
LINUX PROGRAMMING LABORATORY

III Semester: CSE (CS)

IV Semester: CSE / CSE (DS)

Course Code Category Hours / Week Credits Maximum Marks

ACSC16 CORE
L T P C CIA SEE Total

0 1 2 2 30 70 100

Contact Classes 15 Tutorial Classes Practical Classes: 30 Total Classes: 45

Prerequisite: Programming for Problem Solving using C Laboratory

I. COURSE OVERVIEW:

This course aims to provide a well-rounded introduction to Linux, operating systems, and software development

in a Linux environment. Linux is the blend of innovative concepts required by its unique environment involving

kernel concepts, basic commands, shell scripting, file processing, socket programming, processes and Inter

process communication (IPC). This course equip individuals with the knowledge and skills needed to work

effectively in a Linux-based environment, software development, system administration and security awareness.

II. COURSES OBJECTIVES:

The students will try to learn

I. The fundamental concepts of operating system including bourne shell (bash) with the Linux command line

environment.

II. The shell programming using arithmetic operations, control structures and functions in shell scripts in vi

editor.

III. The process management and inter-process communication used for exchanging data between multiple

threads in one or more processes.

III. COURSE OUTCOMES:

 At the end of the course students should be able to:

CO 1 Demonstrate text processing utilities, file handling utilities, security by file permissions, process utilities,

disk utilities and networking commands with different options available for solving problems.

CO 2 Make use of bourne shell constructs, decision structures and loops in designing programs for complex

problems.

CO 3 Interpret to write, compile, debug and run C language program in Linux shell environment for

implementing kernel level concepts.

CO 4 Identify basic methods and techniques used in solving simple programming tasks in the area of

execution environment, processes signals and threads.

CO 5 Experiment with IPC mechanisms such as pipes, named pipes, shared memory, message queues,

semaphores and sockets for inter-process communication.

CO 6 Choose the appropriate protocol such as TCP or UDP for effective communication in client-server

applications.

IV. COURSE CONTENT:

1. Getting Started Exercises

1.1 Help and man pages

You can issue help command:

$ help // Display the help menu for the bash shell

$ help <command-name> // Display the help menu for the command

Most of the commands also support an help option, but may exist in various style:

$ <command-name> -h // Unix-style: dash followed by a single character

$ <command-name> -?

$ <command-name> -help // X-style: dash followed by a keyword

$ <command-name> --help // GNU-style: double-dash followed by a keyword

Unix systems provide so called man pages (or manual pages) for all the commands and utilities. To

display the man page for a particular command, use man command:

$ man <command-name> // Display manual page for the command

 // You can use Up/Down/PgUp/PgDown keys to scroll the texts

$ info <command-name>

$ man <command-name> | less // Display in page-mode

To search for commands:

$ man -k <keyword> // Search for commands relevant to keyword

$ apropos <keyword> // Same as above

1.2 Useful Commands/Utilities

These are the commands/utilities that a good Unix programmer is expected to know. Check the man

pages ("man command-name" or google) to get the detailed description.

• File related:

o pwd: Print current working directory. In bash shell, the current working directory is also

shown in the command prompt.

o cd pathname: Change current working directory. The pathname could be either absolute

or relative (to the current working directory). Special notations "." and ".." refer to the

current and parent directories, respectively.

o ls: List files (in short-format). "ls -l" lists file in long-format; "ls -a" lists also the hidden files.

o cat: Concatenate files and print its content.

o less, more: View file in pages.

o touch filename: Create the file if it does not exist; otherwise, update the last-modified

timestamp.

o export name=value: Set a variable and export to global environment.

o top: Print resource usage and top processes.

o hostname: Print hostname.

o uptime: Print how long the system has been running.

o date: Print date/time.

• Utilities:

o which program-name: Print the location of the program-name.

o whereis program-name: List all files related to the program-name.

o whatis program-name: Print one-line description of program-name.

o locate filename: Search for files in local system.

o man command-name: Display manual pages for the command.

• Editors:

o vi/vim, nano, emacs: Console-based (text-based) editors.

o gedit: graphical text editor.

• Programming:

o make: Install programs.

o gcc, g++: GNU C/C++ compiler.

• More: diff, gzip, tar, ping, ssh, history, su, sudo, adduser, addgroup, etc.

More on cd (change directory) command

Read "Change Directory (cd) command" for basic usage.

You can use "cd path" to change the current working directory. The new path could be an absolute path,

beginning with root "\" or home "~"; or relative to the current working directory (PWD).

In cd command, you can use "/" to denote the root directory, "~" to denote home directory of the

current login user; ".." (double-dot) to refer to the parent directory; "." (single-dot) to refer to the current

directory; and "-" (dash) to refer to the previous working directory (OLDPWD).

By default, in "cd relative-path", the new path is relative to the current working directory. Nonetheless,

you can set the environment variable CDPATH to change the base. If CDPATH is not set, it is defaulted

to current working directory. CDPATH could contain multiple directories separated by ":" (colon). For

example,

$ cd // home directory

$ pwd

/home/peter

$ mkdir local // create a directory local (/home/peter/local)

$ export CDPATH=/usr // set base for relative cd to /usr

$ cd local // relative to CDPATH

/usr/local

$ export CDPATH=.:/usr // set base for relative cd to current directory and /usr

$ cd // home directory

$ pwd

/home/peter

$ cd local // found local relative to current directory

/home/peter/local

1.3 Pipe and Input/Output Redirection

By default, the output of a command goes to the screen (called STDOUT), and the input of a command

comes from the keyboard (called STDIN). You can use a redirection operator to redirect input and output

from/to a file or another command:

• > (output redirection): Writes the output to a file (or a device such as printer), instead of the screen

(STDOUT).

• >> (output append redirection): Appends the output to a file, instead of the screen.

• < (input redirection): Reads the input from a file or a device, instead of the keyboard (STDIN).

• | (pipe): Pipes the output of one command as the input of another command.

• tee: sends output to standard output and to file(s). Named after T-pipe, which splits water into

two directions.

https://www3.ntu.edu.sg/home/ehchua/programming/howto/Unix_SurvivalGuide.html#cd

An output redirector '>' involves a program and a sink (destination). An input redirector '<' involves a

program and a source. A pipe '|' involves two programs.

For examples,

// Redirect the output of the ls command to a file, instead of screen

$ ls -l > listing.txt

// Pipe the output of ls command as the input of program less for view page-by-page

$ ls -l | less

// Pipe the output of ls command as the input of program wc to count the lines

$ ls -l | wc -l

// Pipe the output of ls command as the input of program grep to filter lines containing "xxxx"

$ ls -l | grep xxxx

// Pipe the output of ls command as the input of tee, which sends the output to standout and file

"listing.txt"

$ ls -l | tee listing.txt

// Pipe the output of ls command as the input of grep.

// grep then sends its output to standout and files "listing1.txt" and "listing2.txt"

$ ls -l | grep xxxx | tee listing1.txt listing2.txt

1.4 File Handling Utilities:

cp: The cp command copies a file or a group of files. It creates an exact image of the file on disk

with a different name.

Ex: $cp t1 t2

This will copy the contents of t1 into t2. If t2 does not exist, it will be created. However, if t2 already

exists, then its contents are overwritten.

Ex: $cp -i t1 t2

cp: overwrite t2 (Yes/No)?

This will copy the contents of t1 into t2. If t2 does not exist, it will be created. However, if t2 already

exists, then it warns the user before overwritten contents to a file. If “y” at this prompt overwrites the

file, any other response leaves it uncopied.

mv:

The mv command renames files. It has two functions:

1. It renames a file (or directory).

2. It moves a group of files to a different directory.

Syn: $mv <sourcefilename> <renamefile>/<directoryname>. For example,

$ Ex: $mv s1 t1

Then s1 is renamed as t1.

Ex: $mv file1 file2 newdir

On execution of this command ‘file1’ and ‘file2’ are no longer present at their original location, but are

moved to the directory ‘newdir’.

rm: (Removing files): The rm command removes the given file or files supplied to it.

Syn: $rm options <filename(s)>

Ex: $rm –i file1

Where –i is a switch, removes file1 interactively; i.e. you are asked for confirmation before deleting the

file

mkdir: The mkdir command is used to create a new directory

Syn: $mkdir options <directoryname>

Ex: $ mkdir book

The above command creates a directory named 'book'

Among the options available with mkdir is -p, which allows us to create multiple generations of

directories specified in the given path too.

rmdir: To remove empty directory

Syn: $rmdir options <directoryname>

The rmdir is used to remove directories.

With '-p' option, it removes not only the specified directory but also its parent directories. However

rmdir removes only the empty directories.

Ex: $ rmdir -p works/dir1/unix/book

It removes the directory book.

1.5 File/Directory Ownerships and Permissions

You can issue command "ls -l" to list files/directory in long format, which shows all the file attributes,

e.g.,

For each entry:

• The first character indicates the type, with - for file and d for directory. The other type

codes are l for link (symlink or hard link), b for block device, c for character device, p for

named pipe, and s for socket.

• A file/directory has a user-owner and a group-owner, as indicated. The user-owner may or

may not belong to the group.

• A file/directory has 3 permission settings, read/list (r), write (w) and execute/access (x), for

user-owner (u), group-owner (g) and others (or the world) (o), respectively. The

permissions are represented with 9 characters, in 3 groups of "rwx" for user-owner, group-

owner and others, as shown in the above listing. "-" indicates absence of permission. For

examples,

• -rwxr-x--- peter devel test.php

• // File,

• // filename is test.php,

• // user-owner is peter, group-owner is devel,

• // user-owner has read, write and execute permissions,

• // group-owner has read and execute permissions,

• // others (the world) have no permission

• -rwx------ root root myconfig

• // File,

• // filename is myconfig,

• // user-owner is root, group-owner is root,

• // user-owner has read, write and execute permissions,

• // group-owner and others have no permission

• drwxr-xr-x peter devel www

• // Directory,

• // directory name is www,

• // user-owner is peter, group-owner is devel,

• // user-owner has list, write and access permissions,

• // group-owner has list and access permissions,

• // others (the world) have list and access permissions

File Permissions

A file is indicated by type of "-". For files:

• "r" (read) permits reading the file content.

• "w" (write) permits writing into the file.

• "x" (execute) indicates that the file is executable, i.e., a program file (or binary file).

Directory Permissions

A directory is indicated by type of "d". For directories, "r" shall be interpreted as list and "x" as access,

as follows:

• "r" (list) permits listing of directory's contents (filenames and sub-directory names only) via listing

command such as ls. Without "r" permission, you cannot issue "ls" command.

• "w" (write) permits writing into the directory, i.e., creating new files or sub-directories inside the

directory.

• "x" (access) permits access into this directory (i.e., "cd" into the directory).

A directory holds two pieces of information for each file/sub-directory it contains: the

filename/subdirectory-name and its inode number. I-node stores the attributes of the file/directory,

including the disk block location. You can list the name and inode number via command "ls -i". For

directories, "r" permission is needed to get the name; "x" permission is needed to get its inode number

given the name, which is needed to enter the directory. For example, to issue "cat

/home/peter/test/f1.txt", you need "x" permission for directories /, home, peter, test (so as to enter the

directories); and "r" permission for file "f1.txt". No "r" permission is needed for the directories, as the

names are known. "r" permission is needed for a directory for issuing ls command.

For production system, "x" is needed to enter (access) the directory. Very few programs need to list the

directory contents. For development system, both "x" and "r" are needed to enter the directory and

issue the ls command.

Change Mode (chmod)

chmod (change file mode) to change the file mode (i.e., permission), in the form of "ugoa±rwx" with "+"

to add permission and "-" to remove; or "ugoa=rwx" to set the permission, where "u" for user-owner,

"g" for group-owner, "o" for others, and "a" for all (i.e., u+g+o). For example,

// Grant executable mode for owner(u), group(g) for all *.sh files

// -c lists all the changes

$ chmod -c ug+x *.sh

// Remove write permission from group(g), others(o) for all *.txt files

$ chmod -c go-w *.txt

// All (u+g+o) read and execute

$ chmod -c a=rx *

You can also use three octal numbers (each for u, g and o) to represent the file permission. Each octal

number carries 3 bits (xxx), corresponding to the read-write-execute permissions, where 4 (100B) for

read, 2 (010B) for write and 1 (001B) for execute. E.g., "700" is equivalent to "rwx------"; "664" is

equivalent to "rw-rw-r--"; "775" is equivalent to "rwxrwxr-x". For example,

$ chmod -c 700 myfile.txt // 700 = 111 000 000 (rwx------)

$ chmod -c 600 *.txt // 600 = 110 000 000 (rw-------)

Change Owner/Group (chown, chgrp)

We can use command chown (change file owner/group) to change the owner of files, e.g.,

// Change owner for a file

$ chown peter test.txt

// Change owner of the current directory

$ chown peter .

// Also change the group to programmers for a directory

$ chown peter:programmers /myproject

// Change Group

$ chgrp programmers .

You can use option -R to recursively changing the files in the subdirectories.

In most systems, only superuser can run chown, not even the file owner. This is because Unix systems

prevent users from "giving away" files (you can only chown to yourself, which does not require

any chown command!)

The file owner can run the chgrp if he belongs to the target group (again, you cannot "give away" files).

umask

umask (filemode creation mask) controls the permissions for new files and directory created. Recall that

permissions can be represented by 3 octal numbers, each representing rwx for u (user), g (group) and

o (others) respectively, e.g., 660 for (rw- rw- ---); 775 for (rwx rwx r-x).

umask is also represented in 3 octal numbers, with 1 to disable a certain permission. For example,

suppose the umask is 022 (--- -w- -w-), it will disables the w for group and others, when a new

file/directory is created. In other words, a new file/directory could have (rwx r-x r-x), or lesser

permissions; it will never have w for group and others.

Each program has its own umask. For "Terminal" application, you can set the umask in one of the login

scripts (such as "~/.profile") with the following line:

umask 022

You can also issue the command umask to display/change the current umask setting.

(For apache, the umask can be set in /etc/apache2/envvars.)

setuid and setgid permission for executable-file

When you execute a program (having "x" file permission) with setuid (Set User ID upon execution)

or setgid (Set Group ID upon execution), it takes on the file owner's (or group's) privilege. For example,

if a setuid program is owned by root, and executable by all, it will be run in root privilege, even when

invoked by a less privilege user. setuid and setgid can be dangerous! Use them with great care!

You can use chmod command to enable setuid/setgid:

1.6 disk utilities

A disk utility is a utility program that allows a user to perform various functions on a computer disk,

such as disk partitioning and logical volume management, as well as multiple smaller tasks such as

changing drive letters and other mount points, renaming volumes, disk checking, and disk formatting,

which are otherwise handled separately by multiple other built-in commands.

o du: Print disk file space usage.

o df: Report file system disk space usage.

o ulimit: It stands for ‘user limit’ and contains a value, which signifies the largest file that can be

created by the user in the file system.

o find: You The find command is recursively examines a directory tree to look for file matching

some criteria, and then takes some action on the selected files or locating files.

Syn: $find pathlist selection_criteria action. For example,

Ex: $ find -name "*.c"

 // Find all filename ending with .c, in current directory and subdirectories

$ find -iname "*.c"

 // option -i for case insensitive

$ find /usr -name "*.c"

 // Search /usr and its subdirectories

mount/unmount: A super user may extend the file system by using the ‘mount’ utility.

Syntax : mount –o options [device name directory]

unmount device name

The file system built on the floppy disk can be linked into the existing file system on the hard disk using

the ‘mount’ command. Once mounted we can create files and directories in the new file system and treat

it as a normal directory existing in a file system.

2. Exercises on Process, Text, network and backup utilities

Everything in Unix is a file - from data files, executable programs, to input and output devices. Files are

organized in directories (aka folders). The directories are organized in a hierarchical tree structure,

starting from the root directory, denoted by "/". There is only one root directory for the entire Unix's file

system. A directory may contain sub-directories and files.

Unix is a multi-user system. Some files are used solely by the system; some are shared by all users; while

some belong to a particular user.

Disk Drives and Root Directory

Windows systems has a concept of drive (e.g., C drive and D drive). Each drive begins with a root

directory (e.g., c:\, d:\), resulting in multiple root directories.

Unix has no concept of drive and has a single root for the entire file system. The drives are mounted

under the file system at a specific directory.

2.1 System and Application Software Directories

A Unix system has these directories for system and application software available to all users:

• /lib, /bin, /sbin: System libraries, binaries and superuser's binaries. Binaries are executable programs

(having executable file attribute). Libraries are supporting codes for programs. There are two types

of libraries, static libraries (.a for archives in Unix, .lib in Windows) and dynamic libraries (.so for

shared objects in Unix, .dll for dynamic link libraries in Windows). Static library codes are linked into

the program; whereas shared library codes are loaded during runtime and can be shared by many

programs.

• /usr: Application Software (contrast to System Software in /bin, /lib, and /sbin). It contains sub-

directories such as / usr / bin, / usr / lib, / usr / include, / usr/ share / man (man pages), / usr/ share/

doc (documentation) and etc.

• /usr/local: Locally installed application software which are not part of the distribution. It contains

sub-directories such as /usr/lcoal/bin, /usr/local/lib, /usr/local/include, and etc.

• /opt: optional application software package.

• /etc: System-wide configuration files, such as fstab (file system table for disks, CD drives, and

storage devices), passwd (list of users), and sudoers (list of users with superuser access). (It is called

"et cetera" in early days to mean additional things to bin and lib.)

• /var: Variable (changing) files, such as /var/logs (for log files), /var/spool (for printer spool

files), /var/mail (for mail), /var/tmp, and etc.

• /root: superuser's home directory.

• /dev: file representation of devices. A special /dev/null (or the null device) is a special file that

discards all data written to it but reports that the write operation succeeded. It provides no data

to any process that reads from it, yielding EOF immediately.

• /mnt: file system mount point for (fixed) hard disks, CD drive, etc.

• /media: for removable media, such as external drive and USB drive.

• /sys: real-time information on devices used by the kernel.

• /boot: boot loader files and Linux kernel.

• /proc: process information.

• /srv: services.

• /tmp: System's temporary directory.

 2.1 Processes utilities

Unix is a multi-process, multi-user operating system. It supports many processes concurrently.

You can use ps to list all the processes:

$ ps // Print processes of current user

$ ps -e // Print all processes

$ ps -ef // Print all processes in full-listing

$ ps aux // Same as above (in old BSD options)

// Search for processes

$ ps aux | grep mysqld // Print MySQL server process

$ ps -ef | grep mysqld // same as above

$ ps -ef | grep tomcat

$ ps -ef | grep $USER // of current user, same as ps -f

[TODO] pid, Sample full-listing of ps

To terminal a process, you can issue kill command with the process ID, or job ID.

$ kill pid // Kill a particular possess with the given processID

$ kill -9 pid // Force kill

2.2 Text Processing Utilities

head: Displaying the beginning of a file.

Ex: $head -10 newfile

The first 10 lines of newfile are displayed.

tail: Displaying the end of a file.

The tail command is the counter part of the head command, displays the end of the file. By default head

and tail commands display first and last 10 lines of a file respectively.

Ex: $tail -3 emp

It displays the last 3 lines in emp file.

The disadvantage of head and tail is that they cannot display a range of lines.

sort: This command can be used for sorting the contents of a file. Apart form sorting files, sort can

merge multiple sorted files and store the result in the specified output file. While sorting the sort

command bases its comparisons on the first character in each line in the file. If the first character of two

lines is same then the second character in each line is compared and so on. It sorts the spaces the tabs

first, then the punctuation marks followed by numbers, uppercase letters and lowercase letters in that

order.

This simplest form of sort command would be

$sort file1

This would sort the contents of file1 and display the sorted output on the screen.

nl: line numbering:This is for numbering the lines.

Example:

$nl file1

1 chairman

2 special officer

3 principal

4 head

5 lecturer

uniq: locating repeated lines:

Ex:$uniq mp1

Uniq simply fetches one copy of each record and writes it to the standard output.

grep - Print lines matching the pattern

You can use grep to find lines matching a search pattern. The syntax is:

$ grep [options] pattern [file...]

for Ex:$ grep search-word filename

$ grep search-word file1 file2 file3

$ grep -r search-word directoryname // -r (or -R) for recursive

cut:: Like sort, cut is also a filter. It cuts or picks up a given number of character or fields from the

specified file cut is slitting a file vertically cut identifies both columns and fields.

Ex: a) $cut –c 5-10 16-20 file1

Displays the columns from 5 to 10 and 16 to 20 of file1

b) $cut –c -3 5-10 16-20 30- file1

The expression 30- indicates column number 30 to the end of the line. Similarly, -3 is the same as 1-3.

Files often don’t contain fixed length records, in which case, it is better to cut fields rather than columns.

Two options need to be used here –d (delimiter) for the field delimiter and –f (field) for specifying the

field list.

paste: pasting files:

It is a special type of ‘concatenation’ in that it pastes files vertically rather than horizontally.

Ex:$ paste file1 file2

Then the fields of file2 are concatenated to fields of file1. By default the delimiter is tab. The delimiter

of our choice is set by ‘-d’(delimiter) option.

$cut –d “|” –f 1,4 –shortlist | paste –d “|” –cutlist

Join: A command that extracts common lines from two sorted files.

Syntax : join [options] filename1 filename2

One line of o/p is created for each line in the two files that match, based on option.

This command joins the common lines found in filename1 and filename2; if filename1 is not specified,

join reads from the standard input.

wc: It counts the number of lines, words and characters in the specified file or files. It comes with the

options -l, -w and –c which allow the user to obtain the number of lines, words or characters individually

or in any desired combination.

Ex: $wc –lc file1 file2

 file1 20 571

 file2 30 804

The file file1 constitutes 20 lines and 571 characters similarly for the file2.

The wc command is capable of accepting input directly from the keyboard. By entering wc without any

arguments, it waits for the user to type in the input. On terminating input (using ctrl d), the appropriate

counts are displayed for the input.

Note: Filters are: cat, pg, more, head, tail, grep, sort, wc, nl, uniq, cut, paste etc.

tee:

Ex: who | tee logfile | sort

Here, the output of who becomes the standard input of tee. tee now sends one copy of the input to

sort through one pipeline, whereas the other copy is stored in a file called logfile.

$who | tee file1 file2 | sort

Here, the output of who is stored in file1 and file2 and one copy is sent to sort.

If we want to store the output of who in file1 and file2, display the same output on the screen and store

the sorted output in file3, then we write

$who | tee file1 file2 /dev/tty3a | sort >file3

If we wish to append the output of tee to a file, -a option is used with it as shown below:

$cat file1 file2 | tee –a file3 | more

In this pipeline the output of cat(contents of the files file1 and file2) are appended to the existing

contents of file3. Another copy of output of cat is sent to more for displaying on the screen.

comm: finding what is common: comm requires two sorted files, and compares each line of the first

file with it’s corresponding line in the second.

Ex : $cat file1 $cat file2 $cat file3

Raghu.V Varun.T Raghu.V

Shiva.P Tharun.Q Shiva.P

Roja.R Raghu.V Gopi.N

Gopi.S Roja.R Sekhar.S

$comm file1 file3

Raghu.V

Shiva.P

Gopi.N

Roja.R

Gopi.S Sekhar.S

comm can also produce selective output, using options -1, -2 or -3. To drop a particular column, simply

use it’s column number with the ‘-‘ sign. We can also combine options and display only those lines that

are common.

$comm -3 file1 file2 $comm -12 file1 file2

cmp: comparing two files:

Whether two files are identical or not is determined through cmp, diff and comm. commands.

Ex: $cmp chap1 chap2

chap1 chap2 differ :char 9,line1

The two files are compared byte by byte and the location of the first mismatch(in the 9th character of

first line) is echoed to the screen. cmp, when invoked without options, doesnot bother about possible

subsequent mismatches.

The –l(list) option gives a detailed list of the byte number and the differing bytes in octal for each

character that differs in both files:

$cmp –l file1 file3

17 162 147

30 12 56

If the two files are identical, cmp displays no message, but simply returns the $ prompt.

diff: converting one file to other:

diff is used to display file differences. It tells us which lines in one file have to be changed to make the

two files identical.

Ex: $diff file1 file3

3,4c3,4 #change line 3 of file1

< roja.r #}replace these

< gopi.s #}lines

- - - - - #with

> gopi.n #}these

> sekhar.s #}two lines

diff uses certain special symbols and instructions to indicate the changes that are required to make two

files identical.

Maintaining several versions of a file: diff has an extremely useful option for the system administrator

the –e option. If we have ten versions of a file differing only nominally, we now need to keep only one

in full. For the others, we can keep only the differences, which help us conserve disk space.

tr (translate):

The tr (translate) command is a simple filter designed to replace one or more characters in given files

with one or more characters. The syntax is:

Ex: tr [-cds] [in-string] [out-string]

The ‘-s’ option substitutes all of the specified characters with another specified character and displays

the results.

2.3 Hard Links and Symbolic Links

A link is a special file that references another file or directory. A link serves as an alias, which can be used

to access the linked file/directory. For example, In Ubuntu, the link vi (in /usr/bin)

references /etc/alternatives/vi.

Symlink : A symbolic link (or symlink or soft link) maintains a reference (not a direct pointer) to a file

or a directory. A symlink is a file that stores the path to another file/directory. If the referenced file is

removed, the symlink will be referencing an non-existent file.

To create a symbolic link, use command ln with option -s:

$ ln -s file-or-dir-name symlink-name

In "ls -l", symlinks are identified via the "symlink -> referenced file/dir".

Hard Link : A hard link is an additional pointer to the file's inode (physical location). You can view the

inode of files via "ls -i". A file can be accessed via any hard link. It is available as long as there is at least

one hard link left. The "hard link count" for a file is reflected in command "ls -l" (as illustrated in the

earlier example).

To create a hard link, use command ln:

$ ln filename hard-link-name

Symlinks are more commonly-used. Symlinks can span file systems; while hard links work only in the

same file system. Hard links usually work for file (hard link to directory could lead to inconsistency);

while symlinks work for both file and directory. Hard links are also much hard to maintain, as there is

little clue on where are the files, other than the link count.

You can remove a link (hard or soft) via rm command, just like any file. A hard-linked file is only deleted

from the file system when there is no link to it.

Windows does not support symlink until Windows 7?!

2.4 Network Utilities

ftp: Copying files between non-unix hosts. It is the file transfer protocol.

 Ex: $ftp source1 #open ftp connection to source1

 Name :

 Password :

Distributing processing:

Some hosts supply limited password less accounts with user ID’s like ‘user’ so those explorers can roam

the network without causing any harm.

Three utilities for distributing access are:

1. rlogin : Which allows you to log into a remote Unix host.

2. rsh : Which allows you to execute a command on a remote Unix host, and

3. telnet : Which allows you to execute commands on any remote host that has

 a telnet server.

Of these, ‘telnet’ is the most flexible, since there are other systems in addition to Unix that support telnet

servers.

rlogin : Remote logins:To logon to the remote host, we use rlogin.

Syntax : rlogin –ec [-l useID] hostName

‘rlogin’ attempts to log you into the remote host hostName. If you don’t supply a user ID by using the

‘-l’ option, your local user ID is used during the login process.

If the remote host is not set as an equivalent of your local host in your “$Home/.rhost” file, your are

asked for your password on the remote host.

Once you are connected, your local shell goes to sleep the remote shell starts to execute. When you are

finished with the remote login shell, terminate it in the normal fashion(ctrl D) and your local shell will

then awaken.

There are a few special “escape commands” each is preceded by the escape character, which is a tilde

(~) by default, you may change this escape character by following the ‘-e’ option with the preferred

escape character.

Ex : $rlogin user2 #remote login

 Last login: Tue Dec 20 17:23:51 from Varun

 user2 % date

 Wed Dec 21 18:50:47 CDT 2005

 user2 % ^D #terminate the remote login shell

 connection closed.

 $- #back home again at Varun

Here, we have logged into remote host ‘user2’ from local host ‘Varun’.

Remote connection: ‘telnet’ allows you to communicate with any remote host on the Internet that has

a ‘telnet’ server.

Syntax : telnet [host[port]]

telnet establishes a two way connection with a remote port. If you supply a host name, but not a port

specifier, you are automatically connected to a telnet server on the specified host, which typically allows

you to log into the remote machine. If you don’t even supply a host name, ‘telnet’ goes directly into

command mode (like ftp).

arp : Address Resolution Protocol:

The arp command is used to manipulate system arp cache.

$arp options hostname

Options:

-d - deletes hostname

-a - displays entry of given host

-n - shows numerical address

In a networked system when a packet arrives at router machine then the IP address to Ethernet address

mapping is needed. This is achieved by arp protocol. Theses mappings are stored in arp cache such that

next time another packet arrives the same ip address then its Ethernet or physical address is calculated

by carrying out a lookup operation on the arp cache. With arp command we can modify, view, delete

the entries of this cache.

2.5 Tape Archive (tar) and ZIP Compression (gzip, bzip2)

The relevant file formats and utilities are:

• .gz: A file compressed via gzip utility; which can be uncompress via gunzip utility.

• .tar: A tar (tar archive) file, or tarball, is a collection of many files into a single file, used for

distribution or backup. It is created via tar utility with option c (create); and can be

extracted viatar with option x (extract).

• .tar.gz: A compressed tar file with gzip - the most popular format for software distribution

and backup.

The Tape Archive (tar) Utility

You can use the tar utility to create, list, and extract .tar.gz files, as follows:

// "Create" a compressed archive of the given files and directories

$ tar czvf <compressed-filename>.tar.gz <directory1> <directory2> <file1> <file2> ...

 // Option "c" to create; "z" to compress; "v" for verbose; "f" for archive filename

Notes: to process .tar files without gzip compression (instead of .tar.gz), use the above commands

minus the 'z' option.

gzip/gunzip Compression

gzip/gunzip (GNU zip) is an older compression utility. The resultant file type is .gz. gzip is still the most

popular form for software distribution over the Internet. The man pages are also kept in gzip format.

For example,

bzip2/bunzip2 Compression

bzip2/bunzip2 is a newer compression utility, which is more efficient than gzip, but not as popular. The

resultant file type is .bz2. For example,

$ bzip2 -v listing.txt // Compress to listing.txt.bz2 (-v for verbose)

$ bunzip2 listing.txt.bz2 // Uncompress

3. Exercises on Shell Programming

3.1 Displaying files

Write a shell script called displaying type extension file that prompts user to enter. The script shall read

the type extension files and display all file names to output stream. For example,

Input:

Enter directory name: cfiles

Output:

f1.txt f2.txt add.c fibo.c

Hints

// For keyboard input

/**

 * 1. Prompt directory name

 * 2. Change to given directory name

 * 3. Using ls command to display .txt and .c files

 */

 echo directory name

 read dir // Scan the keyboard for input

 cd $dir // check the given file is directory or not if directory then change to new directory

 // displaying files

 ls *.txt *.c // ls command to list all files

Try

Write a shell script called displaying type extension file with detailed information (filename,

permissions, no of links, owner name, group name, file created. The script shall read the type

extension files and display all file names to output stream.

3.2 moving files

Write a shell script called moving files from one directory to another directory that prompts user to

enter source directory and destination directory. The script shall read the directory files and move all

files from source directory to destination directory. For example,

Input:

enter the Existing directory

olddir

“enter new directory”

newlydir

Output:

f1.text f2.c g1.txt g2.c g3.txt g4.c mvf.sh newlydirf1.txt f2.txt add.c fibo.c

Hints

// For keyboard input

/**

 * 1. Prompt source directory name

 * 2. Prompt destination directory name

 * 3. Test given directory name directory and existing or not

 * 4. Using mv command move files from source to destination directory

 */

 mv ~/$dir/* ~/$ndir

 cd $ndir // change directory to new directory

 ls// ls command to list all files

Try

Write a shell script called moving all c extension files from one directory to another directory that

prompts user to enter source directory, type extension files and destination directory. The script shall

read the directory files and move all c type extension files from source directory to destination

directory.

3.3 displaying logged in users

Write a shell script to display all the users who are currently logged in after a specified time. The script

shall read the date and time, users who are logged in to linux server then displays users who logged in

after specified time. For example,

Input:

enter the Existing directory

olddir

“enter new directory”

newlydir

Output:

f1.text f2.c g1.txt g2.c g3.txt g4.c mvf.sh newlydirf1.txt f2.txt add.c fibo.c

Hints

// For keyboard input

/**

 * 1. Prompt login time

 * 2. Use who command to list who are logged in linux server

 * 3. Extract time and user name

 * 4. Test the time with given time if condition is true then display time and username

 */

 echo “enter time to list specified users who login after specified time”

 read time1

 for i in `who|tr -s “ ” “|”|cut -d “|”-f1`

 do

 t=`w $i|tr -s “ ” “:”|tail -1|cut -d “:” -f4`

 for s in $t

 do

 if [$time1 -le $s]

 then

 echo $i $t

 fi

 done

 done

 cd $ndir // change directory to new directory

 ls// ls command to list all files

3.4 Wishing user based on time

Write a Shell Program to wish the user based on the login time. The script shall read the time of user

logged in time and wish the user based on time. For example,

Input:

read the time of particular user

Output:

Good afternoon

Hints

// For keyboard input

/**

 * 1. Prompt source directory name

 * 2. Prompt destination directory name

 * 3. Test given directory name directory and existing or not

 * 4. Using mv command move files from source to destination directory

 */

 h=`date +%H`

 if [$h -lt 12] wish good morning

 elif [$h -lt 18] wish Good afternoon

 else wish Good evening

3.5 Searching for specified word

Write a shell script that deletes all lines containing a specified word in one or more files supplied as

arguments to it. The script shall read the word and filenames and display all lines other than of matching

word. For example,

Input:

sh we2.sh we2.sh

enter the word

echo

Output:

The lines displayed other than given word

Hints

// For keyboard input

/**

 * 1. Prompt the word

 * 2. Prompt the file name

 * 3. Read all files of given directory

 * 4. Display all lines other than given word

 */

grep -v “$word” $fname

else

echo “file doesnot exist”

//test given file is existing or not if existing display between lines

Try

Write a shell script that displaying all lines containing a specified word in one or more files supplied

as arguments to it.

3.6 Displaying between lines

Write a shell script to read starting line and ending line of a file and display the lines in between them.

For example,

Input:

enter file name

we1.sh

enter starting line number

2

enter ending line number

5

Output:

The lines displayed between line 2 and line 5 are

Hints

// For keyboard input

/**

 * 1. Prompt starting line

 * 2. Prompt ending line

 * 2. Find difference between two lines

 * 3. Using head and tail command of given file and display all between lines

 */

 d=`expr $el - $sl`

 head -$el $fname|tail -$d// test given file is existing or not if existing display between lines

Try

Write a shell script called displaying last 10 lines of given input file. The script shall read the line

number and display all last lines.

4. Exercises on Shell Programming (Input, Decision and Loop)

4.1 Add2Integer (Input)

Write a shell script called Add2Integers that prompts user to enter two integers. The script shall read

the two integers as int; compute their sum; and print the result. For example,

Enter first integer: 8

Enter second integer: 9

The sum is: 17

Hints

// For keyboard input

/**

 * 1. Prompt user for 2 integers

 * 2. Read inputs as "int"

 * 3. Compute their sum in "int"

 * 4. Print the result

 */

 // Put up prompting messages and read inputs as "int"

 echo enter a value and b value

 read a b // Scan the keyboard for input

 // Compute sum

 sum=`expr $a + $b` or sum=$((a + b))

 // Display result

 echo "The sum is: $sum” // Print with newline

Try

Write a shell script called Swap2Integers that prompts user for two integers. The script shall read the

inputs as int, save in two variables called number1 and number2; swap the contents of the two variables;

and print the results.

4.2 SumProductMinMax3 (Arithmetic & Min/Max)

Write a shell script called SumProductMinMax3 that prompts user for three integers. The script shall

read the inputs as int; compute the sum, product, minimum and maximum of the three integers; and

print the results. For example,

Enter 1st integer: 8

Enter 2nd integer: 2

Enter 3rd integer: 9

The sum is: 19

The product is: 144

The min is: 2

The max is: 9

Hints

 // Prompt and read inputs as "int"

 echo enter 3 numbers to find sum product min and max

 read number1 number2 number3 // Scan the keyboard

 // Compute sum and product use expr keyword

 sum =

 product =

 // Compute min

 // The "coding pattern" for computing min is:

 // 1. Set min to the first item

 // 2. Compare current min with the second item and update min if second item is smaller

 // 3. Repeat for the next item

 min = $number1 // Assume min is the 1st item

 if [$number2 -lt $min] // Check if the 2nd item is smaller than current min

 then

 min = $number2; // Update min if so

 else if [$number3 -lt $min]

 then

 // Continue for the next item

 min = $number3;

 fi

 fi

 // Compute max - similar to min

 // Print results

Try

1. Write a shell script called SumProductMinMax5 that prompts user for five integers. The script

shall read the inputs as int; compute the sum, product, minimum and maximum of the five

integers; and print the results. Use five int variables: number1, number2, ..., number5 to store the

inputs.

4.3 IncomeTaxCalculator (Decision)

The progressive income tax rate is mandated as follows:

Taxable Income Rate (%)

First $20,000 0

Next $20,000 10

Next $20,000 20

The remaining 30

For example, suppose that the taxable income is $85000, the income tax payable is $20000*0% +

$20000*10% + $20000*20% + $25000*30%.

Write a shell script called IncomeTaxCalculator that reads the taxable income (in int). The script

shall calculate the income tax payable (in double); and print the result rounded to 2 decimal places. For

examples,

Enter the taxable income: $41234

The income tax payable is: $2246.80

Enter the taxable income: $67891

The income tax payable is: $8367.30

Enter the taxable income: $85432

The income tax payable is: $13629.60

Enter the taxable income: $12345

The income tax payable is: $0.00

Hints

 // Declare constants first (variables may use these constants)

 // The keyword "final" marked these as constant (i.e., cannot be changed).

 // Use uppercase words joined with underscore to name constants

 TAX_RATE_ABOVE_20K = 0.1

 TAX_RATE_ABOVE_40K = 0.2

 TAX_RATE_ABOVE_60K = 0.3

 // Compute tax payable in "double" using a nested-if to handle 4 cases

 if [$taxableIncome -le 20000] // [0, 20000]

 then

 taxPayable =

 else if [$taxableIncome -le 40000) // [20001, 40000]

 then

 taxPayable =

 else if [$taxableIncome -le 60000] // [40001, 60000]

 then

 taxPayable =

 else // [60001,]

 taxPayable =

 fi

 // Alternatively, you could use the following nested-if conditions

 // but the above follows the table data

 //if [$taxableIncome -gt 60000] // [60001,]

 //then

 // else if [$taxableIncome -gt 40000] // [40001, 60000]

 // then

 // else if [$taxableIncome -gt 20000] // [20001, 40000]

 // then

 // else // [0, 20000]

 //

 //

 // Print results

 Echo "The income tax payable is:

Try

Suppose that a 10% tax rebate is announced for the income tax payable, capped at $1,000, modify your

program to handle the tax rebate. For example, suppose that the tax payable is $12,000, the rebate

is $1,000, as 10% of $12,000 exceed the cap.

4.4 PensionContributionCalculatorWithSentinel (Decision & Loop)

Write a shellscript called PensionContributionCalculatorWithSentinel which shall repeat the

calculations until user enter -1 for the salary. For examples,

Enter the monthly salary (or -1 to end): $5123

Enter the age: 21

The employee's contribution is: $1024.60

The employer's contribution is: $870.91

The total contribution is: $1895.51

Enter the monthly salary (or -1 to end): $5123

Enter the age: 64

The employee's contribution is: $384.22

The employer's contribution is: $461.07

The total contribution is: $845.30

Enter the monthly salary (or -1 to end): $-1

bye!

Hints

 // Read the first input to "seed" the while loop

 SENTINEL=-1

 echo "Enter the monthly salary (or -1 to end): $"

 read salary

 while [$salary -ne $SENTINEL]

 do

 // Read the remaining

 echo "Enter the age:"

 read age

 done

 // Read the next input and repeat

 Echo "Enter the monthly salary (or -1 to end): $")

 read salary

4.5 SalesTaxCalculator (Decision & Loop)

A sales tax of 7% is levied on all goods and services consumed. It is also mandatory that all the price

tags should include the sales tax. For example, if an item has a price tag of $107, the actual price

is $100 and $7 goes to the sales tax.

Write a shell script using a loop to continuously input the tax-inclusive price (in double); compute the

actual price and the sales tax (in double); and print the results rounded to 2 decimal places. The script

shall terminate in response to input of -1; and print the total price, total actual price, and total sales tax.

For examples,

Enter the tax-inclusive price in dollars (or -1 to end): 107

Actual Price is: $100.00, Sales Tax is: $7.00

Enter the tax-inclusive price in dollars (or -1 to end): 214

Actual Price is: $200.00, Sales Tax is: $14.00

Enter the tax-inclusive price in dollars (or -1 to end): 321

Actual Price is: $300.00, Sales Tax is: $21.00

Enter the tax-inclusive price in dollars (or -1 to end): -1

Total Price is: $642.00

Total Actual Price is: $600.00

Total Sales Tax is: $42.00

Hints

 // Declare constants

 SALES_TAX_RATE = 0.07;

 SENTINEL = -1; // Terminating value for input

 // Declare variables

 totalPrice = 0.0, totalActualPrice = 0.0, totalSalesTax = 0.0 // to accumulate

 // Read the first input to "seed" the while loop

 echo "Enter the tax-inclusive price in dollars (or -1 to end): "

 read price

 while [price -ne SENTINEL]

 do

 // Compute the tax

 // Accumulate into the totals

 // Print results

 // Read the next input and repeat

 echo "Enter the tax-inclusive price in dollars (or -1 to end):"

 echo $price

 done

 // print totals

4.6 ReverseInt (Loop with Modulus/Divide)

Write a shell script that prompts user for a positive integer. The script shall read the input as int; and

print the "reverse" of the input integer. For examples,

Enter a positive integer: 12345

The reverse is: 54321

Hints

Use the following coding pattern which uses a while-loop with repeated modulus/divide operations to

extract and drop the last digit of a positive integer.

 // Extract and drop the "last" digit repeatably using a while-loop with modulus/divide operations

 while [$inNumber -gt 0]

 inDigit=`expr $inNumber % 10` // extract the "last" digit

 // Print this digit (which is extracted in reverse order)

 inNumber=`expr $isNumber / 10` // drop "last" digit and repeat

 }

Try

Write a shell script that prompts user for a positive integer. The script shall read the input as int; compute

and print the sum of all its digits.

4.7. Amicable Numbers

Two different numbers are said to be so Amicable numbers if each sum of divisors is equal to the other

number. Amicalble Numbers are: (220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368). For

example,

Enter 1st number: 228

Enter 2nd number: 220

The numbers are Amicable Numbers.

Hints

220 and 284 are Amicable Numbers.

Divisors of 220 = 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110

1+2+4+5+10+11+20+22+44+55+110 = 284

Divisors of 284 = 1, 2, 4, 71, 142

1+2+4+71+142 = 220

Try

Write a shell script called TimeTable that prompts user for the size (a positive integer in int); and

prints the multiplication table as shown:

Enter the size: 10

 * | 1 2 3 4 5 6 7 8 9 10

--

 1 | 1 2 3 4 5 6 7 8 9 10

 2 | 2 4 6 8 10 12 14 16 18 20

 3 | 3 6 9 12 15 18 21 24 27 30

 4 | 4 8 12 16 20 24 28 32 36 40

 5 | 5 10 15 20 25 30 35 40 45 50

 6 | 6 12 18 24 30 36 42 48 54 60

 7 | 7 14 21 28 35 42 49 56 63 70

 8 | 8 16 24 32 40 48 56 64 72 80

 9 | 9 18 27 36 45 54 63 72 81 90

10 | 10 20 30 40 50 60 70 80 90 100

4.8. Capricorn Number

A number is called Capricorn or Kaprekar number whose square is divided into two parts in any

conditions and parts are added, the additions of parts is equal to the number, is called Capricorn or

Kaprekar number. For example,

Enter a number : 45

45 is a Capricorn/Kaprekar number

Enter a number : 297

297 is a Capricorn/Kaprekar number

Enter a number : 44

44 is not a Capricorn/Kaprekar number

Hints

Number = 45

(45)2 = 2025

All parts for 2025:

202 + 5 = 207 (not 45)

20 + 25 = 45

2+ 025 = 27 (not 45)

From the above we can see one combination is equal to number so that 45 is Capricorn or Kaprekar

number.

Try

Write a shell script to generate and show all Kaprekar numbers less than 1000.

5. Exercises on Simulating commands - I

5.1 simulating cat command

Write a program called simulating cat command that reads the file name and displays the file content

to output stream.

Input:

Enter the filename: file1

Output:

displays the content of given file1 to output stream

Hints

 #include<unistd.h>

 // open function used to open existing file

 open(argv[1],O_RDONLY);// file name read from command line arguments

 while((n=read(fd,&buf,1))>0)// while loop to read content from given file character by

 { character

 write(1,&buf,1);// Use write() to display characters to output stream

 } // repeat the while loop upto end of file

Try

Rewrite the above program to append new content to existing file.

5.2 simulating cp command

Write a program called simulating cp command that create duplicate file of exiting file, reads the file

name and writes the file content to new file, repeats the procedure up to end of file.

Input:

Reads existing file

Output:

creates duplicate file and copy content from source file to new file

Hints

 #include<unistd.h>

 // open function used to open existing file

 fd1=open(argv[1],O_RDWR);// read existing file

 fd2=open(argv[2],O_RDWR);//create or open new file

 while((n=read(fd,&buf,1))>0)// while loop to read content from given file character by

 { character

 write(fd2,buf,sizeof(buf));// Use write() to write characters to new file

 } // repeat the while loop up to end of file

Try

Rewrite the above program to simulate cp -R command to recursive copy (including hidden files.

5.3 Simulating rm command

Write a program called simulating rm command that remove exiting file or group of files of given

directory, reads the file name or group of filenames and directory name then removes that related files

from given directory using rm command.

Input:

Reads existing file

Output:

removes source file

Hints

 #include<unistd.h>

 //system function executes linux commands

 system(cd dir) //move to specific directory

 remove("abc.txt");// remove function deletes existing file

Try

Rewrite the above program to simulate rm -i command for interactive remove existing file or group of

files.

5.4 Simulating ls command

Write a program called simulating ls command using low level system calls, that reads particular

directory and displays the list files, subdirectories and executable files to output stream.

Input:

Enter the filename: file1

Output:

displays the content of given file1 to output stream

Hints

 #include<unistd.h>

 // opendir function used to open existing directory

 DIR *dp;

 struct dirent *p;

 dp=opendir(“dir1”);// opens dir is directory name

 while((p=readdir(dp))!=NULL) // while loop to read files from given directory

 {

 printf(“%d\t”,p->d_ino); // displays inode number of file

 printf(“%s\n”,p->d_name);// displays name of the file

 } // repeat the while loop upto end of directory file

 close(dir); //closes open directory

Try

Rewrite the above program to implement ls -l command to display long listing files.

6. Exercises on Simulating commands - II

6.1 Simulating head command

Write a program called simulating head command using system calls, that reads existing file name and

displays the first 10 lines content of file to output stream.

Input:

gcc headcmd.c -o headcmd

./headcmd

Output:

displays the content of given file1 first 10 lines to output stream

Hints

 #include<unistd.h>

 // reads file name from command line arguments

 open(argv[1],O_RDONLY);”);// open function opens file for read only purpose

 while(lseek(read_fd,offset, SEEK_SET) < statFd.st_size)

 // lseek function to move cursor to particular location of given file

 {

 if(read(read_fd, &lu, 1) != -1)

 {// reads line by line

 printf("%c",lu);// displays content line by line

 } // repeat the while loop upto condition fail

 close(fd); //closes open file

 }

Try

Rewrite the above program to implement head -20 command to display top 20 lines.

6.2 Simulating tail command

Write a program called simulating tail command using system calls, that reads existing file name and

displays the last 10 lines content of file to output stream.

Input:

gcc tailcmd.c -o tailcmd./headcmd

./tailcmd file

Output:

displays the content of given file last 10 lines to output stream

Hints

#include<unistd.h>

 // reads file name from command line arguments

/* Allocate space for tail buffer */

 tail = calloc(count, sizeof(char *));

 for (i = 0; i < count; i++) {

 tail[i] = calloc(MAX_LINE_LEN, sizeof(char));

 }

/* Fill circular tail buffer until EOF */

while (fgets(tail[tailX], MAX_LINE_LEN, stdin) != NULL) {

 tailX = (tailX + 1) % count;

 if (tailX == headX) {

 headX = (headX + 1) % count;

 }

 }

/* Display tail */

i = tailX;

do {

 printf("%s", tail[i]);

 i = (i + 1) % count;

 } while (i != tailX);

return 0;

 }

Try

Rewrite the above program to implement tail command to display last lines with option, option is

number of lines take as input.

7. Exercises on Simulating commands - III

7.1 Simulation of mv command

Write a program called simulation of mv command, which prompts user for source file and

destination file to rename file. The output shall look like:

Input:

$gcc mvcmd.c -o mvcmd

$/mvcmd xx movefile

Output:

#renames source file to destination file.

Hints

 #include<unistd.h>

 // Define variables

 int main()

 {

 open(argv[1],O_RDONLY);// opens existing file

 creat(argv[2],S_IWUSR);// creates new file

 rename(fd1,fd2); // rename source file with new file

 unlink(argv[1]);//removes existing file

 }

Try

Rewrite the above program to implement mv command to move files from source directory to new

directory.

7.2 Simulation of nl command

Write a program called simulation of nl command, which prompts the user for a file name and read line

by line and display line number before each line. For example,

Input: $ gcc nlprg.c -o nlprg

$./nlprg sample1

 1 aaaaaaaaaa

 2 sssssssssss

 3 dddddddddd

 4 ffffffffff

 5 gggggggggg

Hints

 #include<unistd.h>

 // Define variables

 int main()

 {

 while(lseek(read_fd,offset, SEEK_SET) < statFd.st_size)

 {

 if(read(read_fd, &lu, 1) != -1)

 {

 printf("%c",lu);

 offset++;

 if(lu=='\n')

 {

 printf(" %d",++counter); //counter++;

 }

 }

 }

 }

Try

Rewrite the above program to implement nl command to display special symbol before each line.

8. Exercises on Signal Handling

8.1 Signal handler function with SIGINT

Write a program called signal handler to catch SIGINT, SIGINT signal which interrupts the process by

pressing ctrl + c. For example,

Input

$ gcc signalpg.c -o sp

Output:

$./sp

received SIGINT

Hints

// Declare variables

#include<unistd.h>

void sig_handler(int signo) // function definition

 {

 if (signo == SIGINT)

 printf("received SIGINT\n");

 }

 int main(void)

 {

 if (signal(SIGINT, sig_handler) == SIG_ERR) // function calling

 printf("\ncan't catch SIGINT\n");

 // A long long wait so that we can easily issue a signal to this process

 while(1)

 sleep(1);

 }

8.2 Signal handler function with SIGDFL

Write a program called signal handler to catch SIGINT, SIGINT signal which interrupts the process by

pressing ctrl + c, SIG_DFL signal do default action i.e. terminates the current process. For example,

Input

$ gcc signalpg.c -o sp

Output:

$./sp

#Press ctrl + c, Process terminates automatically.

Hints

// Declare variables

#include<unistd.h>

void sig_handler(int signo) // function definition

 {

 if (signo == SIGINT)

 printf("received SIGINT\n");

 }

 int main(void)

 {

 if (signal(SIGINT, SIG_DFL) == SIG_ERR) //default action

 printf("\ncan't catch SIGINT\n");

 // A long long wait so that we can easily issue a signal to this process

 while(1)

 sleep(1);

 }

8.3 Signal handler function with SIGKILL

Write a program called signal handler to catch SIGINT, SIGINT signal which interrupts the process by

pressing ctrl + c, SIG_DFL signal do default action i.e. terminates the current process. For example,

Input

$ gcc signalpg.c -o sp

Output:

$./sp

#Press ctrl + DEL, Process ignores SIGKILL signal.

Hints

#include<unistd.h>

void sig_handler(int signo) // function definition

 {

 if (signo == SIGINT)

 printf("received SIGINT\n");

 }

 int main(void)

 {

 if (signal(SIGKILL, SIG_IGN) == SIG_ERR) //ignoring signal

 printf("\ncan't catch SIGINT\n");

 // A long long wait so that we can easily issue a signal to this process

 while(1)

 sleep(1);

 }

Try

Rewrite the above program to generate SIGABRT signal and call function to display message process

aborted.

9. Exercises on Inter Process Communication (IPC)

9.1 One way communication using pipe

Write a program to implement one way communication using pipes. The program shall execute pipe

function, stores data at one end reads the data from other end, fork function creates new process and

exchange data between related process. For examples,

Input:

$ gcc pipepg.c -o pp

$./pp hello

Ouput:world

Hints

Use the following coding pattern which uses a pipe, fork function to exchange data between to related

process.

one way communication using pipes

int main(void)

 {

declare variables

if (pipe(fd) < 0) //execute pipe function to create pipe

printf("pipe error");

if ((pid = fork()) < 0) // creates new process is called child process

{

printf("fork error");

}

else if (pid > 0) // parent process writes the data to pipe one end

 { /* parent */

 write(fd[1], "hello world\n", 12);

 } else

 { /* child */

 read(fd[0], line, MAXLINE); // child process reading data from pipe

 write(STDOUT_FILENO, line, n); // displaying data to output stream

}

Try

Rewrite the above program to implement two way communication using pipes. The program shall

execute two pipe functions, one fork function exchange data between related process between parent

and child process.

9.2 One way communication using fifo function

Write a program to implement one way communication using fifo function. The program shall execute

mkfifo function, creates fifo file, stores data in fifo file by one process and other process has to read by

other process, it exchanges data between un-related process. For example,

Input:

$ gcc producer.c -o producer #first window

$gcc consumer.c -o consumer # second window

Output:

$./producer #first window

$./consumer # second window

Producer:

Producer sent: hai #first window

Consumer read: hai # second window

Producer sent: good morning #first window

Consumer read: good morning # second window

Producer sent: welcome #first window

Consumer read: welcome # second window

$./pp hello

Ouput:world

Hints

Use the following coding pattern which uses a mkfifo function to create fifo file and exchange data

between to un-related process.

one way communication using fifos

//FIFO or Unnamed(Child Process)

#include<unistd.h>

int main()

{

 //declare variables

 open(FIFO_NAME, O_RDONLY);//Open existing fifo file

 while(1) //repeat while loop upto reading end of file

{

 n=read(fd, r, MAXSIZE);

 if(n > 0)

 printf("\nConsumer read: %s", r);

}

}

//FIFO or Unnamed(Parent Process)

#include<unistd.h>

int main()

{

// declare variables

fifoid=mkfifo(FIFO_NAME, 0755); // create fifo file

while(1)

{

 // write content to fifo file

 read(0, w, MAXSIZE);

 n=write(fd, w, MAXSIZE);

 if(n > 0)

 printf("\nProducer sent: %s", w);

}

}

Try

Rewrite the above program to implement two way communication using fifos.

10. Exercises on Message Queues

10.1 storing messages in Message queues (sender)

Write a program (sender.c) to create a message queue with read and write permissions to write 3

messages to it with sequence order. For example,

Input:

$gcc msend.c -o msend

Output:

$./msend

Enter the message to send: hi

Enter the message to send: hello, how are you

Enter the message to send: bye

Hints

Create message queue or open an existing using msgget() which returns a common key in order to gain

access to the queue and communicating between different process using msgsnd() and msgrcv(). Each

message is given an identification or type so that processes can select the appropriate message.

#include<unistd.h>

#include<string.h>

int main()

{

//declaring variables

struct

{

 long mtype;

 char mtext[15]; //declaring message structure

 }message;

 msgget((key_t)10,IPC_CREAT|0666); //create message queue with key 10

 msgsnd(qid,&message,len+1,0); //store messages in existing message queue

}

Try

Rewrite the above program (sender.c) to create a message queue with read and write permissions to

write 3 messages to it with different priority numbers.

10.2 Retrieving messages from message queues (receiver)

Write a C program (receiver.c) that receives the messages (from the above message queue as specified

and displays them to output stream. For example

Input:

$ $gcc mrecv.c -o mrecv

Output

$./mrecv

Message received from sender is: hi

Message received from sender is: hello, how are you

Message received from sender is: bye

Hints

A message queue is a linked list of messages stored within the kernel and identified by a message queue

identifier. A new queue is created or an existing queue opened by msgget(). New messages are added

to the end of a queue by msgsnd().Messages are fetched from a queue by msgrcv(). Fetch the messages

in a first-in, first-out order. All processes can exchange information through access to a common system

message queue. Process must share a common key in order to gain access to the queue in the first

place.

#include<sys/ipc.h>

#include<sys/msg.h>

main()

{

//declaring variables

struct

{

long mtype;

char mtext[15]; //declaring message structure

}buff;

msgget((key_t)10,IPC_CREAT|0666);

 //accessing existing message queue with key 10

if(msgrcv(qid,&buff,15,i,0)==-1)//retrieve messages from message queue

printf("Message received from sender is %s\n",buff.mtext);

 //displaying messages to output stream

}

Try

Rewrite the above program (receiver.c) to access existing message queue with read and write

permissions to retrieve and display 3 messages to output stream with different priority numbers.

11. Exercises on Shared Memory

11.1 Sharing memory segment between processes

To write a program to implement inter process communication using shared memory. The program

creates shared memory segment and stores data, multiple users can access data at the same time. For

example:

Input:cc shmem.c

Output:./a.out

Write Data :hai

child: Data read from memory: hai

parent: Data written in memory: hai

Hints

Shared memory is the fastest method of interprocess communication (IPC) under Linux and other Unix-

like systems. The system provides a shared memory segment which the calling process can map to its

address space. After that, it behaves just like any other part of the process's address space due to which

as soon as the first process writes data in the shared memory segment, it becomes available to the

second process..

#include <sys/ipc.h>

#include <sys/shm.h>

int main()

{

 // ftok to generate unique key

 key_t key = ftok("shmfile1",10); //generates key

 int child=fork();

if(!child)

{

 // shmget returns an identifier in shmid

 int shmid = shmget(key,1024,0666|IPC_CREAT);

 // shmat to attach to shared memory

 char *str = (char*) shmat(shmid,(void*)0,0);

 printf("Write Data : ");

 gets(str);

 printf("parent: Data written in memory: %s\n",str);

}

 else

 { // ftok to generate unique key

 key_t key = ftok("shmfile1",10);

 // shmget returns an identifier in shmid

 int shmid = shmget(key,1024,0666|IPC_CREAT);

 // shmat to attach to shared memory

 char *str = (char*) shmat(shmid,(void*)0,0);

 printf("child :Data read from memory: %s\n",str);

 //detach from shared memory

 shmdt(str);

 // destroy the shared memory

 shmctl(shmid,IPC_RMID,NULL);

 }

}

Try

Rewrite the above program to implement inter process communication using shared memory without

fork function. The program creates shared memory segment and stores data (sender process), multiple

users can access data (receiver process) at the same time. For example:

12. Exercises on Socket Programming

12.1 echo Client Server Program using TCP elementary functions

Write client and server programs (using c) for interaction between server and client processes using TCP

Elementary functions. For example,

Input:

$ gcc TCP_server.c -o server # first window

$gcc TCP_client.c -o client # second window

Output:

$./server # first window

Listening # first window

$./client # second window

Data received: Hello World # second window

Hints

Socket used to communication between unrelated process which are connected in the network. TCP is

connection-oriented protocol. Data send and receive in TCP (Transmission Control Protocol) is reliable.

Sockets are the "virtual" endpoints of any kind of network communications done between 2 hosts over

in a network. A socket is a combination of IP address and port on one system. So on each system a

socket exists for a process interacting with the socket on other system over the network. Three way

handshake is the procedure that is followed to establish a TCP connection between two remote hosts.

 ##server side program

 #include <sys/socket.h>

 #include <netinet/in.h>

 int main(){

 // declare variables

 struct sockaddr_in serverAddr;

 struct sockaddr_storage serverStorage;

 socklen_t addr_size;

 /*---- Create the socket. The three arguments are: ----*/

 /* 1) Internet domain 2) Stream socket 3) Default protocol*/

 welcomeSocket = socket(PF_INET, SOCK_STREAM, 0);

 /*---- Configure settings of the server address struct ----*/

 /* Address family = Internet */

 serverAddr.sin_family = AF_INET;

 /* Set port number, using htons function to use proper byte order */

 serverAddr.sin_port = htons(7891);

 /* Set IP address to localhost */

 serverAddr.sin_addr.s_addr = inet_addr("127.0.0.1");

 /* Set all bits of the padding field to 0 */

 memset(serverAddr.sin_zero, '\0', sizeof serverAddr.sin_zero);

 /*---- Bind the address struct to the socket ----*/

 bind(welcomeSocket, (struct sockaddr *) &serverAddr, sizeof(serverAddr));

 /*---- Listen on the socket, with 5 max connection requests queued ----*/

 if(listen(welcomeSocket,5)==0)

 printf("Listening\n");

 else

 printf("Error\n");

 /*---- Accept call creates a new socket for the incoming connection ----*/

 addr_size = sizeof serverStorage;

 newSocket = accept(welcomeSocket, (struct sockaddr *) &serverStorage, &addr_size);

 /*---- Send message to the socket of the incoming connection ----*/

 strcpy(buffer,"Hello World\n");

 send(newSocket,buffer,13,0);

 return 0;

}

##client side program

int main()

{

 //declaring variables

 struct sockaddr_in serverAddr;

 socklen_t addr_size;

 /*---- Create the socket. The three arguments are: ----*/

 /* 1) Internet domain 2) Stream socket 3) Default protocol*/

 clientSocket = socket(PF_INET, SOCK_STREAM, 0);

 /*---- Configure settings of the server address struct ----*/

 /* Address family = Internet */

 serverAddr.sin_family = AF_INET;

 /* Set port number, using htons function to use proper byte order */

 serverAddr.sin_port = htons(7891);

 /* Set IP address to localhost */

 serverAddr.sin_addr.s_addr = inet_addr("127.0.0.1");

 /* Set all bits of the padding field to 0 */

 memset(serverAddr.sin_zero, '\0', sizeof serverAddr.sin_zero);

 /*---- Connect the socket to the server using the address struct ----*/

 addr_size = sizeof serverAddr;

 connect(clientSocket, (struct sockaddr *) &serverAddr, addr_size);

 /*---- Read the message from the server into the buffer ----*/

 recv(clientSocket, buffer, 1024, 0);

 /*---- Print the received message ----*/

 printf("Data received: %s",buffer);

 return 0;

}

Try

Write client and server programs (using c) for interaction between server and client processes using TCP

Elementary functions client request particular file and server responds with file content.

12.2 Client Server Program using UDP elementary functions

Write client and server programs (using c) for interaction between server and client processes using

UDP Elementary functions to convert given string to upper case.

Input:

$ gcc UDP_server.c -o server # first window

$gcc UDP_client.c -o client # second window

Output:

$./server # first window

$./client # second window

Type a sentence to send to server: # second window

good morning # second window

You typed: good morning # second window

Received from server: GOOD MORNING # first window

Type a sentence to send to server: # second window"

Hints

UDP there is no need of system calls listen and accept since it is a connectionless protocol

 /************* UDP SERVER CODE *******************/

#include <sys/socket.h>

int main()

{

 //declare variables

 struct sockaddr_in serverAddr, clientAddr;

 struct sockaddr_storage serverStorage;

 socklen_t addr_size, client_addr_size;

 /*Create UDP socket*/

 udpSocket = socket(PF_INET, SOCK_DGRAM, 0);

 /*Configure settings in address struct*/

 serverAddr.sin_family = AF_INET;

 serverAddr.sin_port = htons(7891);

 serverAddr.sin_addr.s_addr = inet_addr("127.0.0.1");

 memset(serverAddr.sin_zero, '\0', sizeof serverAddr.sin_zero);

 /*Bind socket with address struct*/

 bind(udpSocket, (struct sockaddr *) &serverAddr, sizeof(serverAddr));

 /*Initialize size variable to be used later on*/

 addr_size = sizeof serverStorage;

 while(1)

{

/* Try to receive any incoming UDP datagram. Address and port of

 requesting client will be stored on serverStorage variable */

 nBytes = recvfrom(udpSocket,buffer,1024,0,(struct sockaddr *)&serverStorage, &addr_size);

/*Convert message received to uppercase*/

 for(i=0;i<nBytes-1;i++)

 buffer[i] = toupper(buffer[i]);

/*Send uppercase message back to client, using serverStorage as the address*/

 sendto(udpSocket,buffer,nBytes,0,(struct sockaddr *)&serverStorage,addr_size);

 }

 return 0;

}

/************* UDP CLIENT CODE *******************/

#include <sys/socket.h>

int main()

{

 //declare variables

 struct sockaddr_in serverAddr;

 socklen_t addr_size;

 /*Create UDP socket*/

 clientSocket = socket(PF_INET, SOCK_DGRAM, 0);

 /*Configure settings in address struct*/

 serverAddr.sin_family = AF_INET;

 serverAddr.sin_port = htons(7891);

 serverAddr.sin_addr.s_addr = inet_addr("127.0.0.1");

 memset(serverAddr.sin_zero, '\0', sizeof serverAddr.sin_zero);

 /*Initialize size variable to be used later on*/

 addr_size = sizeof serverAddr;

 while(1)

 {

 printf("Type a sentence to send to server:\n");

 fgets(buffer,1024,stdin);

 printf("You typed: %s",buffer);

 nBytes = strlen(buffer) + 1;

 /*Send message to server*/

 sendto(clientSocket,buffer,nBytes,0,(struct sockaddr *)&serverAddr,addr_size);

 /*Receive message from server*/

 nBytes = recvfrom(clientSocket,buffer,1024,0,NULL, NULL);

 printf("Received from server: %s\n",buffer);

 }

}

Try

Write client and server programs (using c) for interaction between server and client processes using

UDP Elementary functions client sends number to server and server runs reverse of given number and

responds with result.

V. TEXT BOOKS:

1. Sumitabha Das, “Your Unix The Ultimate Guide”, Tata McGraw-Hill, New Delhi, India, 2007.

2. B. A. Forouzan and R. F. Gilberg, “Unix and Shell Programming”, Cengage Learning.

VI. REFERENCE BOOKS:

1. Robert Love, “Linux System Programming”, O'Reilly, SPD.

2. Stephen G. Kochan, Patrick Wood, “Unix Shell Programming”, Sams publications, 3rd edition, 2007.

3. T. Chan, “Unix System Programming using C++”, Prentice Hall India, 1999.

VII. WEB REFERENCES:

1. http://spoken-tutorial.org/tutorialsearch/?search_foss=Linux&search_language=English

2. https://www.redhat.com/en/files/resources/en-rhel-whats-new-in-rhel-712030417.pdf

3. http:// www.tutorialspoint.com/unix/

4. http://cse09-iiith.virtual-labs.ac.in

VIII. MATERIALS ONLINE

1. Course Template

2. Lab Manual

