
COURSE CONTENT 
 

MICROPROCESSORS AND MICROCONTROLLERS LABORATORY  

V Semester: ECE / EEE 

Course Code Category Hours / Week Credits Maximum Marks 

AECC31 Core 
L T P C CIA SEE Total 

0 0 3 1.5 30 70 100 

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36 

Prerequisite: Digital System Design 
 

 

I. COURSE OVERVIEW: 

This laboratory course will facilitate the students to program 8086 microprocessor and 8051 

microcontrollers. Win862 software will be used for writing and debugging assembly language programs. 

The course includes performing arithmetic and logical operations, string manipulations, code conversions 

and interfacing of I/O devices to processor/controller. The hands-on experience acquired by the student’s 

during the course makes them to carry out processor/controller-based projects and extend their knowledge 

on the latest trends and technologies in the field of embedded system. 

 

II.COURSE OBJECTIVES: 

The students will try to learn:  

I. Assembly language programming skills ranging from simple arithmetic operations to interfacing real 

time systems. 

II. The usage of software tools to design, debug and test microprocessor/microcontroller based projects 

using assembly language programming. 

III. The design of microcomputer and microcontroller based real-time applications in the fields of 

communication systems, home based automation systems, automobiles and unmanned applications 

 

III. COURSE OUTCOMES: 

At the end of the course students will be able to:  
 

CO1 Make use of emulators and assemblers for writing, compiling, and running an assembly 

language programs on training boards. 

CO2 Develop Assembly language programs for accomplishing code conversions, string 

manipulations and sorting of numbers. 

CO3 Choose serial or parallel communication for transmitting the data between microprocessor or 

microcontroller and peripherals. 

CO4 Utilize Analog to Digital and Digital to Analog converters with processor or controller for 

data conversion. 

CO5 Select suitable registers of microcontroller and write assembly language program to verify 

timer or counter operations. 

CO6 Build an interface between processor or controller and peripherals to provide solutions to the 

real-world problems 

 

 
 
 
 



IV. COURSE CONTENT: 

 

Exercises for Microprocessors and Microcontrollers Laboratory 

 
Note: Students are encouraged to bring their own laptops for laboratory 

practice sessions. 
 

1.  Getting Started Exercises 

1.0 Introduction: 

 Install Win862 assembler software. 

 Interface desktop to 8086 microprocessor kit through RS232 serial communication cable. 

 Then write the assembly code using instruction set and logical function of program 

 Decode and run the program execution 

 Check the result in register pallet or memory location. 

1.1 Arithmetic Operations 

 The arithmetic instructions include addition, subtraction, multiplication, division, comparison, 

negation, increment, and decrement.  

 Write a assembly level language program using arithmetic instructions to find the addition, 

subtraction and multiplication between the unsigned numbers. 
 

Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

Input: numbers = [08, 02] 

Output:  

i. For addition : 0A 

ii. For subtraction : 06 

iii. For multiplication : 0010 

find_addition of unsigned numbers(8 bit): 
# Write code here 
     … 
     … 
 
find_subtraction of unsigned numbers (8 bit): 
# Write code here 
     … 
     … 
find_multiplication of unsigned numbers (8 bit): 
# Write code here 
     … 
     … 
 

 

 

 

 



1.2 Logical Operations 

 The logic instructions include AND, OR, Exclusive-OR, NOT, shifts, rotates, and the logical 

compare (TEST). 

 Using logical instructions to find the logical operations like AND,OR,EX-OR etc between the 

unsigned numbers. 

Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

Input: 05 and 07 

Output:  

i. For AND logic : 0A 

ii. For OR logic : 06 

iii. For EX-OR logic : 0010 

 
find_AND logic of unsigned numbers(8 bit): 
# Write code here 
     … 
 
find_ OR logic of unsigned numbers (8 bit): 
# Write code here 
     … 
 
find_ EX-OR logic of unsigned numbers (8 bit): 
# Write code here 

 

1.3 Shift Operations 

Instructions to perform shift operations 

 SHL/SAL − Used to shift bits of a byte/word towards left and put zero(S) in LSBs. 

 SHR − Used to shift bits of a byte/word towards the right and put zero(S) in MSBs. 

 SAR − Used to shift bits of a byte/word towards the right and copy the old MSB into the new MSB. 

 Syntax:  SHL/SAR/SHR Register, Bits to be shifted 

Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

Input:  = 12(0001 0010) 

No of shifts = 04 

Output:  

 For SHL/SAL – 20 (0010 0000) 

 For SHR – 01 (0000 0001) 

 For SAR − 01 (0000 0001) 

 

# Program to perform shift operations for given numbers 
 

SHL/SAL logic: 

 # Write code here 
… 

SAR logic: 



# Write code here 
 … 

SHR  logic: 

 # Write code here 

 

1.4 Rotate Operations 

Write a assembly level language program using instructions sets to find the rotation operations between 

the unsigned numbers. 

Instructions to perform rotate operations 

 ROL − Used to rotate bits of byte/word towards the left, i.e. MSB to LSB and to Carry Flag [CF]. 

 ROR − Used to rotate bits of byte/word towards the right, i.e. LSB to MSB and to Carry Flag [CF]. 

 RCR  − Used to rotate bits of byte/word towards the right, i.e. LSB to CF and CF to MSB. 

 RCL  − Used to rotate bits of byte/word towards the left, i.e. MSB to CF and CF to LSB. 

 

 Syntax:  ROL/ROR/RCR/RCL  Register, Bits to be shifted 

Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

 

Input:  = 12(0001 0010) 

No of shifts = 04 

Output:  

 For ROL – 

 For ROR –  

 For RCR –  

 For RCL −  

# Program to perform rotate operations for given numbers 
 

ROL logic: 

 # Write code here 
… 

ROR  logic: 

# Write code here 
 … 

RCR  logic: 

 # Write code here 
… 

RCL  logic: 

 # Write code here 

 

 

 

 

 

 

 



1.5 Multibyte Addition 

A multibyte character can hold code-point values greater than 255. One multibyte character can range 2 - 

4 bytes in length. Asian code sets are multibyte code sets; they contain both single-byte and multibyte 

characters. 

 

The multi-byte addition program adds only in sets of 8-bits. The LSD of the two numbers is added first. 

Now, the next set of 8-bits is added, taking into consideration the status of carry due to the previous 

addition. 

 

Write an 8086 Assembly Language program to Add multi byte numbers and store the result in memory 

Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

 

Input and Output: count of inputs=03 

Input Output 

Memory Data Memory Data 

2000  4000  

2001  4001  

2002  4002  

3000    

3001    

3002    

 

# Multibyte addition program: 

BACK: MOV AL, [SI]  

ADD AL, [BX]  

MOV [DI], AL  

INC SI  

INC BX  

INC DI  

DEC CX  

JNZ BACK  

INT 03 

 

1.6 Multibyte Subtraction: 

A multibyte character can hold code-point values greater than 255. One multibyte character can range 2 - 

4 bytes in length. Asian code sets are multibyte code sets; they contain both single-byte and multibyte 

characters. 

 

The multi-byte addition program adds only in sets of 8-bits. The LSD of the two numbers is added first. 

Now, the next set of 8-bits is added, taking into consideration the status of carry due to the previous 

addition. 

 

 



Write an 8086 Assembly Language program to Add multi byte numbers and store the result in memory 

Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

 

Input and Output: count of inputs=03 

Input Output 

Memory Data Memory Data 

2000  4000  

2001  4001  

2002  4002  

3000    

3001    

3002    

 

 

# Multibyte subtraction program: 

BACK: MOV AL, [SI] SUB AL, [BX]  

MOV [DI], AL  

INC SI  

INC BX  

INC DI  

DEC CX  

JNZ BACK  

INT 03 

 

Try: Write an assembly language program for performing arithmetic and 

logical operations of two 16-bit numbers 

A 16-bit number is a number with 16 digits, where the largest number is 65,535. A 16-bit register can 

store a positive number between 0 and 216 − 1, or 65,535.  

Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

Write an assembly language program for performing arithmetic operations of two 16-bit numbers 
 

Input:   AX =4343 

BX = 1111 

Output: 5454 

For_ arithmetic operations: 
# Write code here 

-- 

-- 

ADD AX, BX 

-- 

# Write code here 

-- 



-- 

-- 

 

For_ Logical operations: 
# Write code here 

-- 

-- 

-- 

 

2.Exercises on matrices, code conversions  

 

2.1 Matrix Addition 

Given two N x M matrices. Find a N x M matrix as the sum of given matrices each value at the sum of 

values of corresponding elements of the given two matrices.  

Iterate over every cell of matrix (i, j), add the corresponding values of the two matrices and store in a 

single matrix i.e. the resultant matrix. 

Input and Output: 

Input Matrix 1:               Input Matrix 2:                    Output: 

11    22    33                 66    55    44                   77       77      77 

44    55    66                 66    55    44                   AA    AA    AA 

77    88    99                 66    55    44                  DD    DD    DD 

# Implementation of above approach 
 
To perform the addition of two 3x3 matrices using Assembly language for 8086 
microprocessors.  

# Write code here 
… 
 

 

2.2 Matrix Multiplication 

Given two N x M matrices. Find a N x M matrix as the product of given matrices each value at the 

product  of values of corresponding elements of the given two matrices. Iterate over every cell of matrix    

(i, j), multiply the corresponding values of the two matrices and store in a single matrix i.e. the resultant 

matrix. 

Input and Output: 

    Matrix 1:               Matrix 2:                    Output: 

11    22    33            66    55    44            1E      1E      1E 

44    55    66            66    55    44            3C     3C      3C  

77    88    99            66    55    44            5A     5A      5A 

 



 

# Implementation of above approach 
 
To perform the multiplication of two 3x3 matrices using Assembly language for 8086 
microprocessor.  
# Write code here 
… 

 

2.3 Packed BCD number to Unpacked BCD number 

Write a program to convert the codes from packed BCD to unpacked BCD number 

They can only understand the data in the form of 0’s and 1’s. Some of them are the Binary number system, 

Octal number system, Hexadecimal number system, etc. To make the text understandable by computers 

ASCII codes are used.  

Internal converters are used for converting data from one format to another. In this the code conversion 

involves operations like Packed BCD to Unpacked BCD, BCD to ASCII, Hexadecimal number to ASCII 

number. The microprocessor understands the binary/hex number system. 

Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

Instructions to perform shift operations 

 SHL/SAL − Used to shift bits of a byte/word towards left and put zero(S) in LSBs. 

 SHR − Used to shift bits of a byte/word towards the right and put zero(S) in MSBs. 

 SAR − Used to shift bits of a byte/word towards the right and copy the old MSB into the new MSB. 

 Syntax:  SHL/SAR/SHR Register, Bits to be shifted 

Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

 

                       Input                                           Output 

2000 72 AH 07 

  AL 02 

# Packed BCD to Unpacked BCD 
MOV AX,0000  
MOV AL,72  
MOV AH,AL  
AND AL,0F  
MOV CL,04  
SHR AH,CL  
INT 03 

 

2.4 BCD to ASCII conversion 

Given an instruction set of 8086 microprocessor, write a program to convert a number from BCD to ASCII  

Input:  

DATA: 98H in memory location  

Output: 



DATA: 38H in memory location 1 and  

           39H in memory location 2 

# BCD to ASCII conversion 
MOV AL,98  
MOV AH,AL  
AND AL,0F  
MOV CL,04  
SHR AH,CL  
OR AX,3030  
INT 03 

 

2.5 Covert Hexadecimal number to ASCII number 

Given the Hexadecimal value string as input, the task is to convert the given hexadecimal value string into 

their corresponding ASCII format string. 

Example: 

Input: 2050 E4 (Hex data) 

Output: 

2051 34 (ASCII code for 4) 

2052 45 (ASCII code for E)  

 

The “Hexadecimal” or simply “Hex” numbering system uses the Base of 16 system. Being a Base-16 

system, there are 16 possible digit symbols. Hexadecimal number uses 16 symbols {0, 1, 2, 4, 5, 6, 7, 8, 9, 

A, B, C, D, E, F} to represent all numbers. Here, (A, B, C, D, E, F) represents (10, 11, 12, 13, 14, 15).  

ASCII stands for American Standard Code for Information Interchange. ASCII is a standard that assigns 

letters, numbers, and other characters within the 256 slots available in the 8-bit code. 

# Hexadecimal number to ASCII number 
  
MOV SI,2000  
MOV DI,3000  
MOV CX,0003  
UP MOV AL,[SI]  
CMP AL,0A  
JC FWD  
ADD AL,07  
FWD OR AL,30  
MOV [DI], AL  
INC SI  
INC DI  
DEC CX  
JNZ UP  
INT 03 

 

2.6 ASCII to BCD conversion 

This program can change ASCII value of a number to its BCD (Decimal) form. The ASCII values of the 

numbers are like below: 



ASCII (in Hex) 30 31 32 33 34 35 36 37 38 39 

BCD 00 01 02 03 04 05 06 07 08 09 

  

From this table we can easily find that the last nibble of the ASCII value is actually the BCD equivalent. So 

to take the last nibble we have masked the upper nibble, and take the lower nibble as result. 

 Input: 39 and 38 

 Output: 89 

 

# Convert ASCII to BCD     
# Class to convert the expression 
MOV AL,39 
MOV AH,38 
AND AL,0F 
SHL AH,04 
OR AL,AH 
INT 03 
 

 

3.  Exercises on Sorting and string manipulation 

3.1 Sort the number in ascending order 

In this sorting technique there will be n passes for n different numbers. In i
th

 pass the i
th

 largest element 

will be placed at the end. This is comparison based sort. We taking two consecutive numbers, compare 

them, and then swap them if the numbers are not in correct order. The following diagram is showing how 

the sorting is working. 

 

 Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

 

Input: 06, CF, 2C, 51, 45, 24, 3E 

Output: 06, 24, 2C, 3E, 45, 51, CF 

 

# Sorting ascending order  
MOV AX,0000  
MOV CH,0004  
DEC CH  
UP1 : MOV CL,CH  
MOV SI,2000  
UP:  MOV AL,[SI]  
INC SI  
CMP AL,[SI]  
JC DOWN  
XCHG AL,[SI]  
DEC SI  
MOV [SI],AL  
INC SI  
DOWN : DEC CL  



JNZ UP  
DEC CH  
JNZ UP1  
INT 03 

 

3.2 Sort the number in descending order 

Descending order means the largest or last in the order will appear at the top of the list: 

 For numbers or amounts, the sort is largest to smallest. Higher numbers or amounts will be at the 

top of the list. 

 For letters/words, the sort is alphabetical from Z to A. 

 For data with numbers and letters/words, such as address lines, the sort is most likely 

alphanumeric meaning Z to A is sorted first then followed by 9-0. 

This is comparison based sort. We taking two consecutive numbers, compare them, and then swap them if 

the numbers are not in correct order 

Input: arr = [11, 12, 22, 25, 64] 

Output: arr = [64, 25, 12, 22, 11] 

# Implementation of selection sort 
# Implementation of Bubble Sort   
 
def descending order Sort(arr): 

#write code here 
 … 
 
MOV AX,0000  
MOV CH,0004  
DEC CH  
UP1 : MOV CL,CH  
MOV SI,2000  
UP:  MOV AL,[SI]  
INC SI  
CMP AL,[SI]  
JNC DOWN  
XCHG AL,[SI]  
DEC SI  
MOV [SI],AL  
INC SI  
DOWN : DEC CL  
JNZ UP  
DEC CH  
JNZ UP1  
INT 03 

 

 

 

 



3.3 Insert a byte 

String is a group of bytes/words and their memory is always allocated in a sequential order. String is 

either referred as byte string or word string. Here we will see some instructions which are used to 

manipulate the string related operations 

Preparation: 8086 Architecture, Instruction set of 8086 and Register-Memory Organization 

 

Inputs 

2000-01 

  

Outputs 

3000-01 

 

2001-02  3001-02  

2002-03  3002-03  

2003-05  3003-04  

2004-06  3004-05  

5000-03  3005-06  

7000-04    

# Program for insert a byte in a string 
 
MOV SI,2000H 
MOV DI,3000H 
MOV BX,5000H 
MOV CX,0005H 
CLD 
L1:MOV AL,[SI] 
CMP AL,[BX] 
JZ L2 
MOVSB 
LOOP L1 
JMP L3 
L2: MOVSB 
MOV BX,7000H 
MOV AL,[BX] 
MOV [DI],AL 
DEC CX 
INC DI 
REP MOVSB 
L3:INT 3 

 

3.4 Delete a byte 

CLD instruction is used to clear the directional flag, i.e., DF=0. Now, value of SI and DI will be increased. 

 SI=SI+1 

 DI=DI+1  

REP instruction is used to repeat the step until the value of CX is not equal to zero and the value of CX is 

decremented by one at every step, i.e., 

CX=CX-1  

MOVSB instruction is used to transfer bytes only from source memory location (MADS) to destination 

memory location (MAES). 



MADS-->MAES 

Where, MADS=DS*10+SI 

MAES=ES*10+DI  

Here, value of SI and DI is updated automatically. 

if DF=0, SI=SI+1 and DI=DI+1   

Inputs 

2000-01 

 Outputs 

3000-01 

 

2001-02  3001-02  

2002-03  3002-04  

2003-04  3003-05  

2004-05    

5000-03    

 
# Delete a byte in a given string 
 
MOV SI,2000H 
MOV DI,3000H 
MOV BX,5000H 
MOV CX,0005H 
CLD 
L1:MOV AL,[SI] 
CMP AL,[BX] 
JZ L2 
MOVSB 
LOOP L1 
JMP L3 
L2:INC SI 
DEC CX 
REP MOVSB 
L3:INT 03H 

 

3.5 Searching of a number in a string 

Search a number in a string of 5 bytes, store the offset where the element is found and the number of 

iterations used to find the number 

Inputs 
2000-01 

 Outputs 
3000-02 

 

 

2001-02  AH-01  

2002-03    

2003-04 

5000-02 

   

 

# Searching of  a number  
MOV CX, 0004 
MOV AX,0000 



MOV SI,2000 
MOV BX,3000 
UP:MOV AL,[SI] 
CMP AL,[BX] 
JZ DOWN 
INC SI 
DEC CL 
JNZ UP 
MOV AH,00 
JMP L3 
DOWN: DEC CL 
MOV AH,01 
MOV [DI], AH 
L3:INT 3 

 

3.6 Transfer a block of data 

program to transfer a block of 4 bytes, starting source address and transfer the block at destination 

address by using string instructions. 

MOVSB instruction is used to transfer bytes only from source memory location (MADS) to destination 

memory location (MAES). 

MADS-->MAES 

Where, MADS=DS*10+SI 

MAES=ES*10+DI  

Here, value of SI and DI is updated automatically. 

Input                             Output 

2000 01 2008 01 

2001 02 2009 02 

2002 03 200A 03 

2003 04 200B 04 

2004 05 200C 05 

 
# program to transfer the block of data 
MOV DI, 2008H 
MOV CX, 0005H 
REP MOVSB 
INT 03H 

 

Try: Reverse of a given string 

Program to reverse a number of 4 bytes, Reverse the contents of a register lower by 

executing RLC instruction 4 times, Reverse the contents of register higher by executing RLC instruction 4 

times, Store the content of register in memory location. 

 

 

 



Inputs outputs 

2000 01 2008 05 

2001 02 2009 04 

2002 03 200A 03 

2003 04 200B 02 

2004 05 200C 01 

    

# Reverse of a given string   
MOV SI, 2000H 
MOV DI, 2008H 
MOV CX, 0008H 
ADD SI, 07H 
UP:MOV AL,[SI] 
MOV [DI], AL 
DEC SI 
INC DI 
DEC CX 
JNZ UP 
INT 03H 

 

Try: Search for given string 

Search a number in a string of 5 bytes, store the offset where the element is found and the number of 
iterations used to find the number. 
Write a program to Search a number in a string to find the number 
# Search for a number in a given string   
 
MOV AX, 2000  
MOV ES, AX  
MOV DI, 600  
MOV AX, 25  
MOV CX, 0005  
MOV BX, CX  
CLD  
REPNE SCAS B  
DEC DI  
MOV DX, DI 
SUB BX, CX 
DEC BX  
INT 03 

 

4. Exercises on Interfacing of stepper motor to 8086 

4.1 clockwise rotation of stepper motor  

Interfacing of stepper motor to 8086 microprocessor and rotates it in clockwise and anti-clock wise 
direction. A stepper motor is a type of DC motor that rotates in steps.  



 

Preparation: 8086 Architecture, Instruction set of 8086, 8255 PPI, Control word register 

 

Write a ALP program to rotate the stepper motor in clockwise and anti clock wise direction using 8086 

# stepper motor rotation in clockwise direction 

MOV AL,80  
MOV DX,0FFE6  
OUT DX  
MOV BX,1770  
MOV AL,33  
MOV DX,0FFE0  
BACK OUT DX  
MOV CX,1262  
SELF LOOP SELF  
ROR AL,1  
DEC BX  
JNZ BACK  
INT 03 

 

4.2 Anticlockwise rotation of stepper motor 

Interfacing of stepper motor to 8086 microprocessor and rotates it in anti clock wise direction. 

stepper motor rotation in Anticlockwise direction 

MOV AL,80  
MOV DX,0FFE6  
OUT DX  
MOV BX,1770  
MOV AL,33  



MOV DX,0FFE0  
BACK OUT DX  
MOV CX,1262  
SELF LOOP SELF  
ROL AL,1  
DEC BX  
JNZ BACK  
INT 03 

 

4.3 Analog to Digital conversion 

Many events monitored and controlled by the microprocessor are analog events. The ADC and DAC 

devices are used to interface the microprocessor to the analog world. Analog-to-Digital Converters 

(ADC’s) convert analog signals to digital data.  

Digital-to-Analog converters (DAC’s) convert digital data to analog signals. They are a common peripheral 

used with microprocessors for applications such as controlling analog circuitry, audio and video 

generation, radio signal generation, etc. 

Preparation: 8086 Architecture, Instruction set of 8086, 8255 PPI, Control word register 

 

# Analog to digital converter 
MOV AL, 98H  
MOV DX, 0FFE6  
OUT DX,AL  
MOV AL, 01H  
OUT DX,AL  
MOV AL, 00H  
OUT DX,AL  
MOV AL, 02H  
MOV DX, 0FFE2H  
OUT DX,AL  
MOV DX, 0FFE4H  
IN AL,DX  
ROR AL, 1H  
JNC BACK  
MOV DX, 0FFE0H  
BACK: IN AL,DX  
MOV DI, 2000H  
MOV [DI], AL  
INT 03H 

 



4.4 Digital to Analog converter-Square wave generator 

The digital to analog converters convert binary numbers into their analog equivalent voltages. The DAC 

find applications in areas like digitally controlled gains, motor speed controls, programmable gain 

amplifiers, etc. 

# Square wave generator. 
MOV AL,80  
MOV DX,0FFE6  
OUT DX  
MOV DX,0FFE0  
BACK: MOV AL,00  
OUT DX  
MOV CX,0147  
SELF1: LOOP SELF1  
MOV AL,0FF 
 OUT DX  
MOV CX,0147  
SELF2 : LOOP SELF2  
JMP BACK 

 

4.5 Digital to Analog converter-Triangular wave generator 

The digital to analog converters convert binary numbers into their analog equivalent voltages. The DAC 

find applications in areas like digitally controlled gains, motor speed controls, programmable gain 

amplifiers, etc. 

# Triangular wave generator. 
MOV AL,80  
MOV DX,0FFE6  
OUT DX  
MOV AL,00  
L3 MOV DX,0FFE2  
L1 OUT DX  
INC AL  
CMP AL,0FF  
JB L1  
L2 OUT DX  
DEC AL  
CMP AL,00  
JNBE L2  

JMP L3 
  

Try: Digital to Analog converter-Sawtooth wave generator 

The digital to analog converters convert binary numbers into their analog equivalent voltages. The DAC 

find applications in areas like digitally controlled gains, motor speed controls, programmable gain 

amplifiers, etc. 

# Saw tooth wave generator. 

Write code 

…. 

…. 

 



Try : Rotation of stepper motor with 60 rotations with 8MHz 

Interfacing of stepper motor to 8086 microprocessor and rotates it in anti clock wise direction. 

stepper motor rotation in Anticlockwise direction 

MOV AL,80  
MOV DX,0FFE6  
OUT DX  
MOV BX,1770  
MOV AL,33  
MOV DX,0FFE0  
BACK OUT DX  
MOV CX,1262  
SELF LOOP SELF  
ROL AL,1  
DEC BX  
JNZ BACK  
INT 03 
 

5. Exercises on programmable peripherals 

5.1 Keyboard operation 

The keyboard consists of maximum 64 keys, which are interfaced with the CPU by using the key-codes. 

These key-codes are de-bounced and stored in an 8-byte FIFORAM, which can be accessed by the CPU.  

Preparation: 8086 Architecture, Instruction set of 8086, 8255 PPI, Control word register 

 

# Keyboard operation 
 
# Write code here 
        … 
 
# Driver Code 

 

5.2 Matrix Keyboard operation 

In a matrix keyboard there are keys which are arranged in the form of a matrix which consists of several 

rows and columns. 

connect a key at the intersection of all rows and columns. Hence there is a total of 4 × 4 = 16 keys in the 

given matrix. The lines of the columns get connected to Gnd through pull-down resistors. 

Write an ALP program to execute 3x3 matrix keyboard operation  

Preparation: 8086 Architecture, Instruction set of 8086, 8255 PPI, Control word register 

 

# Keyboard operation 
 
# Write code here 
        … 
 
# Driver Code 
 



5.3 Serial Communication 

In serial communication we send only q bit at a time, one after the other. So 8 bits need 8 times the time 

required, compared to the previous case. The advantage is only one physical wire is required for 

transmission. 

Program to receive bytes of data serially, and put them in P2, set the baud rate at 9600, 8-bit data, and 1 
stop bit: 

Preparation: 8086 Architecture, Instruction set of 8086, 8255 PPI, Control word register 

 
 
# Serial Communication 
# Write code here 
MOV TMOD, #20H  
MOV TH1, #-3  
MOV SCON, #50H  
SETB TR1  
HERE: JNB RI, HERE  
MOV A, SBUF  
MOV P2, A  
CLR RI  
SJMP HERE    

 

 

5.4 Parallel Communication 

Data is to be sent from the source to the destination, and it is necessary for the source and destination 

formats to be similar for compatibility between them.  In parallel communication all the bits are sent and 

received together.  
 
# Parallel Communication 
  
# Write code here 
        … 
 
# Driver Code 

 

5.6 Interfacing traffic light controller 
Introduction Traffic Light interface module is designed to simulate the function of four way traffic light 

controller. Combination of Red, Yellow, Green LED’s are provided to indicate Halt, Wait, Go. Combination 

of Red and Green LED’s are provided for pedestrian crossing.  

 

Write an ALP program to generate a signal using 8086 to interface to traffic light controller interface 

board 

Preparation: 8086 Architecture, Instruction set of 8086, 8255 PPI, Control word register 
 

# Interfacing traffic light controller  
  
# Write code here 
        … 
 
# Driver Code 



6. Exercises on Arithmetic and Logical operations using 8051 

Microcontroller  

6.1 Arithmetic operations 

The assembly language programs for performing arithmetic and logical operations are composed by 

using mnemonics, various addressing modes, instructions and registers of microcontroller. The 8051 

microcontroller is used to execute the instructions of assembly language program one by one.  

Using arithmetic instructions to find the addition, subtraction and multiplication between the unsigned 

numbers. 

In this case, arithmetic instructions via assembly programming language to find the arithmetic operations 

for provided list of numbers. The output will be display in hexadecimal format. 

Write a alp program arithmetic and logical operations using 8051 Microcontroller  

Preparation: 8051 Architecture, Instruction set of 8051 and Register-Memory Organization 

Input: numbers = [08, 02] 

Output:  

iv. For addition : 0A 

v. For subtraction : 06 

vi. For multiplication : 0010 

find_addition of unsigned numbers(8 bit): 
# Write code here 
     … 
 
find_subtraction of unsigned numbers (8 bit): 
# Write code here 
     … 
 
find_multiplication of unsigned numbers (8 bit): 
# Write code here 
 

 

6.2 Logical Operations 

The logic instructions include AND, OR, Exclusive-OR, NOT, shifts, rotates, and the logical compare (TEST). 

Using logical instructions to find the logical operations like AND,OR,EX-OR etc between the unsigned 

numbers. 

In this case, logical instructions via assembly programming language to find the logical operations for 

provided list of numbers. The output will be display in hexadecimal format. 

Preparation: 8051 Architecture, Instruction set of 8051 and Register-Memory Organization 

Input: 05 and 07 
 

Output:  

iv. For AND logic : 0A 

v. For OR logic : 06 

vi. For EX-OR logic : 0010 



find_AND logic of unsigned numbers(8 bit): 
# Write code here 
     … 
 
find_ OR logic of unsigned numbers (8 bit): 
# Write code here 
     … 
 
find_ EX-OR logic of unsigned numbers (8 bit): 
# Write code here 
 

 

Try: Store the data from various memory location 

Using 8051 microcontroller 0 instruction sets to store the data in various memory locations for given array 

of numbers 

     … 
 
find_ OR logic of unsigned numbers (8 bit): 
# Write code here 
     … 
find_ EX-OR logic of unsigned numbers (8 bit): 
# Write code here 

 

7. Exercises on Timer/Counter 

7.1 Asymmetric square wave 

A timer is a specialized type of clock which is used to measure time intervals. A timer that counts from 

zero upwards for measuring time elapsed is often called a stopwatch. It is a device that counts down from 

a specified time interval and used to generate a time delay, for example, an hourglass is a timer.  

An asymmetric square wave is a square wave with a duty cycle that is not 50%. A square wave is a wave 

that is square and has a 50% duty cycle..  

Generate an asymmetric square wave of 120Hz and having a duty cycle of 25% using the Timer0 module. 

# Write code here 

  

#include<lpc214x.h> 

//124373 * 0.25 = 31093 = 7975H 

//124373 * 0.75 = 93280; 93280/2 = 46640 = B630 

voidon_delay(void){ 

T0MR0=0x7974; 

T0PR=0; 

T0TCR=1; 

while(T0TC!=T0MR0); 

T0TCR=2; 

T0TC=0; 

} 

voidoff_delay(void){ 

T0MR0=0xB630; 



T0PR=1; 

T0TCR=1; 

while(T0TC!=T0MR0); 

T0TCR=2; 

T0TC=0; 

} 

int main(void){ 

T0MCR=4; 

IODIR1=0x00010000; 

while(1){ 

IOSET1=1<<16; 

on_delay(); 

IOCLR1=1<<16; 

off_delay(); 

} 

} 

 

7.2 Generate a square wave using Timer0 in the interrupt mode. 

# Write code here 

#include<LPC214X.h> 

unsigned int x = 0; 

__irq void Timer0_ISR (void){ 

x ^= 1; 

if(x) 

IOSET1 = 1 << 20; 

else 

IOCLR1 = 1 << 20; 

T0IR = 0x01; 

VICVectAddr = 0x00000000; 

} 

int main(){ 

IODIR1 = 0x0FFFFFFF; 

T0MCR = 0x00000003; 

T0MR0 = 0x3456FF; 

VICVectAddr4 = (unsigned)Timer0_ISR; 

VICVectCntl4 = 0x00000024; 

VICIntEnable = 0x00000010; 

T0TCR = 1; 

for(;;); 

} 

 

8. Exercises on Interfacing Keyboard to 8051 

8.1 C Program to 4 X 4 matrix keypad using 8051  

A keypad is a set of buttons arranged in a block or “pad” which usually bear digits, symbols and usually a 

complete set of alphabetical letters. If it mostly contains numbers then it can also be called a numeric 

keypad. Here we are using 4 X 4 matrix keypad. 



In case of 4X4 matrix Keypad both the ends of switches are connected to the port pin i.e. four rows and 

four columns. So in all sixteen switches have been interfaced using just eight lines.Keypads arranged by 

matrix format, each row and column section pulled by high or low by selection J5, all row lines(P2.4 – P2.7) 

and column lines(P2.0 to P2.3) connected directly by the port pins. 

Hint: 

# Write program here 
#include  
 
//Define I/O Functions 
 
#include  
 
//Define 8051 Registers 
 
#define DATA P0 
 
//Define DATA to Port1 void lcd_init(void); 
 
- 
 

 

Try: 4×8 matrix keypad using 8051 

Hint: Interface a 4×8 keypad with STM32 Blue Pill and program it in STM32CubeIDE using HAL 

libraries.  

#In the first line, I’m assigning high to all columns. (c1=c2=c3=c4=1;) 
Then I’m assigning the first row to zero and keeps the remaining row as high. 
(r1=0;r2=1;r3=1;r4=1;) 
---- 
---- 
---- 
 
#Then I’m checking the first column is zero or not. If it is zero then I should wait 
until that button depressed. Then I can know the pressed key. 
---- 
---- 
---- 
 
#If not I’m checking the next column. Like that, I’m checking all rows and columns. 
If no keys pressed in row1, then I’m making row2 as zero. The remaining rows are 
high. Then follow the above steps. 
--- 

 

 

9.  Exercises on interfacing of seven segment display, LDR, PIR 

sensors using Arduino 

9.1 Interfacing Seven Segment Display with Arduino 
The seven-segment displays are designed for displaying numeric values. You can find them anywhere 

from instruments to space shuttles. They are the most practical way to display numeric values. 



 

Design Seven Segment Display for displaying numeric values using Arduino. 

 

#include "SevSeg.h" 
SevSeg sevseg; 
void setup() 
{ 
  byte numDigits = 1; 
       
  byte digitPins[] = {}; 
       
  byte segmentPins[] = {9,8, 7, 6, 5, 4, 3, 2}; 
   byte displayType = COMMON_CATHODE;  
   bool resistorsOnSegments = true;  
   sevseg.begin(displayType, numDigits, digitPins, segmentPins, resistorsOnSegments); 
   sevseg.setBrightness(90); 
} 
void loop() 
{ 
    
   for(int i = 0; i <= 10; i++) 
   { 
     if (i == 10) 
{ 
 i = 0; 
} 
     sevseg.setNumber(i); 
     sevseg.refreshDisplay(); 
     delay(1000); 
   } 
} 
 

 

9.2 Write the program for Automatic Night Light (LDR or Light Sensor)  

Light Dependent Resistor ( LDR ) is the analog sensor that changes its resistance value or we can say the 

flow of current based on the light that falls on it. We can also use the Light Sensor Module instead of a 

single LDR. 

 

Develop an Automatic night lights use a light-dependent resistor (LDR) to detect changes in ambient light 

levels. 

# Write program here 
const int ldrPin = A3;   // LDR analog pin 

const int ledPin = 5;    // LED pin 

int ldrThreshold = 500;  // Adjust this value based on ambient light 

void setup() { 

  pinMode(ledPin, OUTPUT); 

  Serial.begin(9600); 

} 

void loop() { 



  int ldrValue = analogRead(ldrPin);  // Read LDR value 

  Serial.print("LDR Value: "); 

  Serial.println(ldrValue); 

  if (ldrValue < ldrThreshold) { 

    digitalWrite(ledPin, HIGH);   // Turn on the LED when it's dark 

    Serial.println("Dark. LED ON."); 

  } else { 

    digitalWrite(ledPin, LOW);    // Turn off the LED when it's bright 

    Serial.println("Bright. LED OFF."); 

  } 

delay(1000);  // Delay before next reading 

} 

 

9.3 Detects the motion of objects and humans with the help of changes in 

infrared radiations. 

A Passive Infrared Sensor or PIR is used to detect the motion of a specific object or human. It is widely 

used in applications where we want to take actions based on motion, and detection. 

 

Implement prototype for detecting the motion of objects and humans with the help of changes in infrared 

radiations. 

 

Hint: Use PIR sensor for detecting motion of objects. 
# Write program here 
 
const int pirPin = 2;    // PIR sensor's output pin 
 
const int ledPin = 5;   // LED pin 
 
int pirState = LOW;      // Initialize PIR sensor state 
 
int lastPirState = LOW;  // Previous PIR sensor state 
 
void setup() { 
 
  pinMode(pirPin, INPUT); 
 
  pinMode(ledPin, OUTPUT); 
 
  Serial.begin(9600); 
 
} 
void loop() { 
 
  pirState = digitalRead(pirPin);  // Read PIR sensor value 
 
 
  if (pirState == HIGH && lastPirState == LOW) { 



 
    // PIR sensor detects motion 
 
    digitalWrite(ledPin, HIGH);   // Turn on the LED 
 
    Serial.println("Motion detected!"); 
 
  } else if (pirState == LOW && lastPirState == HIGH) { 
 
    // PIR sensor no longer detects motion 
 
    digitalWrite(ledPin, LOW);    // Turn off the LED 
 
    Serial.println("Motion stopped."); 
  } 
  lastPirState = pirState;  // Store current PIR state 
 
} 

 

 

10. Exercises on data acquisition from sensors using Arduino  

10.1 Identification of obstacle using ultrasonic sensor 

Ultrasonic is a very popular sensor recommended for all beginners to start their journey with sensors. It is 

a very easy-to-use sensor that can be used for distance measurement between objects and finding range. 

Implement prototype for detecting the motion of objects and humans with the help of changes in infrared 

radiation. 
 

#include<lpc214x.h> 
const int trigPin = 3;   // Trigger pin of the ultrasonic sensor 

const int echoPin = 2;  // Echo pin of the ultrasonic sensor 

void setup() { 

Serial.begin(9600);     // Initialize serial communication 

pinMode(trigPin, OUTPUT); 

pinMode(echoPin, INPUT); 

} 

void loop() { 

digitalWrite(trigPin, LOW); 

delayMicroseconds(2); 

digitalWrite(trigPin, HIGH); 

delayMicroseconds(10); 

digitalWrite(trigPin, LOW); 

long duration = pulseIn(echoPin, HIGH); 

float distance_cm = duration * 0.034 / 2;  // Calculate distance in centimeters 

Serial.print("Distance: "); 



Serial.print(distance_cm); 

Serial.println(" cm"); 

delay(1000);  // Delay before next measurement 

} 

 

 

10.2 Identification of obstacle using IR ranger. 

Infrared or IR proximity sensors emit infrared light and once this light hits an object, it is reflected back to 

the sensor. Depending on the strength of the reflected light, the sensor will know how far or close an 

object is. The stronger the reflected signal, the closer the object. 

Implement prototype for detecting the object using IR ranger. 

 
#include<lpc214x.h> 
 
// Arduino IR Sensor Code 

int IRSensor = 9; // connect ir sensor module to Arduino pin 9 

int LED = 13; // conect LED to Arduino pin 13 

void setup() 

{ 

  Serial.begin(115200); // Init Serila at 115200 Baud 

 

  Serial.println("Serial Working"); // Test to check if serial is working or not 

  pinMode(IRSensor, INPUT); // IR Sensor pin INPUT 

  pinMode(LED, OUTPUT); // LED Pin Output 

} 

void loop() 

{ 

  int sensorStatus = digitalRead(IRSensor); // Set the GPIO as Input 

  if (sensorStatus == 1) // Check if the pin high or not 

  { 

    // if the pin is high turn off the onboard Led 

    digitalWrite(LED, LOW); // LED LOW 

    Serial.println("Motion Ended!"); // print Motion Detected! on the serial monitor 

window 

  } 

  else 

  { 

    //else turn on the onboard LED 

 

    digitalWrite(LED, HIGH); // LED High 

Serial.println("Motion Detected!"); // print Motion Ended! on the serial monitor 

window 

  } 

} 

 

 



10.3 Measures soil moisture by electrical conductivity changes 

Soil moisture sensors measure or estimate the amount of water in the soil. These sensors can be 

stationary or portables such as handheld probes. Stationary sensors are placed at the predetermined 

locations and depths in the field, whereas portable soil moisture probes can measure soil moisture at 

several locations 

Design a prototype to find dry or wetness of soil using soil moisture sensor. If the soil is dry pump the 

water using motor. 

#include<lpc214x.h> 
 
const int moisturePin = A3;  // Analog pin for soil moisture sensor 
void setup() { 
 Serial.begin(9600);     // Initialize serial communication 
 
} 
void loop() { 
  int moistureValue = analogRead(moisturePin);  // Read soil moisture sensor value 
  Serial.print("Moisture Level: "); 
 
  Serial.println(moistureValue); 
  delay(1000);  // Delay before next reading 
 
} 

 

 

Try: Detects flames by sensing infrared light emitted by flames 4 

Hint: A flame detection sensor is a type of sensor that can detect and respond to the presence of a 

flame. Flame detectors can detect heat, smoke, and fire.  

Flame detectors can detect flames in the 760–1100 nanometer wavelength range. They can detect small 

flames like a lighter flame at roughly 0.8m. The detection angle is roughly 60 degrees  

# Write code here 
// Flame Detection System 
# Write code here 
 
// Initialize serial communication 
# Write code here 
 
// Read flame sensor value 
# Write code here 
 
// Adjust threshold value based on flame detection 
# Write code here 
 

11. Exercises on weather monitoring system using Arduino. 

11.1 Measurement of temperature using LM35 



LM35 is a temperature sensor which can measure temperature in the range of -55°C to 150°C. It is a 3-

terminal device that provides analog voltage proportional to the temperature. Higher the temperature, 

higher is the output voltage. The output analog voltage can be converted to digital form using ADC so 

that a microcontroller can process it. 

Measure precise centigrade temperature by using LM35 and display the output temperature in Celsius 

form. It Increments the output by 1 on every 10-mV change in temperature. 

# Write code here 
 
const int lm35_pin = A1; /* LM35 O/P pin */ 
 
void setup() { 
  Serial.begin(9600); 
} 
 
void loop() { 
  int temp_adc_val; 
  float temp_val; 
  temp_adc_val = analogRead(lm35_pin); /* Read Temperature */ 
  temp_val = (temp_adc_val * 4.88); /* Convert adc value to equivalent voltage */ 
  temp_val = (temp_val/10); /* LM35 gives output of 10mv/°C */ 
  Serial.print("Temperature = "); 
  Serial.print(temp_val); 
  Serial.print(" Degree Celsius\n"); 
  delay(1000); 
} 
 

11.2 Measurement of humidity using DHT11 

LM35 is a temperature sensor which can measure temperature in the range of -55°C to 150°C. It is a 3-

terminal device that provides analog voltage proportional to the temperature. Higher the temperature, 

higher is the output voltage. The output analog voltage can be converted to digital form using ADC so 

that a microcontroller can process it. 

Measure the temperature and humidity using DHT11 sensor to calculate electrical resistance between two 

electrodes.  

# Write code here 
 
// Digital Thermometer and Humidity Monitor (DHT11 or DHT22) 

#include <DHT.h> 

#define DHTPIN 2          // Digital pin connected to the DHT sensor 

#define DHTTYPE DHT22     // DHT sensor type (DHT11 or DHT22) 

DHT dht(DHTPIN, DHTTYPE); // Initialize DHT sensor 

void setup() { 

  Serial.begin(9600);     // Initialize serial communication 

  dht.begin();            // Initialize DHT sensor 

} 

void loop() { 

 



  // Read temperature and humidity from the sensor 

  float temperature = dht.readTemperature(); 

  float humidity = dht.readHumidity(); 

 // Print temperature and humidity values to Serial Monitor 

  Serial.print("Temperature: "); 

  Serial.print(temperature); 

  Serial.print(" °C\t"); 

  Serial.print("Humidity: "); 

  Serial.print(humidity); 

  Serial.println(" %"); 

  delay(2000);  // Delay before next reading 

} 

 

Try: Display the measured temperature and humidity on LCD 

Hint: To measure the temperature and humidity, a thermistor and a capacitive humidity sensor are 

used, respectively. The resistance of a thermistor changes with a change in temperature - as the 

temperature increases, the resistance decreases. For the humidity sensor, the resistance between the two 

electrodes changes with a change in humidity 

# Write code here 
// Display data on 20x4 LCD 
//Interface the DHT11 Temp & Humidity sensor and display humidity and  temperature 
//in Celsius, Fahrenheit, and Kelvin on a 20x4 character LCD 
 
# Write code here 
-- 
double tempK = 0; 
const int RS = 2, EN = 3, D4 = 4, D5 = 5, D6  = 6, D7 = 7; 
# Write code here 
- 
LiquidCrystal lcd(RS,EN,D4,D5,D6,D7);    
# Write code here 
-- 
//set  20 columns and 4 rows of 16x2 LCD 
# Write code here 
 
   
 

 

 

 

 

 

 

 



12.  Exercises on Arithmetic operations using ARM 

12.1 Introduction to Keil MicrovisionV 

 Install Keil MicrovisionV IDE 

 LPC2148 Trainer kit 

 Create a project, Edit an ASM file, Build, and Debug. Observe Disassembly window, Register and 

Memory contents in Step mode and in Run Mode. 

 Execute a sample ARM Assembly Language Program to add two numbers in registers and store 

the sum in a register 

12.2 Arithmetic Operations 

 The arithmetic instructions include addition, subtraction, multiplication, division, comparison, 

negation, increment, and decrement.  

 

Write a assembly level language program using arithmetic instructions to add first 5 natural numbers and 

store sum in register. 

Preparation: ARM7, LPC2148 Trainer kit 

find_addition of two numbers: 
# Write code here 
AREA PROG1,CODE,READONLY 
ENTRY 
MOV R0,#0x78 
MOV R1,#0x21 
ADD R3,R1,R0 
STOP B STOP 
END 
 
find_addition of first 5 natural numbers: 
# Write code here 
AREA PROG1,CODE,READONLY 
ENTRY 

MOV R0,#0x78 
MOV R1,#0x21 
ADD R3,R1,R0 
STOP B STOP 

END 
 
find_ add the first n even number: 
# Write code here 
AREA PROG6,CODE,READONLY 
N RN 1 
RESULT RN 2 
EVEN_NUMBER RN 3 
ENTRY 

MOV N,#5 
MOV RESULT,#0  
MOV EVEN_NUMBER,#2 

# Write code here 
-- 
-- 
-- 



LOOP ADD RESULT,RESULT,EVEN_NUMBER 
# Write code here 
-- 
-- 
-- 
-- 
STOP B STOP 
END 
 

find_ sum of cubes of the first n natural numbers: 
# Write code here 
AREA PROG9,CODE,READONLY 
N RN 1 
NPLUSONE RN 2 
# Write code here 
-- 
-- 
-- 
RESULT RN 4 
ENTRY 

MOV R5,#0x40000000 
LDR N,=3 

# Write code here 
-- 
--- 

MUL TEMP,N,NPLUSONE 
MOV TEMP,TEMP,LSR #1 
MUL RESULT,TEMP,TEMP 

# Write code here 
-- 
STOP  B STOP 
END 

 

12.3 Find the sum of cubes of the first n natural numbers 

The sum of cubes of n natural numbers means finding the sum of a series of cubes of natural numbers. It 

can be obtained by using a simple formula S = [n2 (n + 1)2]/4, where S is the sum and n is the number of 

natural numbers taken. 

Write an assembly level language program to find sum of cubes of the first n natural numbers. 

Preparation: ARM7, LPC2148 Trainer kit 

# Write code here 
AREA PROG9,CODE,READONLY 
N RN 1 
NPLUSONE RN 2 
TEMP RN 3 
RESULT RN 4 
ENTRY 
MOV R5,#0x40000000 
LDR N,=3 
ADD NPLUSONE,N,#1 
MUL TEMP,N,NPLUSONE 
MOV TEMP,TEMP,LSR #1 
MUL RESULT,TEMP,TEMP 



STR RESULT,[R5] 
STOP B STOP 
END 

 

12.4 Add the first n even numbers 

The sum of the first n even numbers is n(n+1)  This can be proven by using the sum of terms in an 

arithmetic progression formula. 

Write an assembly level language program to add the first n even numbers. Store the result in a memory 

location . 

Preparation: ARM7, LPC2148 Trainer kit 

# Write code here 
AREA PROG6,CODE,READONLY 

N RN 1 

RESULT RN 2 

EVEN_NUMBER RN 3 

ENTRY 

MOV N,#5 

MOV RESULT,#0  

MOV EVEN_NUMBER,#2 

MOV R4,#0x40000000 

LOOP ADD RESULT,RESULT,EVEN_NUMBER 

ADD EVEN_NUMBER,EVEN_NUMBER,#2 

SUBS N,N,#1 

BNE LOOP 

STR RESULT,[R4] 

STOP B STOP 

END 

 

Try: Write an ALP to compute sum of squares of 5 numbers starting from 1.  

Hint: Sum of squares refers to the sum of the squares of numbers. It is basically the addition of 

squared numbers. The squared terms could be 2 terms, 3 terms, or ‘n’ number of terms, first n even terms 

or odd terms, set of natural numbers or consecutive numbers, etc. 

# Write code here 
# (x1)2+(x2)2+….+(xn)2→Sum of squares of n numbers 
# Write code here 
-- 
AREA PROG5,CODE,READONLY 
ENTRY 
# Write code here 
- 
- 
LOOP BL SQU 
CMP R2,#6 
# Write code here 
- 
- 
SQU MUL R4,R2,R2 



# Write code here 
 

13. Exercises on interfacing peripheral devices to ARM7 LPC2148 

Trainer kit 
 

13.1 Toggle LED‘s with some time delay 

LED blinking is the process of continuously turning an LED (Light Emitting Diode) on and off in a repetitive 

pattern. The basic concept involves toggling the state of the LED between ON and OFF at a specific rate, 

creating a blinking effect. 

Write a program to make a LED glow at different brightness levels (low to high) with brightness levels 

varying over duration of 2s.  

# Write code here 

# include <lpc214x.h> 

voidpwm_init(void) 

{ 

PINSEL0|=0x00000002; 

PWMPR= 0x2; 

PWMPCR=0x00000200; 

PWMMR0=0xC37F;  

PWMMCR=0x00000002; 

PWMTCR=0x00000009; 

}  

int main() 

{ 

inti; 

pwm_init(); 

while(1) 

{ for(i=0;i<10;i++) 

{PWMMR1=0xFFF+(0xFF5*i); 

PWMLER=0x02; 

}}} 

 

13.2 Interface keyboard and LCD  

Interfacing an LCD with an ARM7 microcontroller typically involves using a combination of GPIO (General 

Purpose Input/Output) pins to control the data and command lines of the LCD. Below is a simple example 

of an embedded C program to interface an ARM7 microcontroller with a 16x2 character LCD using a 4-bit 

mode connection. 

To develop and verify the interfacing of keyboard and LCD with ARM development kit using embedded C 

program.  

For_ Display a text in 8 bit LCD using LPC2148 -ARM7 Advanced Development Board: 

# Write code here 

#include  

#include  



#include "LCD8.H" 

void main() 

{ 

PINSEL0 |= 0x05; 

PINSEL1 = 0; 

LCD_Config (&IOPIN0, 16); 

while(1) 

//Loop From Here.... 

{ 

Delay(); # delay 

 

Delay(); 

lcd_cmd (&IOPIN0,16, 0x01); 

Delay(); 

lcd_data (&IOPIN0,16,’1’); 

} 

} 

void delay(unsigned int n) 

{ 

unsigned int i,j; 

for(i=0;i<n;i++) 

for(j=0;j<12000;j++); 

} 

 

Try: Write an embedded C program for interfacing LED and PWM and to 

verify the output in the ARM kit  

To verify the flashing of LEDS in ARM DEVELOPMENT KIT microcontroller board using embedded C 

program. 

Hint: A light that goes on and off in a specific pattern. The pattern can be fast or slow and the lights can 

be a solid color or a variety of different colors. 

For_ flashing of LEDS 
# Write code here 
#include <lpc214x.h>  
unsigned int delay;  
int main(void)  
{  
 IO0DIR = (1<<10); // Configure P0.10 as Output  
 while(1)  
 {  
 IO0CLR = (1<<10); // CLEAR(0)P0.10toturn LED ON  
 for(delay=0; delay<500000; delay++); // delay  
 IO0SET = (1<<10); // SET (1) P0.10 to turn  
LEDs OFF  
 for(delay=0; delay<500000; delay++); // delay  
 } 
 
For_PWM 



# Write code here 
-- 
-- 
-- 
# Write code here 
-- 
-- 
if (val != oldval)  
 {  
 PWMMR2 = val;  
 PWMLER = 0xF;  
 oldval = val;  
# Write code here 
-- 
-- 

 

14.  Case study: ARM7/ARM9 prototype design. 
 

14.1 Build a smoke detector using an MQ-2 gas sensor.  

Materials: 

 MQ-2 gas sensor 

 Arduino board 

 Breadboard 

 Jumper wires 

 Buzzer 

 LED 

 Resistor (10k ohms) 

# Write code here 

int sensorPin = A0; 

int ledPin = 3; 

int buzzerPin = 2; 

int sensorValue = 0; 

- 

# Write code here 

- 

void loop() { 

  sensorValue = analogRead(sensorPin); 

 

# Write code here 

- 

# Write code here 

  } 

} 

 
 
 
 
 



14.2 Build an IoT-based water quality monitoring system without any 

TDS/pH meter 

DS stands for Total Dissolved Solids. As the name suggests, it gives us the number of solids dissolved in a 

certain amount of water, in ppm (parts per million). TDS is calculated based on electrical conductivity 

[S/m]. The higher the electrical conductivity, the higher the TDS value. Here is a list of the TDS values of 

different types of water:  

Pure water: 80-150  

Tap water: 250-350  

Groundwater: 500-1000  

Seawater: around 30000 

# Write code here 

//include libraries 

#include <SoftwareSerial.h> 

#include <LiquidCrystal.h> 

 

//for  bluetooth - create an object called BTserial, with RX pin at 3 and TX pin at 2 

# Write code here 

 

//decraration of all our variables 

# Write code here 

 

float  reads; 

int pin = A0; 

# Write code here 

 

//resistance between the 2 wires 

# Write code here 

 

//resistivity  

# Write code here 

 

//distance between the wires in m 

# Write code here 

 

//area of cross  section of wire in m^2 

# Write code here 

 

float C = 0;//conductivity in S/m 

float Cm = 0;//conductivity  in mS/cm 

# Write code here 

 

int rPin = 9; 

int bPin = 5; 

int gPin = 6; 

int rVal = 255; 

int  bVal = 255; 



int gVal = 255; 

# Write code here 

 

 

V. TEXT BOOKS: 

1. Ray A.K, Bhurchandi K.M, “Advanced Microprocessor and Peripherals”, TMH, 2nd Edition, 2012. 

2. Muhammad Ali Mazidi, J.G. Mazidi, R.D McKinlay, “The 8051 Microcontroller and Embedded Systems 
using Assembly and C”, Pearson education, 2

nd
 Edition, 2009. 

3. Douglas V. Hall, “Microprocessors and Interfacing Programming and Hardware”, TMGH, 2
nd

 Edition, 1994. 
 

VI. REFERENCE BOOKS: 

1. Kenneth J. Ayala, “The 8051 Microcontroller”, Thomson Learning, 3
rd

 Edition, 2005. 

2. Manish K. Patel, “The 8051 Microcontroller Based Embedded Systems”, McGraw Hill, 1
st

 Edition, 2014. 

3. Ajay V Deshmukh, “Microcontrollers”, TATA McGraw Hill Publications, 2
nd

 Edition, 2012. 

 


