np.argmax(Q[state]) 
        state, reward, done, _ = env.step(action) 
        #total_reward 
        total_reward += reward 
 
print("Average reward over {} episodes: {}".format(n_episodes, 
total_reward/n_episodes)) 

 
 

After training, the agent is tested on 100 episodes and the average reward is computed. The output should 

be a number between 0 and 500, with higher values indicating better performance. 

Output: 

# Output 
 
Average reward over 100 episodes: 487.28 

 

Try: Make an agent that can play a game called CartPole. We can also use an Atari game but training an 

agent to play that takes a while (from a few hours to a day). The idea behind our approach will remain the 

same so you can try this on an Atari game on your machine. 

 

11.5 Anomaly Detection 

The goal of this exercise is to use DBSCAN to analyze a classification problem involving credit card 

transactions and customers' history. 
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Input: Credit Card Dataset 

Output: Implement the DBSCAN algorithm to detect the outliers or anomaly in the data. 

Explanation: 

This example will use scikit-learn to implement one of the many algorithms we discovered today in Python. 

Let’s look at a classification problem of segmenting customers based on their credit card activity and 

history and using DBSCAN to identify outliers or anomalies in the data. 

First, fetch the data from Kaggle at Credit Card Dataset for Clustering. Next, we import the necessary 

libraries and explore the data. 

 

 

 

Normalize and scale to preprocess the data as unsupervised algorithms are greatly sensitive to distance 

measures. 

 

Before moving on to fit the DBSCAN model, for the sake of visualization, efficiency, and simplicity, we 

perform dimensionality reduction to reduce the 17 columns to 2. 

Hint: 
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pca = PCA(n_components = 2) 
X_principal = pca.fit_transform(X_norm) 
X_principal = pd.DataFrame(X_principal) 
X_principal.columns = [‘P1’, ‘P2’] 

 

Let’s fit the DBSCAN model now using eps 0.05 and minPts as 10. 

 
db_model = DBSCAN(eps = 0.05, min_samples = 10).fit(X_reduce) 
labels = db_model.labels_ 

 

“labels” is a vector of the same length as the number of training samples. It contains the class index for 

each sample, indicating the class it was assigned to. Anomalies have ‘-1’ as their class index. Below we can 

see how the two clusters and anomalies are distributed in the 8950 samples. 

np.unique(labels) 
np.histogram(labels, bins = len(np.unique(labels))) 

 

 

We can also visualize a similar logarithmic histogram for visual intuition: 
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Finally, since we chose two feature columns purposefully to visualize the anomalies and clusters together, 

let’s plot a scatter plot of the results. 

 

As expected, anomalies lie in the regions with less density – typically around the edges and then towards 

the center, where the points are relatively scant. These abnormal samples can be highlighted for manual 

review by bank officials. 

 
 

Thus, we have implemented an unsupervised anomaly detection algorithm called DBSCAN using scikit-

learn in Python to detect possible credit card fraud. Before concluding, let’s look at some other popular 

projects in anomaly detection that you can implement for practice. 

Try: Implement DBSCAN Clustering using Mall Customer Segmentation Data from Kaggle and visualize 

the distribution of clusters. 

11.6 Game Playing 

Consider you are teaching the dog to catch a ball, but you cannot teach the dog explicitly to catch a ball, 

instead, you will just throw a ball, every time the dog catches a ball, you will give a cookie. If it fails to 

catch a dog, you will not give a cookie. So, the dog will figure out what actions it does that made it receive 

a cookie and repeat that action. Similarly in an RL environment, you will not teach the agent what to do 

or how to do it, instead, you will give feedback to the agent for each action it does. The feedback may be 

positive (reward) or negative (punishment). The learning system which receives the punishment will 

improve itself. Thus, it is a trial-and-error process. The reinforcement learning algorithm retains outputs 

that maximize the received reward over time. In the above analogy, the dog represents the agent, giving 

a cookie to the dog on catching a ball is a reward and not giving a cookie is punishment. The goal of this 

exercise is to implement the reinforcement learning algorithm to retain the maximum number of awards. 
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Input: Environment and an Agent 

Output: The maximum received reward points overtime. 

Explanation: 

An RL agent can explore for different actions which might give a good reward, or it can (exploit) use the 

previous action which resulted in a good reward. If the RL agent explores different actions, there is a great 

possibility to get a poor reward. If the RL agent exploits past action, there is also a great possibility of 

missing out on the best action which might give a good reward. There is always a trade-off between 

exploration and exploitation. We cannot perform both exploration and exploitation at the same time. We 

will discuss exploration exploitation dilemma detail in the upcoming chapters. 

Say, If you want to teach a robot to walk, without getting stuck by hitting at the mountain, you will not 

explicitly teach the robot not to go in the direction of mountain, 

 

Instead, if the robot hits and get stuck on the mountain you will reduce 10 points so that robot will 

understand that hitting mountain will give it a negative reward so it will not go in that direction again. 

 

And you will give 20 points to the robot when it walks in the right direction without getting stuck. So 

robots will understand which is the right path to rewards and try to maximize the rewards by going in a 

right direction. 

 

Hint: 
{ 
 "cells": [ 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "## What is Reinforcement Learning?" 
   ] 
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  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "Consider you are teaching the dog to catch a ball, but you cannot teach the dog 
explicitly to\n", 
    "catch a ball, instead, you will just throw a ball, every time the dog catches a 
ball, you will\n", 
    "give a cookie. If it fails to catch a dog, you will not give a cookie. So the 
dog will figure out\n", 
    "what actions it does that made it receive a cookie and repeat that action." 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "Similarly in an RL environment, you will not teach the agent what to do or how 
to do,\n", 
    "instead, you will give feedback to the agent for each action it does. The 
feedback may be\n", 
    "positive (reward) or negative (punishment). The learning system which receives 
the\n", 
    "punishment will improve itself. Thus it is a trial and error process. The 
reinforcement\n", 
    "learning algorithm retains outputs that maximize the received reward over time. 
In the\n", 
    "above analogy, the dog represents the agent, giving a cookie to the dog on 
catching a ball is\n", 
    "a reward and not giving a cookie is punishment.\n", 
    "\n", 
    "There might be delayed rewards. You may not get a reward at each step. A reward 
may be\n", 
    "given only after the completion of the whole task. In some cases, you get a 
reward at each\n", 
    "step to find out that whether you are making any mistake.\n", 
    "\n", 
    "An RL agent can explore for different actions which might give a good reward or 
it can\n", 
    "(exploit) use the previous action which resulted in a good reward. If the RL 
agent explores\n", 
    "different actions, there is a great possibility to get a poor reward. If the RL 
agent exploits\n", 
    "past action, there is also a great possibility of missing out the best action 
which might give a\n", 
    "good reward. There is always a trade-off between exploration and exploitation. 
We cannot\n", 
    "perform both exploration and exploitation at the same time. We will discuss 
exploration exploitation\n", 
    "dilemma detail in the upcoming chapters.\n", 
    "\n", 
    "Say, If you want to teach a robot to walk, without getting stuck by hitting at 
the mountain,\n", 
    "you will not explicitly teach the robot not to go in the direction of mountain," 
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   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "![title](images/B09792_01_01.png)" 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "Instead, if the robot hits and get stuck on the mountain you will reduce 10 
points so that\n", 
    "robot will understand that hitting mountain will give it a negative reward so 
it will not go\n", 
    "in that direction again." 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "![title](images/B09792_01_02.png)" 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "And you will give 20 points to the robot when it walks in the right direction 
without getting\n", 
    "stuck. So robot will understand which is the right path to rewards and try to 
maximize the\n", 
    "rewards by going in a right direction." 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": { 
    "collapsed": true 
   }, 
   "source": [ 
    "![title](images/B09792_01_03.png)" 
   ] 
  } 
 ], 
 "metadata": { 
  "kernelspec": { 
   "display_name": "Python [conda env:anaconda]", 
   "language": "python", 
   "name": "conda-env-anaconda-py" 
  }, 
  "language_info": { 
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   "codemirror_mode": { 
    "name": "ipython", 
    "version": 2 
   }, 
   "file_extension": ".py", 
   "mimetype": "text/x-python", 
   "name": "python", 
   "nbconvert_exporter": "python", 
   "pygments_lexer": "ipython2", 
   "version": "2.7.11" 
  } 
 }, 
 "nbformat": 4, 
 "nbformat_minor": 2 
} 

 

Try: Implement the code to demonstrate how Deep Q-Learning algorithm learns to play 

game. Optimally, show the code how to optimize the artificial neural network using Bayesian 

optimization. 

 

12.  Evolutionary Learning Techniques 

12.1 Evolution Strategies – Stochastic Global Optimization Algorithm 

Methods for stochastic optimization provide a means of coping with inherent system noise and coping 

with models or systems that are highly nonlinear, high dimensional, or otherwise inappropriate for 

classical deterministic methods of optimization. The goal of this exercise is to use the randomness in an 

optimization algorithm that allows the search procedure to perform well on challenging optimization 

problems that may have a nonlinear response surface. 

Input: Algorithm 

Output: Visualization representing the outcome of ackley multimodal function 

Explanation: 

Here, we will develop a (mu, lambda)-ES, that is, a version of the algorithm where children replace parents.  

First, let’s define a challenging optimization problem as the basis for implementing the algorithm. 

The Ackley function is an example of a multimodal objective function that has a single global optima and 

multiple local optima in which a local search might get stuck. 

 

As such, a global optimization technique is required. It is a two-dimensional objective function that has a 

global optimum at [0,0], which evaluates to 0.0. The example below implements Ackley and creates a 

three-dimensional surface plot showing the global optima and multiple local optima. 

 
Hint: 
# ackley multimodal function 
from numpy import arange 
from numpy import exp 
from numpy import sqrt 
from numpy import cos 
from numpy import e 
from numpy import pi 
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from numpy import meshgrid 
from matplotlib import pyplot 
from mpl_toolkits.mplot3d import Axes3D 

 

# objective function 

def objective(x, y): 

 return -20.0 * exp(-0.2 * sqrt(0.5 * (x**2 + y**2))) - exp(0.5 * (cos(2 * pi 
* x) + cos(2 * pi * y))) + e + 20 

# define range for input 

r_min, r_max = -5.0, 5.0 

# sample input range uniformly at 0.1 increments and create a mesh from the axis 

# compute targets 

results = objective(x, y) 

# create a surface plot with the jet color scheme and show the same 

 
Running the example creates the surface plot of the Ackley function showing the vast number of local 

optima. 

 

# check if a point is within the bounds of the search 

def in_bounds(point, bounds): 

 # enumerate all dimensions of the point 

 for d in range(len(bounds)): 
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  # check if out of bounds for this dimension 

  if point[d] < bounds[d, 0] or point[d] > bounds[d, 1]: 
   return False 
 return True 
 
We can then use this function when generating the initial population of “lam” (e.g. lambda) random 

candidate solutions. For example: 

 

# initial population 

population = list() 
for _ in range(lam): 
 candidate = None 
 while candidate is None or not in_bounds(candidate, bounds): 
  candidate = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - bounds[:, 
0]) 
 population.append(candidate) 

 

# Evaluate fitness for the population and select the indexes for the top ranked 
solutions 

 
We can then create children for each selected parent. First, we must calculate the total number of children 

created per parent. 

 

# calculate the number of children per parent 

n_children = int(lam / mu) 

 
We can then iterate over each parent and create modified versions of each. 

We will create children using a similar technique used in stochastic hill climbing. Specifically, each variable 

will be sampled using a Gaussian distribution with the current value as the mean and the standard 

deviation provided as a “step size” hyperparameter. 

 

# create children for parent 

for _ in range(n_children): 
 child = None 
 while child is None or not in_bounds(child, bounds): 
  child = population[i] + randn(len(bounds)) * step_size 

 
We can also check if each selected parent is better than the best solution seen so far so that we can return 

the best solution at the end of the search. 

... 
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# check if this parent is the best solution ever seen 

if scores[i] < best_eval: 
 best, best_eval = population[i], scores[i] 
 print('%d, Best: f(%s) = %.5f' % (epoch, best, best_eval)) 

 
The created children can be added to a list and we can replace the population with the list of children at 

the end of the algorithm iteration. 

 

# replace population with children 

population = children 

 
We can tie all this together into a function named es_comma() that performs the comma version of the 

Evolution Strategy algorithm. 

 

Hint: 

# evolution strategy (mu, lambda) algorithm 

def es_comma(objective, bounds, n_iter, step_size, mu, lam): 
 best, best_eval = None, 1e+10 

 # calculate the number of children per parent 

 n_children = int(lam / mu) 

 # initial population 

 population = list() 

 for _ in range(lam): 
  candidate = None 
  while candidate is None or not in_bounds(candidate, bounds): 
   candidate = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - 
bounds[:, 0]) 
  population.append(candidate) 

 # Perform the search 

 for epoch in range(n_iter): 

  # Evaluate fitness for the population 

  scores = [objective(c) for c in population] 

  # rank scores in ascending order 

  ranks = argsort(argsort(scores)) 
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  # select the indexes for the top mu ranked solutions 

  selected = [i for i,_ in enumerate(ranks) if ranks[i] < mu] 

  # create children from parents 

  children = list() 
  for i in selected: 

   # check if this parent is the best solution ever seen 

   if scores[i] < best_eval: 
    best, best_eval = population[i], scores[i] 
    print('%d, Best: f(%s) = %.5f' % (epoch, best, best_eval)) 

   # create children for parent 

   for _ in range(n_children): 
    child = None 
    while child is None or not in_bounds(child, bounds): 
     child = population[i] + randn(len(bounds)) * 
step_size 
    children.append(child) 

  # Replace population with children 

  population = children 
 return [best, best_eval] 

 
At the end of the search, we will report the best candidate solution found during the search. 

... 

# Seed the pseudorandom number generator 

# Define range for input 

bounds = asarray([[-5.0, 5.0], [-5.0, 5.0]]) 

# Define the total iterations 

n_iter = 5000 

# Define the maximum step size 

step_size = 0.15 

# Number of parents selected 

mu = 20 
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# The number of children generated by parents 

lam = 100 

# Write the code to perform the evolution strategy (mu, lambda) search 

best, score = es_comma(objective, bounds, n_iter, step_size, mu, lam) 
print('Done!') 
print('f(%s) = %f' % (best, score)) 

 
Tying this together, the complete example of applying the comma version of the Evolution Strategies 

algorithm to the Ackley objective function is listed below. 

 
Hint: 

# evolution strategy (mu, lambda) of the ackley objective function 
 
from numpy import asarray 
from numpy import exp 
from numpy import sqrt 
from numpy import cos 
from numpy import e 
from numpy import pi 
from numpy import argsort 
from numpy.random import randn 
from numpy.random import rand 
from numpy.random import seed 

# objective function 

def objective(v): 
 x, y = v 
 return -20.0 * exp(-0.2 * sqrt(0.5 * (x**2 + y**2))) - exp(0.5 * (cos(2 * pi 
* x) + cos(2 * pi * y))) + e + 20 

 
Hint: 

# check if a point is within the bounds of the search 

def in_bounds(point, bounds): 

 # enumerate all dimensions of the point 

 for d in range(len(bounds)): 

  # check if out of bounds for this dimension 

  if point[d] < bounds[d, 0] or point[d] > bounds[d, 1]: 
   return False 
 return True 
 
Hint: 
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# evolution strategy (mu, lambda) algorithm 

def es_comma(objective, bounds, n_iter, step_size, mu, lam): 
 best, best_eval = None, 1e+10 
 # calculate the number of children per parent 
 n_children = int(lam / mu) 
 # initial population 
 population = list() 
 for _ in range(lam): 
  candidate = None 
  while candidate is None or not in_bounds(candidate, bounds): 
   candidate = bounds[:, 0] + rand(len(bounds)) * (bounds[:, 1] - 
bounds[:, 0]) 
  population.append(candidate) 

 # perform the search 

 for epoch in range(n_iter): 
  # evaluate fitness for the population 
  scores = [objective(c) for c in population] 
  # rank scores in ascending order 
  ranks = argsort(argsort(scores)) 
  # select the indexes for the top mu ranked solutions 
  selected = [i for i,_ in enumerate(ranks) if ranks[i] < mu] 
  # create children from parents 
  children = list() 
  for i in selected: 
   # check if this parent is the best solution ever seen 
   if scores[i] < best_eval: 
    best, best_eval = population[i], scores[i] 
    print('%d, Best: f(%s) = %.5f' % (epoch, best, best_eval)) 
   # create children for parent 
   for _ in range(n_children): 
    child = None 
    while child is None or not in_bounds(child, bounds): 
     child = population[i] + randn(len(bounds)) * 
step_size 
    children.append(child) 
  # replace population with children 
  population = children 
 return [best, best_eval] 
# Seed the pseudorandom number generator and define the range for input 
 
# define the total iterations and define the maximum step size 
 
# Number of parents selected 
mu = 20 
 
# The number of children generated by parents 
lam = 100 
 
# Perform the evolution strategy (mu, lambda) search 

 



94 
 

Running the example reports the candidate solution and scores each time a better solution is found, then 

reports the best solution found at the end of the search. 

No doubt, this solution can be provided as a starting point to a local search algorithm to be further refined, 

a common practice when using a global optimization algorithm like ES. 

0, Best: f([-0.82977995 2.20324493]) = 6.91249 

0, Best: f([-1.03232526 0.38816734]) = 4.49240 

1, Best: f([-1.02971385 0.21986453]) = 3.68954 

2, Best: f([-0.98361735 0.19391181]) = 3.40796 

2, Best: f([-0.98189724 0.17665892]) = 3.29747 

2, Best: f([-0.07254927 0.67931431]) = 3.29641 

3, Best: f([-0.78716147 0.02066442]) = 2.98279 

3, Best: f([-1.01026218 -0.03265665]) = 2.69516 

3, Best: f([-0.08851828 0.26066485]) = 2.00325 

4, Best: f([-0.23270782 0.04191618]) = 1.66518 

4, Best: f([-0.01436704 0.03653578]) = 0.15161 

7, Best: f([0.01247004 0.01582657]) = 0.06777 

9, Best: f([0.00368129 0.00889718]) = 0.02970 

25, Best: f([ 0.00666975 -0.0045051 ]) = 0.02449 

33, Best: f([-0.00072633 -0.00169092]) = 0.00530 

211, Best: f([2.05200123e-05 1.51343187e-03]) = 0.00434 

315, Best: f([ 0.00113528 -0.00096415]) = 0.00427 

418, Best: f([ 0.00113735 -0.00030554]) = 0.00337 

491, Best: f([ 0.00048582 -0.00059587]) = 0.00219 

704, Best: f([-6.91643854e-04 -4.51583644e-05]) = 0.00197 

1504, Best: f([ 2.83063223e-05 -4.60893027e-04]) = 0.00131 

3725, Best: f([ 0.00032757 -0.00023643]) = 0.00115 

Done! 

f([ 0.00032757 -0.00023643]) = 0.001147 

 

13. Natural Language Processing 

 

13.1 Sentiment Analysis 

We have a dataset with tweets. Some of them are annotated with positive, negative, or neutral sentiment. 

Unfortunately annotating is time and cost intensive — we need to pay annotators for doing so and cross-

check their answers for correctness. Therefore, most of the tweets are not labelled as it is relatively cheap 

and easy to download them, but not so cheap to annotate them. The goal of this exercise is to extract some 

useful features from these images which could help us in other tasks. 

 

Input: piece of text 

Output: The sentiment (positive, negative, or neutral) based on its polarity score. 

 

Explanation: 

 

defines a function analyze_sentiment() that takes a piece of text as input and returns the sentiment 

(positive, negative, or neutral) based on its polarity score. 
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pip install textblob 

 
Hint: 
from textblob import TextBlob 
def analyze_sentiment(text): 
    # Create a TextBlob object 
    blob = TextBlob(text) 
     
    # Get the sentiment polarity 
    polarity = blob.sentiment.polarity 
     
    # Classify sentiment 
    if polarity > 0: 
        return "Positive" 
    elif polarity < 0: 
        return "Negative" 
    else: 
        return "Neutral" 
 
# Complete the code 
 

 

Try: Explore what sentiment analysis encompasses and the various ways to implement it in Python. 

 

14.  Deep Learning 

14.1 Deep Neural Network for Classification 

Deep Learning has seen significant advancements with companies looking to build intelligent systems 

using vast amounts of unstructured data. Deep Learning works on the theory of artificial neural 

networks. Develop a sequential neural network and apply Adam Optimization algorithm. Choose a model 

configuration and training configuration that achieves the lowest loss and highest accuracy possible for a 

given dataset. 

Input: Pima Indian Diabetes.csv dataset 

Output: Classification with highest accuracy and lowest loss.   

Explanation: 

1. Load Data 

The first step is to define the functions and classes you intend to use in this tutorial. 

You will use the NumPy library to load your dataset and two classes from the Keras library to define your 

model. The imports required are listed below. 

 

Hint: 

# Write the code to design first neural network with keras  
 

You can now load our dataset. The dataset is available here: 

• Dataset CSV File (pima-indians-diabetes.csv) 

Download the dataset and place it in your local working directory, the same location as your Python file. 

Save it with the filename: 
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pima-indians-diabetes.csv 

 

Look inside the file; you should see rows of data like the following: 

 

You can now load the file as a matrix of numbers using the NumPy function loadtxt(). 

There are eight input variables and one output variable (the last column). You will be learning a model to 

map rows of input variables (X) to an output variable (y), which is often summarized as y = f(X). 

The variables can be summarized as follows: 

Input Variables (X): 

1. Number of times pregnant 

2. Plasma glucose concentration at 2 hours in an oral glucose tolerance test 

3. Diastolic blood pressure (mm Hg) 

4. Triceps skin fold thickness (mm) 

5. 2-hour serum insulin (mu U/ml) 

6. Body mass index (weight in kg/(height in m)^2) 

7. Diabetes pedigree function 

8. Age (years) 

Output Variables (y): 

1. Class variable (0 or 1) 

 
Hint: 

... 
# Load the dataset 
dataset = loadtxt('pima-indians-diabetes.csv', delimiter=',') 
 
# Split into input (X) and output (y) variables 
X = dataset[:,0:8] 
y = dataset[:,8] 
... 

You are now ready to define your neural network model. 

2. Define Keras Model 

 
Hint: 

# Write the code to define the keras model 

 

3. Compile Keras Model 

 

Hint: 
... 
# Write the code to compile the keras model 

 

https://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html
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4. Fit Keras Model 

Hint: 
... 
# Fit the keras model on the dataset 
model.fit(X, y, epochs=150, batch_size=10) 
... 

This is where the work happens on your CPU or GPU. 

 

5. Evaluate Keras Model 

 

Hint: 

... 
# Evaluate the keras model 
_, accuracy = model.evaluate(X, y) 
print('Accuracy: %.2f' % (accuracy*100)) 

6. Tie It All Together 

Hint: 

# first neural network with keras tutorial 
from numpy import loadtxt 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense 
 
# Load the dataset, Split into input (X) and output (y) variables 
 
# Define the keras model and compile the same 
 
# Fit the keras model on the dataset 
 
# Evaluate the keras model  
 

You can copy all the code into your Python file and save it as “keras_first_network.py” in the same 

directory as your data file “pima-indians-diabetes.csv“. You can then run the Python file as a script from 

your command line (command prompt) as follows: 

 

python keras_first_network.py 

 

# Write the code to fit the keras model on the dataset without progress bars 
 
# Write the code to evaluate the keras model 
 
... 

 
Note: Your results may vary given the stochastic nature of the algorithm or evaluation procedure, or 

differences in numerical precision. Consider running the example a few times and compare the average 

outcome. 

https://machinelearningmastery.com/different-results-each-time-in-machine-learning/
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7. Make Predictions 

 

Hint: 
# make probability predictions with the model 
predictions = model.predict(X) 
 
# round predictions  
rounded = [round(x[0]) for x in predictions] 

 

Alternately, you can convert the probability into 0 or 1 to predict crisp classes directly; for example: 

# make class predictions with the model 
predictions = (model.predict(X) > 0.5).astype(int) 

 

The complete example below makes predictions for each example in the dataset, then prints the input 

data, predicted class, and expected class for the first five examples in the dataset. 

Hint: 

# first neural network with keras make predictions 

from numpy import loadtxt 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Dense 
 

# Load the dataset 

dataset = loadtxt('pima-indians-diabetes.csv', delimiter=',') 

# Split into input (X) and output (y) variables 

X = dataset[:,0:8] 
y = dataset[:,8] 
 

# define the keras model 

model = Sequential() 
model.add(Dense(12, input_shape=(8,), activation='relu')) 
model.add(Dense(8, activation='relu')) 
model.add(Dense(1, activation='sigmoid')) 
 
# Compile the keras model and fit the same on the training dataset 
 
# Make class predictions with the model and summarize the first 5 cases  
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14.2 Feed Forward Neural Network 

Feed-forward neural networks are used to learn the relationship between independent variables, which 

serve as inputs to the network, and dependent variables that are designated as outputs of the network. 

The goal of this exercise is to design and train a feed-forward neural network, justify the multi-class 

classification, and obtain higher accuracy levels.  

Input: MNIST Dataset   

Output:  Multi-Class Classification Testing Accuracy and Loss. Train the model to obtain > 90% accuracy 

on the dataset. 

Explanation: 

Today, we’ll be using the full MNIST dataset, consisting of 70,000 data points (7,000 examples per digit). 

Each data point is represented by a 784-d vector, corresponding to the (flattened) 28×28 images in the 

MNIST dataset. Our goal is to train a neural network (using Keras) to obtain > 90% accuracy on this 

dataset. 

 

To get started, open a new file, name it keras_mnist.py, and insert the following code: 

 

Hint: 

# Import the necessary packages 

 

# Implementing feedforward neural networks with Keras and TensorFlow 

# Construct the argument parse and parse the arguments 

 

# Implementing feedforward neural networks with Keras and TensorFlow 

# Grab the MNIST dataset (if this is your first time using this 

# dataset then the 11MB download may take a minute) 

print("[INFO] accessing MNIST...") 

((trainX, trainY), (testX, testY)) = mnist.load_data() 

# each image in the MNIST dataset is represented as a 28x28x1 

# image, but to apply a standard neural network we must 

# first "flatten" the image to be simple list of 28x28=784 pixels 

trainX = trainX.reshape((trainX.shape[0], 28 * 28 * 1)) 

testX = testX.reshape((testX.shape[0], 28 * 28 * 1)) 

# scale data to the range of [0, 1] 

 
# Implementing feedforward neural networks with Keras and TensorFlow 

# Convert the labels from integers to vectors 

 

 

Here is a second example, this time with the label 1 binarized: 
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Implementing feedforward neural networks with Keras and TensorFlow 

[0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 

 

 

Implementing feedforward neural networks with Keras and TensorFlow 

0: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

1: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 

2: [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] 

3: [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] 

4: [0, 0, 0, 0, 1, 0, 0, 0, 0, 0] 

5: [0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 

6: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0] 

7: [0, 0, 0, 0, 0, 0, 0, 1, 0, 0] 

8: [0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 

9: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1] 

 

Next, let’s define our network architecture: 

 

Hint: 

# Define the 784-256-128-10 architecture using Keras 

 

 

Let’s go ahead and train our network: 

 

Hint: 

# train the model using SGD 

print("[INFO] training network...") 

sgd = SGD(0.01) 

model.compile(loss="categorical_crossentropy", optimizer=sgd, 

metrics=["accuracy"]) 

H = model.fit(trainX, trainY, validation_data=(testX, testY), 

epochs=100, batch_size=128) 

 

Once the network has finished training, we’ll want to evaluate it on the testing data to obtain our final 

classifications: 

 

Hint: 
# Implementing feedforward neural networks with Keras and TensorFlow 

# Evaluate the network 

 

 

Our final code block handles plotting the training loss, training accuracy, validation loss, and validation 

accuracy over time: 

 

Hint: 
Implementing feedforward neural networks with Keras and TensorFlow 

# Plot the training loss and accuracy 
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This plot is then saved to disk based on the –output command line argument. To train our network of 

fully connected layers on MNIST, just execute the following command: 

 

 

 
As the results demonstrate, we are obtaining ≈92% accuracy. Furthermore, the training and validation 

curves match each other nearly identically, indicating there is no overfitting or issues with the training 

process. 

 

In fact, if you are unfamiliar with the MNIST dataset, you might think 92% accuracy is excellent — and it 

was, perhaps 20 years ago. Using Convolutional Neural Networks, we can easily obtain > 98% accuracy. 

Current state-of-the-art approaches can even break 99% accuracy. 

While on the surface it may appear that our (strictly) fully connected network is performing well, we can 

do much better. 

 

Try: Implement the same code on CIFAR-10 dataset and get the same or higher accuracy. 
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14.3 Back Propagation 

Sometimes you need to improve the accuracy of your neural network model, and backpropagation helps 

you achieve the desired accuracy. The backpropagation algorithm helps you to get a good prediction of 

your neural network model. The goal of this exercise is to apply the backpropagation technique and 

observe how it fine-tune the weight function and improve the accuracy of the model.   

 

Input: Iris Dataset 

Output: Improve the accuracy of the model more than 90%. 

Explanation: 

The backpropagation algorithm is a type of supervised learning algorithm for artificial neural networks 

where we fine-tune the weight functions and improve the accuracy of the model. It employs the gradient 

descent method to reduce the cost function. It reduces the mean-squared distance between the predicted 

and the actual data. This type of algorithm is generally used for training feed-forward neural networks for 

a given data whose classifications are known to us. 

You can also think of backward propagation as the backward spread of errors to achieve more accuracy. 

If we have received a prediction from a neural network model which has a huge difference from the actual 

output, we need to apply the backpropagation algorithm to achieve higher accuracy. 

 

Note: Feed-forward neural networks are generally multi-layered neural networks (MLN). The data travels 

from the input layer to the hidden layer to the output layer. 

Now let’s get the intuition about how the algorithm works. There are mainly three layers in a 

backpropagation model i.e. input layer, hidden layer, and output layer. Following are the main steps of 

the algorithm: 

• Step 1: The input layer receives the input. 

• Step 2: The input is then averaged overweight’s. 

• Step 3: Each hidden layer processes the output. Each output is referred to as “Error” here which 

is the difference between the actual output and the desired output. 

• Step 4: In this step, the algorithm moves back to the hidden layers again to optimize the 

weights and reduce the error. 

 
Implementing Backpropagation in Python 

 
Hint: 

import numpy as np 
import pandas as pd 
from sklearn.datasets import load_iris 
from sklearn.model_selection import train_test_split 
import matplotlib.pyplot as plt 
 

Now let’s look at what dataset we will be working with. 

Hint: 
# Loading dataset 
data = load_iris() 
  
# Dividing the dataset into target variable and features 
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X=data.data 
y=data.target 
 

# Split dataset into training and test sets 

 
 

 
learning_rate = 0.1 
iterations = 5000 
N = y_train.size 
  
# Define the Input features, Hidden layers, and Output layer as well. 

 
 

Initialize Weights 

Hint: 

np.random.seed(10) 

# Hidden layer 

W1 = np.random.normal(scale=0.5, size=(input_size, hidden_size))    

# Output layer 

W2 = np.random.normal(scale=0.5, size=(hidden_size , output_size))  

 

Now we will create helper functions such as mean squared error, accuracy and sigmoid. 

 
# Helper functions 
  
def sigmoid(x): 
    return 1 / (1 + np.exp(-x)) 
  
def mean_squared_error(y_pred, y_true): 
    # One-hot encode y_true (i.e., convert [0, 1, 2] into [[1, 0, 0], [0, 1, 0], 
[0, 0, 1]]) 
    y_true_one_hot = np.eye(output_size)[y_true] 
      
    # Reshape y_true_one_hot to match y_pred shape 
    y_true_reshaped = y_true_one_hot.reshape(y_pred.shape) 
      
    # Compute the mean squared error between y_pred and y_true_reshaped 
    error = ((y_pred - y_true_reshaped)**2).sum() / (2*y_pred.size) 
  
    return error 
  
def accuracy(y_pred, y_true): 
    acc = y_pred.argmax(axis=1) ==  y_true.argmax(axis=1) 
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    return acc.mean() 
  
results = pd.DataFrame(columns=["mse", "accuracy"]) 
 

Now we will start building our backpropagation model. 

 

Building the Backpropagation Model in Python 
 

Now we will plot the mean squared error and accuracy using the pandas plot() function. 

 

Hint: 
results.mse.plot(title="Mean Squared Error") 
plt.show() 
results.accuracy.plot(title="Accuracy") 
plt.show() 

 

Now we will calculate the accuracy of the model.  

# Write the code to test the model and display the accuracy 
   
 

Output: 

Accuracy: 0.95 

You can see the accuracy of the model have been significantly increased to 80%. 

14.4 Deep Neural Networks 

Artificial Intelligence is a technique which enables machines to mimic human behavior. The idea behind 

AI is simple yet fascinating, which is to make intelligent machines that can take decisions on its own. For 

years, it was thought that computers would never match the power of the human brain. The goal of this 

exercise is to develop a deep neural network.    

 

Input: MNIST Dataset 

Class 1: Inputs having output as 0 that lies below the decision line. 

Class 2: Inputs having output as 1 that lies above the decision line or separator. 
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Output: Accuracy in identifying the digits present on the image. 

Explanation: 

 

Deep Learning with Python: Perceptron Example 

Now I’m sure you guys must be familiar with the working of the “OR” gate. The output is 1 if any of the 

inputs is also 1. 

 

Therefore, a Perceptron can be used as a separator or a decision line that divides the input set of OR Gate, 

into two classes: 

Class 1: Inputs having output as 0 that lies below the decision line. 

Class 2: Inputs having output as 1 that lies above the decision line or separator. 

Till now, we understood that a linear perceptron can be used to classify the input data set into two classes. 

But, how does it actually classify the data? 

 

 Mathematically a perceptron can be thought of like an equation of Weights, Inputs, and Bias. 

Step 1: Import all the required library 

 
Hint: 

import tensorflow as tf 

  

Step 2: Define Vector Variables for Input and Output 

 

Hint: 

 

train_in = [ 
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[0,0,1], 

[0,1,1], 

[1,0,1], 

[1,1,1]] 

train_out = [ 

[0], 

[1], 

[1], 

[1]] 

  

Step 3: Define Weight Variable 

 

Hint: 

w = tf.Variable(tf.random_normal([3, 1], seed=15)) 

  

Step 4: Define placeholders for Input and Output 

We need to define placeholders so that they can accept external inputs on the run. 

Hint: 

x = tf.placeholder(tf.float32,[None,3]) 

y = tf.placeholder(tf.float32,[None,1]) 

  

Step 5: Calculate Output and Activation Function 

 
Hint: 

output = tf.nn.relu(tf.matmul(x, w)) 

 

Step 6: Calculate the Cost or Error 

Hint: 

# Write the code to calculate the cost or error 

  

Step 7: Minimize Error 

 

Hint: 
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optimizer = tf.train.GradientDescentOptimizer(0.01) 

train = optimizer.minimize(loss) 

  

Step 8: Initialize all the variables 

 

Hint: 

# Write the code to initialize all the variables 

  

Step 9: Training Perceptron in Iterations 

 

Hint: 

# Write the code to perform the training perception in iterations 

 

Step 10: Output 

 

…… 

…… 

 

 As you can see here, the loss started at 2.07 and ended at 0.27 

Deep Learning with Python: Creating a Deep Neural Network 

from __future__ import print_function 

  

Following is the code with comments at every step: 

Hint: 

# Import MNIST data 

from tensorflow.examples.tutorials.mnist import input_data 
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mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) 

import tensorflow as tf 

import matplotlib.pyplot as plt 

# Parameters 

learning_rate = 0.001 

training_epochs = 15 

batch_size = 100 

display_step = 1 

# Network Parameters 

n_hidden_1 = 256 # 1st layer number of features 

n_hidden_2 = 256 # 2nd layer number of features 

n_input = 784 # MNIST data input (img shape: 28*28) 

n_classes = 10 # MNIST total classes (0-9 digits) 

# tf Graph input 

x = tf.placeholder("float", [None, n_input]) 

y = tf.placeholder("float", [None, n_classes]) 

# Create model 

def multilayer_perceptron(x, weights, biases): 

    # Hidden layer with RELU activation 

    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) 

    layer_1 = tf.nn.relu(layer_1) 

    # Hidden layer with RELU activation 

    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) 

    layer_2 = tf.nn.relu(layer_2) 

    # Output layer with linear activation 

    out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] 

    return out_layer 

# Store layers weight & bias 

weights = { 

    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 

    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 

    'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) 

} 

biases = { 

    'b1': tf.Variable(tf.random_normal([n_hidden_1])), 

    'b2': tf.Variable(tf.random_normal([n_hidden_2])), 

    'out': tf.Variable(tf.random_normal([n_classes])) 

} 

# Construct model 

pred = multilayer_perceptron(x, weights, biases) 

# Define loss, optimizer and initialize the variables 

# Create an empty list to store the cost history and accuracy history 

cost_history = [] 

accuracy_history = [] 

# Launch the graph 

with tf.Session() as sess: 

    sess.run(init) 

    # Training cycle 
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    for epoch in range(training_epochs): 

        avg_cost = 0. 

        total_batch = int(mnist.train.num_examples/batch_size) 

        # Loop over all batches 

        for i in range(total_batch): 

            batch_x, batch_y = mnist.train.next_batch(batch_size) 

  

            # Run optimization op (backprop) and cost op (to get loss value) 

            _, c = sess.run([optimizer, cost], feed_dict={x: batch_x,y: batch_y}) 

            # Compute average loss 

            avg_cost += c / total_batch 

        # Display logs per epoch step 

        if epoch % display_step == 0: 

  

            correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) 

            # Calculate accuracy 

            accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) 

            acu_temp = accuracy.eval({x: mnist.test.images, y: mnist.test.labels}) 

            #Append the accuracy to the list 

            accuracy_history.append(acu_temp) 

            #Append the cost history 

            cost_history.append(avg_cost) 

            print ("Epoch:", '%04d' % (epoch + 1), "- cost=", 

"{:.9f}".format(avg_cost), "- Accuracy=",acu_temp) 

     print ("Optimization Finished!") 

    # Write the code to plot the cost history and accuracy history 

     

  

    # Write the code to test the model and calculate the accuracy      
 

Output: 
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Try: Apply the code for at least three different datasets and compare the results. 

14.5 Non-Linear Activation Functions 

Activation functions play an integral role in neural networks by introducing nonlinearity. This nonlinearity 

allows neural networks to develop complex representations and functions based on the inputs that would 

not be possible with a simple linear regression model. Many different nonlinear activation functions have 

been proposed throughout the history of neural networks. The goal of this exercise is to explore three 

popular ones: sigmoid, tanh, and ReLU implement at least three activation functions and perform the 

comparative analysis. 

    

Input: Non-linear activation functions like ReLU, Sigmoid, and Hyperbolic Tangent. 

Output: Comparative Analysis of activation functions 

Explanation: 

You might be wondering, why all this hype about nonlinear activation functions? Or why can’t we just use 

an identity function after the weighted linear combination of activations from the previous layer? Using 

multiple linear layers is basically the same as using a single linear layer. This can be seen through a simple 

example. 

Sigmoid Function and Vanishing Gradient 

In TensorFlow, you can call the sigmoid function from the Keras library as follows: 

 
Hint: 

import tensorflow as tf 
from tensorflow.keras.activations import sigmoid 
 input_array = tf.constant([-1, 0, 1], dtype=tf.float32) 
print (sigmoid(input_array)) 

This gives the following output: 

tf.Tensor([0.26894143 0.5 0.7310586 ], shape=(3,), dtype=float32) 

 
Hyperbolic Tangent Function 
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In TensorFlow, you can implement the tanh activation on a tensor using the tanh function in Keras’s 

activations module: 

 

Hint: 

# Write the code to implement tanh activation function and display the output 
  

 

Rectified Linear Unit (ReLU) 

Next up, you can also look at the gradient of the ReLU function: 

To use the ReLU activation in TensorFlow: 

 

# Write the code to implement ReLU activation function and display the output  

This gives the following output: 

tf.Tensor([0. 0. 1.], shape=(3,), dtype=float32) 

 

Using Activation Functions in Practice 

 

x = Dense(units=10)(input_layer) 

x = relu(x) 

 

However, for many Keras layers, you can also use a more compact representation to add the activation 

on top of the layer: 

 

x = Dense(units=10, activation=”relu”)(input_layer) 

Using this more compact representation, let’s build our LeNet5 model using Keras: 

Hint: 

import tensorflow as tf 
import tensorflow.keras as keras 
from tensorflow.keras.layers import Dense, Input, Flatten, Conv2D, 
BatchNormalization, MaxPool2D 
from tensorflow.keras.models import Model 
 (trainX, trainY), (testX, testY) = keras.datasets.cifar10.load_data() 
 input_layer = Input(shape=(32,32,3,)) 
x = Conv2D(filters=6, kernel_size=(5,5), padding="same", 
activation="relu")(input_layer) 
x = MaxPool2D(pool_size=(2,2))(x) 
x = Conv2D(filters=16, kernel_size=(5,5), padding="same", activation="relu")(x) 
x = MaxPool2D(pool_size=(2, 2))(x) 
x = Conv2D(filters=120, kernel_size=(5,5), padding="same", activation="relu")(x) 
x = Flatten()(x) 
x = Dense(units=84, activation="relu")(x) 
x = Dense(units=10, activation="softmax")(x) 
model = Model(inputs=input_layer, outputs=x) 
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# Write the code to display the model summary   
 
# Write the code to compile, fit, and validate the model   

 

14.6 Generative Adversarial Networks (GAN) 

Generative models can also be used with labeled datasets. When they are, they’re trained to learn the 

probability P(x|y) of the input x given the output y. They can also be used for classification tasks, but in 

general, discriminative models perform better when it comes to classification. The goal of this exercise is 

to generate a high dimensional sample space using generative adversarial networks. 

Input: MNIST Handwritten Dataset 

Output: Generate High Dimensional Samples  

Explanation: 

Generative adversarial networks can also generate high-dimensional samples such as images. In this 

example, you’re going to use a GAN to generate images of handwritten digits. For that, you’ll train the 

models using the MNIST dataset of handwritten digits, which is included in the torchvision package. 

To begin, you need to install torchvision in the activated gan conda environment: 

$ conda install -c pytorch torchvision=0.5.0 

 

As in the previous example, you start by importing the necessary libraries: 

Hint: 
import torch 
from torch import nn 
import math 
import matplotlib.pyplot as plt 
import torchvision 
import torchvision.transforms as transforms 

 

Besides the libraries you’ve imported before, you’re going to need torchvision and transforms to obtain 

the training data and perform image conversions. 

Again, set up the random generator seed to be able to replicate the experiment: 

torch.manual_seed(111) 

 
device = "" 
if torch.cuda.is_available(): 
    device = torch.device("cuda") 
else: 
    device = torch.device("cpu") 

 

Preparing the Training Data 

transform = transforms.Compose( 

https://pytorch.org/docs/stable/torchvision/index.html
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    [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))] 

) 

The function has two parts: 

1. transforms.ToTensor() converts the data to a PyTorch tensor. 

2. transforms.Normalize() converts the range of the tensor coefficients. 

Now you can load the training data using torchvision.datasets.MNIST and perform the conversions 

using transform: 

train_set = torchvision.datasets.MNIST( 
    root=".", train=True, download=True, transform=transform 
) 

 
Now that you’ve created train_set, you can create the data loader as you did before: 

batch_size = 32 
train_loader = torch.utils.data.DataLoader( 
    train_set, batch_size=batch_size, shuffle=True 
) 

 
To improve the visualization, you can use cmap=gray_r to reverse the color map and plot the digits in 

black over a white background: 

Hint: 

real_samples, mnist_labels = next(iter(train_loader)) 

for i in range(16): 

    ax = plt.subplot(4, 4, i + 1) 

    plt.imshow(real_samples[i].reshape(28, 28), cmap="gray_r") 

    plt.xticks([]) 

    plt.yticks([]) 

 
The output should be something similar to the following: 

 

Implementing the Discriminator and the Generator 

In this case, the discriminator is an MLP neural network that receives a 28 × 28 pixel image and provides 

the probability of the image belonging to the real training data. You can define the model with the 

following code: 

https://files.realpython.com/media/fig_train_mnist_mpl.ddcdc8188b90.png
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 class Discriminator(nn.Module): 
     def __init__(self): 
         super().__init__() 
         self.model = nn.Sequential( 
             nn.Linear(784, 1024), 
             nn.ReLU(), 
             nn.Dropout(0.3), 
             nn.Linear(1024, 512), 
             nn.ReLU(), 
            nn.Dropout(0.3), 
            nn.Linear(512, 256), 
            nn.ReLU(), 
            nn.Dropout(0.3), 
            nn.Linear(256, 1), 
            nn.Sigmoid(), 
        ) 
 
    def forward(self, x): 
        x = x.view(x.size(0), 784) 
        output = self.model(x) 
        return output 

 

To run the discriminator model using the GPU, you must instantiate it and send it to the GPU with .to(). 

To use a GPU when there’s one available, you can send the model to the device object you created earlier: 

discriminator = Discriminator().to(device=device) 

 
Hint: 

 class Generator(nn.Module): 
     def __init__(self): 
         super().__init__() 
         self.model = nn.Sequential( 
             nn.Linear(100, 256), 
             nn.ReLU(), 
             nn.Linear(256, 512), 
            nn.ReLU(), 
            nn.Linear(512, 1024), 
            nn.ReLU(), 
            nn.Linear(1024, 784), 
            nn.Tanh(), 
        ) 
 
    def forward(self, x): 
        output = self.model(x) 
        output = output.view(x.size(0), 1, 28, 28) 
        return output 
 
generator = Generator().to(device=device) 

 

Training the Models 

To train the models, you need to define the training parameters and optimizers like you did in the previous 

example: 
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lr = 0.0001 
num_epochs = 50 
loss_function = nn.BCELoss() 
 
optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=lr) 
optimizer_generator = torch.optim.Adam(generator.parameters(), lr=lr) 

 
To obtain a better result, you decrease the learning rate from the previous example. You also set the 

number of epochs to 50 to reduce the training time. The training loop is very similar to the one you used 

in the previous example. In the highlighted lines, you send the training data to device to use the GPU if 

available: 

 

Hint: 

 for epoch in range(num_epochs): 
     for n, (real_samples, mnist_labels) in enumerate(train_loader): 
         # Data for training the discriminator 
         real_samples = real_samples.to(device=device) 
         real_samples_labels = torch.ones((batch_size, 1)).to( 
             device=device 
         ) 
         latent_space_samples = torch.randn((batch_size, 100)).to( 
             device=device 
        ) 
        generated_samples = generator(latent_space_samples) 
        generated_samples_labels = torch.zeros((batch_size, 1)).to( 
            device=device 
        ) 
        all_samples = torch.cat((real_samples, generated_samples)) 
        all_samples_labels = torch.cat( 
            (real_samples_labels, generated_samples_labels) 
        ) 
 
        # Training the discriminator 
        discriminator.zero_grad() 
        output_discriminator = discriminator(all_samples) 
        loss_discriminator = loss_function( 
            output_discriminator, all_samples_labels 
        ) 
        loss_discriminator.backward() 
        optimizer_discriminator.step() 
 
        # Data for training the generator 

        latent_space_samples = torch.randn((batch_size, 100)).to( 
            device=device 
        ) 
        # Training the generator 
        generator.zero_grad() 
        generated_samples = generator(latent_space_samples) 
        output_discriminator_generated = discriminator(generated_samples) 
        loss_generator = loss_function( 
            output_discriminator_generated, real_samples_labels 
        ) 
        loss_generator.backward() 
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        optimizer_generator.step() 
 
        # Show loss 
        if n == batch_size - 1: 
            print(f"Epoch: {epoch} Loss D.: {loss_discriminator}") 
            print(f"Epoch: {epoch} Loss G.: {loss_generator}") 

 

Since this example features more complex models, the training may take a bit more time. After it finishes, 

you can check the results by generating some samples of handwritten digits. 

Checking the Samples Generated by the GAN 

To generate handwritten digits, you have to take some random samples from the latent space and feed 

them to the generator: 

latent_space_samples = torch.randn(batch_size, 100).to(device=device) 

generated_samples = generator(latent_space_samples) 

 
To plot generated_samples, you need to move the data back to the CPU in case it’s running on the GPU. 

For that, you can simply call .cpu(). As you did previously, you also need to call .detach() before using 

Matplotlib to plot the data: 

generated_samples = generated_samples.cpu().detach() 

for i in range(16): 

    ax = plt.subplot(4, 4, i + 1) 

    plt.imshow(generated_samples[i].reshape(28, 28), cmap="gray_r") 

    plt.xticks([]) 

    plt.yticks([]) 

 
The output should be digits resembling the training data, as in the following figure: 

 

After fifty epochs of training, there are several generated digits that resemble the real ones. You can 

improve the results by considering more training epochs. As with the previous example, by using a fixed 

latent space samples tensor and feeding it to the generator at the end of each epoch during the training 

process, you can visualize the evolution of the training: 

https://files.realpython.com/media/fig_generated_mnist_mpl.ecc483e9dd9d.png
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You can see that at the beginning of the training process, the generated images are completely random. 

As the training progresses, the generator learns the distribution of the real data, and at about twenty 

epochs, some generated digits already resemble real data. 

 

Try: Define the training parameters and optimizers and run the model for at least 100 epochs by 

decreasing the learning rate. 

 

15.  Final Notes 

The only way to learn programming is program, program, and program on challenging problems. The 

problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging 

problems available – used in training for various programming contests. Check out these sites: 

• Industry-Curated Hackathon: Machine Hack (AI Hackathons | MachineHack Generative AI) 

• Kaggle Competition for Data Science (Kaggle: Your Machine Learning and Data Science 

Community) 

• Brainstorming Data Science Challenges (Contests | Analytics Vidhya). 

• Code Lab Online Data Science Challenges (CodaLab - Competitions). 

• Coding Challenges Platform (https://www.topcoder.com/challenges). 

• Data Driven Science Online Competition (Competitions (drivendata.org)) 

• New Science Competition (https://www.icfpconference.org/ ) 

• New Algorithmic Competition (AIcrowd) 

• Tianchi Big Data Science Competition (4 Data Science Competition Platforms Other Than Kaggle 

| by Edwin Tan | Towards Data Science) 

• Data Visualization Competition (Iron Viz | Win or learn—you can’t lose (tableau.com)) 

• Other Competitions (ML Contests) 

 

Student must have any one of the following certifications: 

1. LearnBay – Machine Learning Course for Professions  

2.   AWS Certified Machine Learning - Specialty Certification 

3.   Andrew Ng’s Machine Learning Specialization 

4.   IBM Machine Learning Professional Certification 

5.   Google Professional Machine Learning Engineer Certification 

6.   University of Washington Machine Learning Specialization 

  

https://machinehack.com/hackathons
https://www.kaggle.com/
https://www.kaggle.com/
https://datahack.analyticsvidhya.com/contest/all/
https://competitions.codalab.org/competitions/
https://www.drivendata.org/competitions/
https://www.icfpconference.org/
https://www.aicrowd.com/
https://towardsdatascience.com/4-data-science-competition-platforms-other-than-kaggle-6d1795ff46a
https://towardsdatascience.com/4-data-science-competition-platforms-other-than-kaggle-6d1795ff46a
https://www.tableau.com/community/iron-viz
https://mlcontests.com/
https://files.realpython.com/media/fig_gan_mnist.5d8784a85944.gif


118 
 

V. REFERENCE BOOKS: 

1. Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, “Foundations of Machine Learning”, MIT Press,  

2nd  edition, 2018. 

2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, “The Elements of Statistical Learning: Data Mining, 

Inference, and Prediction”, Springer, 2nd edition, 2009. 

3. Avrim Blum, John Hopcroft, Ravindran Kannan, “Foundations of Data Science”, Cambridge University 

Press, 2020. 

4. Tom M. Mitchell, “Machine Learning”, Mc Graw Hill, Indian edition, 2017. 

5. Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani, “An Introduction to Statistical Learning: 

with applications in R”, Springer Texts in Statistics, 2017.  

  

VI. WEB REFERENCES: 

1. https://onlinecourses.nptel.ac.in/noc19_cs52/preview 

2. https://ece.iisc.ac.in/~parimal/2019/ml.html  

3. https://www.springer.com/gp/book/9780387848570  

4. https://www.cse.iitb.ac.in/~sunita/cs725/calendar.html 

5. https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/ 

6. https://cs.nyu.edu/~mohri/mlu11/ 

 


