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COURSE CONTENT 

NATURAL LANGUAGE PROCESSING LABORATORY 

VI Semester: CSE (AI&ML)  

Course Code Category Hours / Week Credits Maximum Marks 

ACAC15 Core 
L T P C CIA SEE Total 

1 0 2 2 30 70 100 

Contact Classes: NIL Tutorial Classes: NIL Practical Classes: 45 Total Classes: 45 

Prerequisite: There are no prerequisites to take this course. 

I. COURSE OVERVIEW:  

This course is a study of computing systems that can process, understand, or communicate in human 

language. The primary focus of the course will be on understanding natural language processing (NLP) 

tasks and algorithms for effectively solving the problems using language models and evaluating the 

performance. NLP is most widely used as effective text processing techniques, strategies, and toolkits 

with a primary focus on sentiment analysis, pattern recognition, and chatbot development using libraries 

in the Python programming language.  

 

II. COURSE OBJECTIVES:  

The students will try to learn:  

I. The concepts and techniques of Natural language Processing for analyzing words based on 

Morphology and CORPUS.  

II. The mathematical foundations and probability theory with linguistic essentials such as syntactic and 

semantic analysis of text.  

III. The applications of statistical learning methods and cutting-edge research models from Artificial 

Intelligence. 

 

III. COURSE OUTCOMES 

After the completion of course the student is able to:  

 

CO1 
Summarize the concepts of complex behaviour in language to develop natural language processing 

applications. 

CO2 
Demonstrate the significance of words in a language using semantics and pragmatics to perform text 

processing. 

CO3 
Apply the CORPUS linguistics to compile and analyze the texts based on digestive approach (Text 

Corpus Method). 

CO4 
Compare statistical approaches like finding patterns and language acquisition for a given natural 

language to perform machine translation. 

CO5 
Analyze Part-of-speech tagging for a given natural language processing application to clear out the 

ambiguity in terms of revealing the grammatical structure. 

CO6 
Evaluate the performance of natural language-based systems for question-answering, text 

summarization, and machine translation with respect to morphology. 
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IV. COURSE CONTENT 

 

EXERCISES FOR NATURAL LANGUAGE PROCESSING 

LABORATORY 

 
Note: Students are encouraged to bring their own laptops for laboratory 

practice sessions. 
 

1.  Getting Started Exercises 

Introduction, Installation and Accessing Additional Resources  

Natural Language Toolkit (NLTK) is one of the vastest Python libraries for performing various Natural 

Language Processing tasks. From rudimentary tasks such as text pre-processing to tasks like vectorized 

representation of text – NLTK’s API has covered everything. In this article, we will accustom ourselves 

to the basics of NLTK and perform some crucial NLP tasks: Tokenization, Stemming, Lemmatization, 

and POS Tagging. 

Input: Python command to install NLTK library 

Output: NLTK-An API library for performing an array of tasks related to human language. 

Hint: 

# Install the NLTK library 
 

 

Try: Run the python script that incorporates the usage of additional resources of languages.  

1.1 Tokenization 

Perform the tokenization task which refers the breakdown of a text into smaller units. It entails splitting 

paragraphs into sentences and sentences into words. It is one of the initial steps of any NLP pipeline. 

Input: Understand the major kinds of tokenization that NLTK provides. 

Output: Word Tokenization. 

Hint: 

# Tokenization using NLTK 
from nltk import word_tokenize, sent_tokenize 
sent = "IARE is a great learning platform.\ 
It is one of the best for AI&ML students." 
 
# Print the tokens of a sentence here 

Try: Use the same code and perform the sentence tokenization for any given sentence or a 

paragraph. 

 

1.2 Stemming and Lemmatization 

Understand the importance of meaning of the words by mapping every word of the language to its 

root/base form with the process called canonicalization. 

Input: The words ‘play’, ‘plays’, ‘played’, and ‘playing’ . 
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Output: Mapping all the above words to their base form. 

Hint: 

from nltk.stem import PorterStemmer 
  
# create an object of class PorterStemmer and print the stems of the words ‘play’, 
‘playing’, ‘plays’, and ‘played’. 
porter = PorterStemmer() 
 

 
Try: Perform the grouping together using the concept lemmatization and produce the inflected 

forms of the same word. Implement the code to perform tokenization for the above same code.  

 

1.3 Parts of Speech Tagging 

Understand the importance of Parts of Speech of a word in a sentence and helps in giving a better 

syntactic overview of a sentence. 

Input: “Institute of Aeronautical Engineering is the best college in Hyderabad”. 

Output: Tags assigned by their POS tags. 

Hint: 

from nltk import pos_tag 
from nltk import word_tokenize 
  
text = "IARE is a Computer Science platform." 
tokenized_text = word_tokenize(text) 
tags = tokens_tag = pos_tag(tokenized_text) 

 
Try: Implement the code to generate POS Tags to the words describing about the college IARE 

using one or two sentences. 

 

1.4 POS Tagging and Lemmatization using spaCy 

Understand the importance of text analysis and perform the information extraction task. Learn how to 

perform the extraction process and prepare the text for several deep learning applications. 

Input: Install, import, and load spaCy library. 

Output: POS Tags for words in “en_core_web_sm” dataset 

Hint: 

import spacy  
   
# Load English tokenizer, tagger,   
# parser, NER and word vectors  
nlp = spacy.load("en_core_web_sm")  
   
# Process whole documents  
text = ("""My name is Shaurya Uppal.   
I enjoy writing articles on GeeksforGeeks checkout  
my other article by going to my profile section.""")  
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doc = nlp(text)  
   
# Token and Tag  
for token in doc:  
  print(token, token.pos_)  
   
# You want list of Verb tokens  
print("Verbs:", [token.text for token in doc if token.pos_ == "VERB"])  

    

 

Try: Implement the code to perform lemmatization and process grouping together the 

inflected forms of a word so they can be analyzed as a single item, identified by the word’s 

lemma, or dictionary form.  

 

2.  Text Processing in Python 

2.1 Building NLP model and perform text processing. 

Prepare the text data for the NLP model building and perform the text pre-processing. Use the required 
pre-processing steps based on the dataset prepared and understand the steps involved in Text Pre-
processing. 

Input: Few English statements 

Output: Preprocessed Text - Implement the following text pre-processing operations.  

a) Lowercase the text to reduce the size of the vocabulary of our text data  

b) Remove numbers or convert the numbers into their textual representations  

c) Remove punctuation so that we don’t have different forms of the same word. If we don’t remove the 
punctuation, then been. been, been! will be treated separately.  

d) Use the join and split function to remove all the white spaces in a string. 

 

Hint: 

import pandas as pd 
import numpy as np 
from sklearn import svm 
from sklearn import datasets 
from sklearn.model_selection import train_test_split 
import matplotlib.pyplot as plt 
%matplotlib inline 
     # Understand the dataset and write the code to evaluate the accuracy of a     

classification model 
     … 
 
      

 
Try: Develop a supervised machine learning model to identify the actual digits on a number 

plate.  
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2.2 Text Preprocessing Operations 

Prepare the text data for the NLP model building and perform the text pre-processing. Use the required 
pre-processing steps based on the dataset prepared and understand the steps involved in Text Pre-
processing. Implement the text pre-processing steps and perform various operations on word count. 
 

Input: twitter-data/twitter4000.csv at master · laxmimerit/twitter-data · GitHub 

 

 Output: Preprocessed Text (Word Counts generated from several functions). 

 

Hint: 

import pandas as pd import numpy as np  
import spacy from spacy.lang.en.stop_words  
import STOP_WORDS as stopwords  
df = 
pd.read_csv('https://raw.githubusercontent.com/laxmimerit/twitterdata/master/twitte
r4000.csv', encoding = 'latin1')  
df 
 
# Word Count 
len('this is what nlp is'.split()) 
df['word_counts'] = df['twitts'].apply(lambda x: len(str(x).split()))  
df.sample(5) 
 
# Max, Min, and One Word Count 
df['word_counts'].max() 
df['word_counts'].min() 
df[df['word_counts']==1] 
 
# Write the code for Character Count and Average word count 
 

 
Try: Implement the code to perform other word count operations like: 

a. Stopwords count. 

b. Count Hash Tags and @Mentions.  

c. Uppercase words count. 

 

2.3 Preprocessing and Cleaning  

Prepare the text data for the NLP model building and perform the text pre-processing. Use the required 
pre-processing steps based on the dataset prepared and understand the steps involved in Text Pre-
processing. Implement the text pre-processing steps and perform various operations like: 

a. Lowercase conversion 
b. Contraction to expansion 
c. Count and remove emails. 

 

Input: twitter4000.csv file 

 

Output: Text converted to lower case, expansions for contractions, and expressions without emails. 

 

 

https://github.com/laxmimerit/twitter-data/blob/master/twitter4000.csv


6 
 

Hint: 
# Lower Case Conversion  
x = 'this is a sample Text'  
x.lower() 
x = 45.0 str(x).lower() 
df['twitts'] = df['twitts'].apply(lambda x: str(x).lower())  
df.sample(5) 
 
# Contraction to expansion 
x = "i'm don't he'll" # "i am do not he will"  
def cont_to_exp(x):  

if type(x) is str:  
      for key in contractions:  
            value = contractions[key]  
            x = x.replace(key, value)  
            return x  
      else:  
            return x  
cont_to_exp(x) 'i am do not he will'  

%%timeit  
df['twitts'] = df['twitts'].apply(lambda x: cont_to_exp(x))  
49.5 ms ± 375 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)  
df.sample(5) 
 
# Write the code to Count and remove emails 
 

 

Try: Implement the code to perform the following text preprocessing operations: 

a. Count URLs and remove them. 

b. Remove RT 

c. Remove special characters and punctuation. 

d. Remove multiple spaces. 

  

2.4 Preprocessing and Cleaning 

Prepare the text data for the NLP model building and perform the text pre-processing. Use the required 
pre-processing steps based on the dataset prepared and understand the steps involved in Text Pre-
processing. Implement the text pre-processing steps and perform various operations like: 

a. Remove HTML Tags 
b. Remove Accented Chars 
c. Remove Stop words. 

 

Input: twitter4000.csv file 

 

Output: Text without HTML tags, accented chars, and stop words. 

 

Hint: 

# Remove HTML tags  
!pip install beautifulsoup4.  
from bs4 import BeautifulSoup  
x = 'thanks for watching it'  
x.replace('', '').replace('', '') #not rec  
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BeautifulSoup(x, 'lxml').get_text().strip() %%time  
df['twitts'] = df['twitts'].apply(lambda x: BeautifulSoup(x, 
'lxml').get_text().strip()) 
 
# Remove accented chars 
x = 'Áccěntěd těxt'  
import unicodedata  
def remove_accented_chars(x):  

x = unicodedata.normalize('NFKD', x).encode('ascii', 'ignore').decode('utf-
8', 'ignore')  

return x  
remove_accented_chars(x)  
df['twitts'] = df['twitts'].apply(lambda x: remove_accented_chars(x)) 
 
# Write the code to remove stopwords 
 

 

Try: Implement the code to perform the following text preprocessing operations: 

        a. Convert a word into its base form or root form. 

        b. Remove common words. 

        c. Remove rare words. 

 

2.5 Preprocessing and Cleaning 

 

Prepare the text data for the NLP model building and perform the text pre-processing. Use the required 
pre-processing steps based on the dataset prepared and understand the steps involved in Text Pre-
processing. Implement the text pre-processing steps and perform various operations like: 

a. Word Cloud visualization. 
b. Spelling correction. 
c. Tokenization using TextBlob 

 

Input: twitter4000.csv file 

 

Output: Visualization of word cloud, words with correct spellings, tokens.  
 
Hint: 

# Word Cloud Visualization  
# !pip install wordcloud  
from wordcloud import WordCloud  
import matplotlib.pyplot as plt  
%matplotlib inline  
text = ' '.join(df['twitts'])  
len(text)  
wc = WordCloud(width=800, height=400).generate(text)  
plt.imshow(wc)  
plt.axis('off')  
plt.show()  
 
# Write the code to perform Spelling Correction  
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# Tokenization using TextBlob  
x = 'thanks#watching this video. please like it'  
TextBlob(x).words  
doc = nlp(x)  
for token in doc:  

print(token) 

 

Try: Implement the code to perform the following text preprocessing operations: 

a. Detecting the nouns. 

b. Language translation and detection. 

c. Use TextBlob’s Inbuilt sentiment analysis. 

 

  

3.  Regular Expressions 

3.1 Built-in Modules for managing RE 
Understand what regular expressions are and how we can leverage them for text feature engineering. 

Understand how REs are used in various data preprocessing tasks like information mining systems, text 

feature engineering, web scraping, and data extraction. 

 

Input: Simple English sentences 

 

Output: Preprocessed data suitable for text analysis. 

 

Hint: 

# ^ Matches the expression to its right, at the start of a string before it finds a 
line finds a line break. 
# $ Matches the expression to its left, at the end of a string before it finds a line 
break 
# . matches exactly one character a ab matches the string an  
 
print(re.search(r"^.$", "a")) # <re.Match object; span=(0, 1), match='a'> 
print(re.search(r"^a$", "a")) # <re.Match object; span=(0, 1), match='a'> 
print(re.search(r"^.$", "hello")) # None 
print(re.search(r"^he", "hello")) # <re.Match object; span=(0, 2), match='he'> 
print(re.search(r"lo$", "hello")) # <re.Match object; span=(3, 5), match='lo'> 
 
# match function 
print(re.search(r"hey.*", "hey, ciao Fabio")) 
print(re.match(r"hey.*", "hey, ciao Fabio")) 
print(re.search(r"ciao.*", "hey, ciao Fabio")) 
print(re.match(r"ciao.*", "hey, ciao Fabio")) 
 
# findall and finditer functions 
print(re.findall(r"\b\d+\b", "a 1 b 2 c 3")) 
for match in re.finditer(r"\b\d+\b", "a 1 b 2 c 3"): 
 print(match) 
 
# sub and subn functions 
print(re.sub(r"\b\d+\b", "2022", "This year is 2021")) 
print(re.subn(r"\b\d+\b", "NUMBER", "a 1 b 2 c 3 d 4", count=3)) 
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# Write the code to use compile function and print the results using sub( ) and split( 
) functions 

 

Try: Implement the code how to use quantifiers: 

• a|b : Matches expression a or b. If a is matched first, b is not checked; 

• + : Matches the expression to its left 1 or more times; 

• * : Matches the expression to its left 0 or more times; 

• ? : Matches the expression to its left 0 or 1 times. 

• {p} : Matches the expression to its left exactly p times; 

• {p, q} : Matches the expression to its left p to q times; 

• {p, } : Matches the expression to its left p or more times; 

• {, q} : Matches the expression to its left up to q times. 

 

3.2 Common Regex Functions used in NLP  
Understand what regular expressions are and how we can leverage them for text feature engineering. 

Understand how REs are used in various data preprocessing tasks like information mining systems, text 

feature engineering, web scraping, and data extraction. 

 

Input: Simple English sentences 

 

Output: Preprocessed data suitable for text analysis. 

 

Hint: 

# Regular Expression  
import re  
result = re.match(“Institute of Aeronautical Engineering”) 
print(result) 
print(result.group()) 
 
# Replace XXX and YYY with abc in the given string 
string = “abc xxx abc yyy” 
new_string = re.sub(r”xxx|yyy”, “abc”,string) 
print(new_string) 
 
# Store the regular expression pattern in the cache memory 
pattern = re.compile(“Engineering”) 
result1 = pattern.findall(“Institute of Aeronautical Engineering”) 
print(result1) 
 
# Write the code to return all the occurrences of the pattern from a string 
 
 

 

Try: Implement the code to perform the following text preprocessing operations: 

a. Sample regular expression to find quantifiers, anchors, and whitespace. 

b. Sample regular expression to find wildcard characters, escaping special characters, and meta  

sequences. 
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3.3 Data Preprocessing using RE 
Understand what regular expressions are and how we can leverage them for text feature engineering. 

Understand how REs are used in various data preprocessing tasks like information mining systems, text 

feature engineering, web scraping, and data extraction. 

 

Input: Simple English sentences 

 

Output: Preprocessed data suitable for text analysis. 

 

Hint: 

# Regular Expression  
import re  
str="This is a sample text"  
pattern="This"  
output=re.match(pattern,str).group(0)  
print(output)  
 
import re  
str="This is a sample text"  
pattern="sample"  
output=re.search(pattern,str).group(0)  
print(output)  
import re  
str="This is a sample example with a sample text"  
pattern="sample"  
 
# findall() searches for the RE and return a list after successful search 
output=re.findall(pattern,str)  
print(output)  
 
str="For example, 1-Jan-1900 is stored as number 1, 2-01-1900 is stored as 2, and 1-
02-2015 is stored as 42005."  
pattern=r'\d{1}-\d{2}-\d{4}'  
# Write the code to represent the digits and the numbers in curly braces represents 
the number of digits  
 

 

Try: Implement the code to perform the following text preprocessing operations: 

a. Sample regular expression to find digits. 

b. Wildcard expressions. 

 

3.4 Anchors in Regular Expressions 
Understand what regular expressions are and how we can leverage them for text feature engineering. 

Understand how REs are used in various data preprocessing tasks like information mining systems, text 

feature engineering, web scraping, and data extraction. 

 

Input: Simple English sentences 

 

Output: Preprocessed data suitable for text analysis. 
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Hint: 

# Anchors in RE  
import re  
p = bool(re.search(r'\Acat', 'cater'))  
 
# prefix \A to the search term  
print(p)  
p = bool(re.search(r'cat\Z', 'concatenation'))  
 
# suffix \Z to restrict the match to the string end  
print(p)  
p = bool(re.search(r'\$hi', 'hi hello\ntop spot'))  
 
# word boundary  
print(p)  
str = 'cats and dogs'  
p = bool(re.search(r'^cat', str))  
 
# Write the code to print the start and end of line  
 
# ^ metacharacter for matching the start of line and $ for matching the end of line 
print(p)  
import re  
str = 'institute of. aeronautical engineering.'  
# without using backslash(\)  
compare = re.search(r'.', str)  
print(compare)  
 
# using backslash(\)  
compare = re.search(r'\.', str)  
 
# Here, dot(.) is loosing its importance as a metacharacter  
print(compare)  
import re  
 
# compile() creates regular expression # character class [a-e],  
# which is equivalent to [abcde].  
# class [abcde] will match with string with  
# 'a', 'b', 'c', 'd', 'e'.  
p = re.compile('[a-e]')  
print(p.findall("interesting chunks to woodchunks and lemurs"))  
 
# Disjunction, Grouping, and Precedence  
str="This is the simple example with a sample text"  
pattern="the"  
 
# Write the code to use findall() to perform the search for the RE and return a 
list after successful search  
 
 
# Disjunction operator  
pattern="dog|cat" output=re.search(pattern,str)  
print(output)  
import re  
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result=re.findall('cat|dog',r'cat and dog are domestic animals')  
print(result) 

 
Try:  Implement the code to perform the following text preprocessing operations: 

a. Substitution of a specific text pattern. 

b. Substituting a character set with a specific character. 

c. Substitution up to a certain number of characters. 

 

3.5 Grouping in Regular Expressions 
Understand what regular expressions are and how we can leverage them for text feature engineering. 

Understand how REs are used in various data preprocessing tasks like information mining systems, text 

feature engineering, web scraping, and data extraction. 

 

Input: Simple English sentences 

 

Output: Preprocessed data suitable for text analysis. 

 

Hint: 

# Grouping in RE  
import re  
target_string = "The price of PINEAPPLE juice is 20"  
 
# two groups enclosed in separate ( and ) bracket  
result = re.search(r"(\b[A-Z]+\b).+(\b\d+)", target_string)  
 
# Extract matching values of all groups  
print(result.groups()) # Output ('PINEAPPLE', '20') # Extract match value of group 1 
print(result.group(1)) # Output 'PINEAPPLE' # Extract match value of group 2 
print(result.group(2)) # Output 20  
Reference: https://pynative.com/python-regex-capturing-groups/  
df = 
pd.read_csv('https://raw.githubusercontent.com/laxmimerit/twitterdata/master/twitte
r4000.csv', encoding = 'latin1')  
import re  
import pandas as pd  
import numpy as np  
import spacy  
df[df['twitts'].str.contains('hotmail.com')]  
df.iloc[3713]['twitts'] x = '@securerecs arghh me please markbradbury_16@hotmail.com' 
re.findall(r'([a-z0-9+._-]+@[a-z0-9+._-]+\.[a-z0-9+_-]+)', x)  
df['emails'] = df['twitts'].apply(lambda x: re.findall(r'([a-z0-9+._-] +@[a-z0-9+._-
]+\.[a-z0-9+_-]+\b)', x))  
 
# Here, lambda function takes any number of arguments but will have only one expression 
# Write the code to retrieve student roll no's import re chat1='NLPbasics: Hello, I 
am having an issue with my students with roll_nos 0513152435'  
 

 
Try: Implement the code to retrieve the phone numbers and email ids from a given text/sentences.  
 

https://pynative.com/python-regex-capturing-groups/
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4.  Pattern Library in NLP 

4.1 Parsing using Pattern 

Understand the process of processing the text and different ways to analyze numeric data using Pattern 
library. Implement the code to perform natural language processing tasks like text mining by installing 
the pattern library using pip command. 

Input: A simple English sentence.  

Output: Tokens by setting the lemma parameter to TRUE. 

Hint: 

pip install pattern 
 
from pattern.en import parse 
from pattern.en import pprint 
pprint(parse('Hello I am John, I work at the bank.', relations=True, lemmata=True)) 
 
# Add a parameter and increase the sentence length 
pprint(parse('Enzo Ferrari was not initially interested in the idea of producing road 
cars when he formed Scuderia Ferrari in 1929, with headquarters in Modena.', relations  
= True,tokenize= True, lemmata= True)) 
 
# N-grams using Pattern 
from pattern.en import ngrams 
#n grams 
print(ngrams("There is nothing either good or bad, but thinking makes it so.", n=3)) 
 
# Consider n=5 
#n grams 
print(ngrams("There is nothing either good or bad, but thinking makes it so.", n=5)) 
 
# Write the code to implement the same by considering n= 7 also 

 

Try: Implement the code to perform the sentiment analysis with Pattern library by understanding 

emotions and human sentiment from text data. 

 

4.2 Word Corrections using Pattern 

Understand how Pattern library inbuilt functions can assist in spelling correction and give a list of words 
as suggestions that may be the correct usage word. Implement the code to perform natural language 
processing tasks like text mining by installing the pattern library using pip command. 

Input: A simple English token.  

Output: Correct word with full confidence. 

Hint: 

#suggest 
from pattern.en import suggest 
print(suggest("Aerplane")) 
# Try with a different word 
print(suggest(“Ambulnce”)) 
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# Try a different case 
print(suggest(“Cmputer”)) 
 
# Try with a different word 
print(suggest(“Entertanment”)) 
 
# Write the code to perform Word count estimation and quantification 
 
# Try with different words 
b = quantify(['Car', 'Car', 'Bus', 'Ambulance','Bus', 'Truck','Bus','Bus', 
'Truck','FireTruck']) 
print(b) 
 
# Add numbers and see the result 
print(quantify({'Bus': 100, 'Car': 1500,'Truck': 700})) 
print(quantify('People', amount=60000)) 
 
# Add the numbers and see that the values of estimation increased 
print(quantify({'Truck': 11, 'Car': 57808,'Bicycle': 564658})) 
 

Try: Implement the code to try the function number and numerals that can convert numbers to words 

and vice versa. 

 

4.2 Singular and Plural in Pattern 

Understand how Pattern library inbuilt functions can assist in spelling correction and give a list of words 
as suggestions that may be the correct usage word. Implement the code to perform natural language 
processing tasks like text mining by installing the pattern library using pip command. 

Input: A simple English token.  

Output: POS of the words. 

Hint: 

from pattern.en import pluralize, singularize 
print(pluralize('car')) 
print(singularize('BUSES')) 
# Try with some different words 
print(pluralize('Student')) 
print(singularize('chocolates')) 
 
# Converting the adjective to comparative and superlative degrees 
from pattern.en import comparative, superlative 
print(comparative('bad')) 
print(superlative('bad')) 
 
# Write the code to try a different word for the above task 
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Try: Implement the code to try Data Mining operations from Google search and Twitter that can be 

used to retrieve text data/information and make a certain process automated. 

 

4.3 Tokenizing, POS Tagging, and Chunking 

Understand how Pattern library provides an all-in-one method that takes a text string as an input 
parameter and returns the corresponding tokens in the string, along with the POS tag. Implement the 
code to retrieve the lemmatized tokens with the default values for different parameters. 

Input: Use of Pattern library and parse function.  

Output: Tokenized words along with their POS tags and lemmatized form of the tokens. 

Hint: 

# Implementation of parse method 
parse(string, 
    tokenize=True,      # Split punctuation marks from words? 
    tags=True,          # Parse part-of-speech tags? (NN, JJ, ...) 
    chunks=True,        # Parse chunks? (NP, VP, PNP, ...) 
    relations=False,    # Parse chunk relations? (-SBJ, -OBJ, ...) 
    lemmata=False,      # Parse lemmata? (ate => eat) 
    encoding='utf-8',   # Input string encoding. 
    tagset=None         # Penn Treebank II (default) or UNIVERSAL. 
) 
from pattern.en import parse 
from pattern.en import pprint 
 
pprint(parse('I drove my car to the hospital yesterday', relations=True, 
lemmata=True)) 
 
# Write the code to try with some different words and calling the split method 
 
# Pluzalizing and singularizing the tokens 
from pattern.en import pluralize, singularize 
 
print(pluralize('leaf')) 
print(singularize('theives')) 
 

Try: Implement the code to convert an adjective to comparative and superlative degrees. 

 

4.4 Spelling Corrections using Pattern Library 

Understand how Pattern library provides an all-in-one method that takes a text string as an input 
parameter and returns the corresponding tokens in the string, along with the POS tag. Implement the 
code to find if a word is spelled correctly or not and see how the ‘suggest’ function returns the possible 
corrections for the word along with their probability of correctness. 

Input: Use of Pattern library and suggest function.  

Output: Correct word spellings and results while working with numbers. 
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Hint: 

# Spelling correction 
from pattern.en import suggest 
print(suggest('Whitle')) 
 
# Check for correct spelling 
print(suggest(“Fracture”)) 
 
# Working with numbers 
from pattern.en import number, numerals 
print(number("one hundred and twenty two")) 
print(numerals(256.390, round=2)) 
 
# Write the code to use the quantify function 

 

Try: Implement the code to demonstrate the other word count estimators possible in natural language 

processing. 

 

4.5 Pattern Library for Data Mining 

Understand how Pattern library is used to perform a variety of data mining tasks. Implement the code 
to retrieve the contents from the web pages, extract URLs from text strings, and download the complete 
contents of the webpage etc. 

Input: Webpage URL.  

Output: Webpage contents. 

Hint: 

from pattern.web import download 
 
page_html = download('https://en.wikipedia.org/wiki/Artificial_intelligence', 
unicode=True) 
 
from pattern.web import URL, extension 
 
page_url = 
URL('https://upload.wikimedia.org/wikipedia/commons/f/f1/RougeOr_football.jpg') 
file = open('football' + extension(page_url.page), 'wb') 
file.write(page_url.download()) 
file.close() 
 
# Finding URLs within Text 
from pattern.web import find_urls 
print(find_urls('To search anything, go to www.google.com', unique=True)) 
 
# Write the code to make Asynchronous Requests for webpages and print the results 
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Try: Implement the code to search something on Google via pattern library. Use the developer license 

key for the Google API. 

 

5.  Corpora or Corpus 
 

5.1 Sample Usage of Corpus 

Understand the importance of corpus reader classes that are used to access the contents of a diverse 
set of corpora. Implement the code to handle a specific corpus format and automatically create a set of 
corpus reader instances that can be used to access the corpora in the NLTK data package.  

Input: Corpus reader with NLTK package.  

Output: A list of identifiers obtained using a variety of methods provided by the corpus reader.  

 
Hint: 

import nltk.corpus 
 
# The Brown corpus: 
print(str(nltk.corpus.brown).replace('\\\\','/')) 
 
# The Penn Treebank Corpus: 
print(str(nltk.corpus.treebank).replace('\\\\','/')) 
 
# The Name Genders Corpus: 
print(str(nltk.corpus.names).replace('\\\\','/')) 
 
# The Inaugural Address Corpus: 
print(str(nltk.corpus.inaugural).replace('\\\\','/')) 
 
# Access list of identifiers 
nltk.corpus.treebank.fileids() 
nltk.corpus.inaugural.fileids() 
 
# Write the code to read data from the corpus and concatenate list of item names by 
loading all the documents in the corpus 
 
# Access the README file 
inaugural.readme()[:32] 

 
Try: Implement the code to extract the first few words from each of NLTK’s plaintext corpora. 

 

5.2 Tagged and Chunked Corpora 

Understand the difference between plaintext corpora and tagged corpora. Implement the code to 

explore wide variety of annotated corpora using NLTK’s data package. 

Input: Brown Corpus with additional methods like tagged_*( ). 

Output: List of words, tagged words, sentences, tagged sentences, categories of words etc. 
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Hint: 
# Using the Brown Corpus 
from nltk.corpus import brown 
print(brown.words()) 
print(brown.tagged_words()) 
print(brown.sents()) 
print(brown.tagged_sents()) 
print(brown.paras(categories='reviews')) 
print(brown.tagged_paras(categories='reviews')) 
 
# Using the Indian Corpus 
from nltk.corpus import indian 
print(indian.words()) 
print(indian.tagged_words()) 
 
# Write the code to access the universal tag set and also the chunk structures 
 

 
Try: Implement the code using IEER corpus to define the parsed_docs method and return the 

documents in each item as IEERDocument objects. 

 

5.3 Text Normalization 

Understand the importance of text normalization in the context of natural language processing. Implement the 

code to perform text processing like case normalization, punctuation removal, stop word removal, stemming, 

and lemmatization. 

Input: Some sentences of English language. 

Output: Normalized text 

Hint: 
# Text normalization code in Python 
text = "The quick BROWN Fox Jumps OVER the lazy dog." 
text = text.lower() 
print(text) 
 

# Punctuation Removal 
import string 
text = "The quick BROWN Fox Jumps OVER the lazy dog!!!" 
text = text.translate(text.maketrans("", "", string.punctuation)) 
print(text) 
 

# Stop word removal 
from nltk.corpus import stopwords 
text = "The quick BROWN Fox Jumps OVER the lazy dog." 
stop_words = set(stopwords.words("english")) 
words = text.split() 
filtered_words = [word for word in words if word not in stop_words] 
text = " ".join(filtered_words)  
print(text) 
 
# Write the code to perform Stemming, Lemmatization, and Tokenization 
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Try: Implement the code to: 

a. Replace synonyms and abbreviations to their full form to normalize the text in NLP.  

b. Remove numbers and symbols to normalize the text.  

c. Remove any remaining non-textual elements to normalize the text.  

 

5.4 Minimum Edit Distance 

Understand the concept of Minimum Edit Distance and implement the code to find the 

minimum number of edits (operations) required to convert one string into another string.  

 

Input: Two strings of length M and N. 
 

Output: Edit Distance between the strings 
 

Hint: 
def edit_distance(str1, str2, a, b): 
    string_matrix = [[0 for i in range(b+1)] for i in range(a+1)] 
    for i in range(a+1): 
        for j in range(b+1): 
            if i == 0: 
                string_matrix[i][j] = j    
# If first string is empty, insert all characters of second string into first. 
            elif j == 0: 
                string_matrix[i][j] = i    
# If second string is empty, remove all characters of first string. 
            elif str1[i-1] == str2[j-1]: 
                string_matrix[i][j] = string_matrix[i-1][j-1]   
# If last characters of two strings are same, nothing much to do. Ignore the last 
two characters and get the count of remaining strings. 
            else: 
                string_matrix[i][j] = 1 + min(string_matrix[i][j-1],       
# insert operation 
                                       string_matrix[i-1][j],       
# remove operation 
                                       string_matrix[i-1][j-1])     
# Continue the code to implement the replace operation for the above same task 
 

 

Try: Implement the same code and test for different cases.  

 

5.5 Minimum Edit Distance 

Understand the concept of Minimum Edit Distance and implement the code to find the 

minimum number of edits (operations) required to convert one string into another string.  

 

Input: Two strings of length M and N. 
 

Output: Edit Distance between the strings 

 
Hint: 

import Levenshtein   
string1 = "kitten"   
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string2 = "sitting"   
edit_distance = Levenshtein.distance(string1, string2)   
print("The edit distance between '{}' and '{}' is: {}".format(string1, string2, edi
t_distance))  
 
# Implement the code to use dynamic programming approach and finally print the edit 
distance 
 

 
Try: Implement the same code and test for different cases.  

 

 6.  Text to Speech Conversion  

6.1 Perform the conversion of text to speech. 

Using categorized CORPUS implement the code to perform the conversion of text to speech using gTTS 
library. 
 

Input: API to complete the task 

 

Output: Converted file into different languages. 
 

Hint: 

# Installing the gTTS API 

pip install gTTS 
 
# Install additional module 
pip install playsound 
pip install pyttsx3  
 
# Start working with gTTS API 
import gtts   
from playsound import playsound 
 
# Write the code to make a request to google to get synthesis, save the audio fule 
and play the same file 
 
 

Try: Implement the same code and convert the text into other three different languages 

except English. 

 

6.2 Text to Speech Conversion using Offline API 

Using categorized CORPUS, implement the code to perform the conversion of text to speech using 
offline API and understand how to use pyttsx3 library. 
 

Input: pyttsx3 library to complete the task 

 

Output: Converted file into different languages. 
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Hint: 

import pyttsx3   
 
# Initialize Text-to-speech engine   
engine = pyttsx3.init()  
  
# Convert this text to speech   
text = "Python is a great programming language"   
engine.say(text)   
 
# Play the speech   
engine.runAndWait()  
 
# Get details of speaking rate 
rate = engine.getProperty("rate")   
print(rate) 
 
# Write the code to pass the 100 to make the things slower and get details of all 
voices available 
 

 

Try: Implement the code to perform the conversion of text to speech and build own virtual assistance. 

 

6.3 Tokenization 

Understand the concept of tokenization and learn how it affects the NLP pipeline. Implement the code to 

demonstrate how tokenization breaks unstructured data and natural language text into chunks of 

information that can be used directly as a vector representation of that document. 

 

Input: Some sentences from English language 

 

Output: Chunk of Tokens 

 

Hint: 
# Sentence Tokenization     
Sent_tokenize(‘Life is a matter of choices, and every choice you make makes you.’) 
 
# Word Tokenization 
word_tokenize(“The sole meaning of life is to serve humanity”) 
 
# White Space Tokenization 
Sentence = “I was born in India in 1980.” 
Sentence_split() 
 
# Sentence Tokenization using comma as a separator 
Sentence = “I was born in India in 1980, I am 43 years old”. 
Sentence_split(‘,’) 
 
# Write the code to perform work tokenize using NLTK package 
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Try: Implement the code to perform Treebank Word tokenization, Tweet tokenization, and MWET 

tokenization. 

 

6.4  TextBlob Word Tokenization 

Understand the concept of tokenization and learn how it affects the NLP pipeline. Implement the code to 

demonstrate how tokenization breaks unstructured data and natural language text into chunks of 

information that can be used directly as a vector representation of that document. 

 

Input: Some sentences from English language 

 

Output: Chunk of Tokens 

 

 

Hint: 
# Install installation TextBlob and the NLTK corpora 
pip install -U textblob 
python3 -m textblob.download_corpora 
 
# Perform word tokenization using TextBlob library 
from textblob import TextBlob 
text = “But I’m glad you’ll see me as I am. Above all, I wouldn’t want people to think 
that I want to prove anything”. 
 
blob_object = TextBlob(text) 
 
#Word tokenization of the text 
text_words = blob_object.words 
 
#To see all tokens 
print(text_words) 
 
# Write the code to count the number of tokens and perform the tokenization with keras 
 

 
Try: Implement the code to perform spaCy Tokenization and Gensim word tokenization.  

 

6.5 Text Normalization using Stemming. 

Understand the concept of stemming and learn how stemming helps in normalizing the sentences that 

involves in reducing words to their root or base form. Implement the code to run the stemming process 

by removing suffixes or prefixes from words, so that related words map to the same stem. Also understand 

how Porter stemming algorithm works. 

 

Input: Sample text to perform stemming  

 

Output: Stems of the words. 

 

Hint: 
# Install NLTK library 
pip install nltk 
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from nltk.stem import PorterStemmer 
from nltk.tokenize import word_tokenize 
 
# Initialize the Porter Stemmer 
porter_stemmer = PorterStemmer() 
 
# Sample text 
text = "Stemming is a technique for reducing word forms to their base or root form." 
 
# Write the code to perform tokenizing the text into words and perform stemming on each 
word 
 
# Print the original and stemmed words 
print("Original words:", words) 
print("Stemmed words:", stemmed_words) 

 

Try: Implement the same by adjusting the code according to the specific requirements and text data. 

Additionally, preprocess the text by converting it to lowercase or removing punctuation, depending on 

your application. 

 

7.  N-Gram Language Models 

7.1 Unsmoothed Bigram Model 

Suppose we didn’t use the end-symbol. Train an unsmoothed bigram grammar on the following 
training corpus without using the end-symbol:  

Input: <s> a b 

 <s> b b 

 <s> b a 

 <s> a a 

Output: a) Demonstrate that your bigram model does not assign a single probability distribution 
across all sentence lengths by showing that the sum of the probability of the four possible 2 word 
sentences over the alphabet {a,b} is 1.0, and the sum of the probability of all possible 3 word 
sentences over the alphabet {a,b} is also 1.0. 

Hint: 

# Install the notebook as PDF 

Pip install notebook-as-pdf 

# Implementation of N-Grams  
# 1. Exploring Data  
# 2. Extracting features  
# 3. Train and test set preparation  
# 4. Data preprocessing  
# 5. Generate n-grams  
# 6. Generating unigrams, bigrams, trigrams 
 
# Write the code to generate sentences from N-Grams 
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Try: Understand the above program and implement the code to achieve the solutions expected in the 

problem statement.  

7.2 Language Models 

Understand how n-grams are used to generate language models to predict which word comes next 

given a history of words. Implement the code to use ‘lm’ and ‘nltk’ libraries some sense of how natural 

language modelling is done. 

Input: Corpus of your choice 

Output: Prediction of best suitable words. 

Hint: 

# Write the code to generate sentences from corpus by using 7.1 exercise 

 

 

Try: Implement the code to create a unigram language model using default dictionary. 

7.3 Bigram Language Model 

Understand how language models are used to generate or predict the exact word that comes next in 

each sentence. Develop the code to implement bigram language model. 

Input: Corpus of your choice 

Output: Predicting the best suitable next coming words in a sentence. 

Hint: 

# Create a function to train the bigram model  
def train_bigram_model(data):  
 
# Initialize a dictionary to store the counts  
counts = defaultdict(lambda: defaultdict(int))  
 
# Count the occurrences of each bigram  
for i in range(len(data) - 1):  
word1, word2 = data[i], data[i+1]  
counts[word1][word2] += 1  
 
# Write the code to calculate the probabilities of each bigram  
 
# Example usage  
text = "The quick brown fox jumps over the lazy dog"  
words = preprocess(text)  
bigram_model = train_bigram_model(words)  
print(bigram_model) 

 
Try: Implement the same code on different corpus and understand how the model preprocess function 

takes a list of words and returns them as preprocessed ones. 
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7.4 Trigram Language Model 

Understand how language models are used to generate or predict the exact word that comes next in 

each sentence. Develop the code to implement trigram language model. 

Input: Corpus of your choice 

Output: Predicting the best suitable next coming words in a sentence. 

Hint: 

# Implementation of trigram language model  

import re  

from collections import defaultdict 

# Create a function to preprocess text data  

def preprocess(text):  

# Convert all text to lowercase  

text = text.lower()  

# Remove all non-word characters  

text = re.sub(r'\W+', ' ', text)  

# Split the text into individual words  

words = text.split()  

return words 

 

# Create a function to train the trigram model  

def train_trigram_model(data): 

  # Initialize a dictionary to store the counts  

counts = defaultdict(lambda: defaultdict(lambda: defaultdict(int)))  

# Count the occurrences of each trigram  

for i in range(len(data) - 2):  

     word1, word2, word3 = data[i], data[i+1], data[i+2]  

     counts[word1][word2][word3] += 1  

# Calculate the probabilities of each trigram  

probabilities = defaultdict(lambda: defaultdict(dict))  

for word1 in counts:  

    for word2 in counts[word1]:  

        total_count = um(counts[word1][word2].values()) 

        for word3 in counts[word1][word2]:  

            probabilities[word1][word2][word3] = counts[word1][word2][word3] 

/ total_count  

return probabilities 

 

# Write the code to showcase the example usage 

 

 

Try: Implement the same code on different corpus and understand how the model preprocess function 

takes a list of words and returns them as preprocessed ones. 
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7.5 Unigram, Bigram, and Trigram Language Models 

Understand how n-grams are used to generate language models to predict which word comes next 

given a history of words. Implement the code to use ‘lm’ and ‘nltk’ libraries some sense of how natural 

language modelling is done. 

Input: Corpus of your choice 

Output: Prediction of best suitable words using 3 different language models. 

Hint: 

# import the libraries 

import string  

import random  

import nltk  

nltk.download('punkt')  

nltk.download('stopwords')  

nltk.download('reuters')  

from nltk.corpus import reuters  

from nltk import FreqDist  

   

# Input the reuters sentences  

sents  =reuters.sents()  

   

# Write the removal characters such as : Stopwords and punctuation  

stop_words = set(stopwords.words('english'))  

string.punctuation = string.punctuation +'"'+'"'+'-'+'''+'''+'—'  

string.punctuation  

removal_list = list(stop_words) + list(string.punctuation)+ ['lt','rt']  

removal_list  

   

# Write the code to generate unigrams bigrams trigrams  

 

   

# Remove the n-grams with removable words  

def remove_stopwords(x):       

    y = []  

    for pair in x:  

        count = 0 

        for word in pair:  

            if word in removal_list:  

                count = count or 0 

            else:  

                count = count or 1 

        if (count==1):  

            y.append(pair)  

    return (y)  

unigram = remove_stopwords(unigram)  

bigram = remove_stopwords(bigram)  

trigram = remove_stopwords(trigram)  
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# Generate frequency of n-grams   

freq_bi = FreqDist(bigram)  

freq_tri = FreqDist(trigram)  

   

d = defaultdict(Counter)  

for a, b, c in freq_tri:  

    if(a != None and b!= None and c!= None):  

      d[a, b] += freq_tri[a, b, c]  

         

   

# Write the code to predict the next word for a given sentence 

 

 

Try: Implement the same code by considering another corpus. 

8.  N-Gram Language Models 

8.1 Analyzing different N-Gram Language Models 

Analyze different types of n-grams on the given text data and decide which n-gram works better for your 

data. 

 

Input: Text data  

 

Output:  

a) Implement the code by combining ngram taggers collectively using Unigram, Bigram and Trigram 

tagger.  

b) Implement the code using backoff_tagger function for Unigram, Bigram and Trigram tagger and print 

proof as TRUE. 

 

Hint: 

# Import the Modules like cluster hierarchy, linkage, and dendrogram 

import matplotlib.pyplot as plt 
import pandas as pd 
 
# Reading the DataFrame 

seeds_df = pd.read_csv( 
    "https://raw.githubusercontent.com/vihar/unsupervised-learning-with-
python/master/seeds-less-rows.csv") 
 
# Remove the grain species from the DataFrame, save for later 

varieties = list(seeds_df.pop('grain_variety')) 

# Write the code to extract the measurements as a NumPy array and perform 

hierarchical clustering on samples using the linkage () function with the 

method='complete' keyword argument. Assign the result to mergings. 
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""" 
Plot a dendrogram using the dendrogram () function on mergings, 
specifying the keyword arguments labels=varieties, leaf_rotation=90, 
and leaf_font_size=6. 
 
dendrogram(mergings, 
           labels=varieties, 
           leaf_rotation=90, 
           leaf_font_size=6, 
           ) 
 
plt.show() 

 
Try: Implement the same code and do the performance comparison by considering newspaper and twitter 

corpus. 

 

8.2 Smoothing Techniques in NLP 

Understand the concept of smoothing techniques commonly used in NLP. Implement the code to build 

a N-gram language model and apply different smoothing methods to this language model and evaluate 

the results between these smoothing techniques. Do the comparison without and with smoothing 

techniques implementation. 

 

Input: Default dictionary. 

 

Output: Bigram language model without any smoothing technique implementation. 

 

Hint: 
from collections import defaultdict 
from collections import Counter 
from numpy.random import choice  
from tqdm import tqdm 
 
class Bigram(): 
    def __init__(self): 
        self.bigram_counts = defaultdict(Counter) 
        self.unigram_counts = Counter() 
        self.context = defaultdict(Counter) 
        self.start_count = 0 
        self.token_count = 0 
        self.vocab_count = 0 
     
    def convert_sentence(self, sentence): 
        return ["<s>"] + [w.lower() for w in sentence] + ["</s>"] 
     
    def get_counts(self, sentences): 
        # Collect unigram counts 
        for sentence in sentences: 
            sentence = self.convert_sentence(sentence) 
            for word in sentence[1:]:   

# from 1, because we don't need the <s> token 
                self.unigram_counts[word] += 1 
            self.start_count += 1 
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        # Collect bigram counts 
        for sentence in sentences: 
            sentence = self.convert_sentence(sentence) 
            bigram_list = zip(sentence[:-1], sentence[1:]) 
            for bigram in bigram_list: 
                self.bigram_counts[bigram[0]][bigram[1]] += 1 
                self.context[bigram[1]][bigram[0]] += 1 
        self.token_count = sum(self.unigram_counts.values()) 
        self.vocab_count = len(self.unigram_counts.keys()) 
         
    def generate_sentence(self): 
        current_word = "<s>" 
        sentence = [current_word] 
        while current_word != "</s>": 
            prev_word = current_word 
            prev_word_counts = self.bigram_counts[prev_word] 
            # Write the code to obtain bigram probability distribution given the 
previous word and predict the sample the next word 
 

 

Try: Implement the code to generate some sentences using the Penn Treebank corpora as training data.  

 

8.3 Kneser-Ney Smoothing  

Understand the concept of smoothing techniques commonly used in NLP. Implement the code to build 

a N-gram language model and apply different smoothing methods to this language model and evaluate 

the results between these smoothing techniques. Do the comparison without and with smoothing 

techniques implementation. 

 

Input: Default dictionary. 

 

Output: Bigram language model with kneser-ney smoothing technique implementation. 

 

Hint: 

def kneser_ney_smoothing(sentence, bigram, d): 
    sentence = bigram.convert_sentence(sentence) 
    bigram_list = zip(sentence[:-1], sentence[1:]) 
    prob = 0 
 
    for prev_word, word in bigram_list: 
        sm_bigram_counts = bigram.bigram_counts[prev_word][word] 
        if prev_word == "<s>": sm_unigram_counts = bigram.start_count 
        else: sm_unigram_counts = bigram.unigram_counts[prev_word] 
        if sm_unigram_counts == 0:  
            prob += math.log((1 / float(bigram.vocab_count)) * 0.01) 
            continue 
        if sm_bigram_counts != 0:  
            sm_bigram_counts = sm_bigram_counts - d 
        else:  
            # Write the code to perform the statistic how many tokens not occureed 
after pre_word 
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Try: Implement the code to generate some sentences using the Penn Treebank corpora as training data. 

 

8.4 Morphological Analysis 

Perform morphological analysis for an interrogative sentence, declarative sentence, and complex 

sentences with more than two sentences connected using conjunctions. Use the spaCy library and 

implement the code to perform the morphological word structure and forms. 

 

Input: spaCy model  

 

Output: Morphological analysis for interrogative sentence 

  

Hint: 

import spacy 
nlp = spacy.load("en_core_web_sm") 
interrogative_sentence = "What is the weather like today?"  
 
# or interrogative_sentence = input("Enter an interrogative Sentence.") 
declarative_sentence = "The weather is sunny."  
 
# or declarative_sentence = input("Enter an declarative Sentence.") 
complex_sentence = "I went to the store, but they were closed, so I had to go to 
another store."  
# or complex_sentence = input("Enter an complex sentence using conjunction.") 
 
interrogative_doc = nlp(interrogative_sentence) 
declarative_doc = nlp(declarative_sentence) 
complex_doc = nlp(complex_sentence) 
for token in interrogative_doc: 
    print(token.text, token.pos_) 
print("\n") 
for token in declarative_doc: 
    print(token.text, token.pos_) 
print("\n") 
for token in complex_doc: 
    print(token.text, token.pos_) 
 

 
Try: Develop the code to implement the morphological analyzer for Russian and English languages using 

dictionary-lookup systems. 

8.5 Combining NGram Taggers 

Analyze different types of n-grams on the given text data and decide which n-gram works better for your 

data. 

 

Input: Text data 

 

Output: Evaluation results 

 

Hint: 
# Working with bigram tagger 
# Loading Libraries   
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from nltk.tag import DefaultTagger   
from nltk.tag import BigramTagger  
   
from nltk.corpus import treebank  
   
# initializing training and testing set      
train_data = treebank.tagged_sents()[:3000]  
test_data = treebank.tagged_sents()[3000:]  
   
# Write the code to perform Tagging for a bigram model and evaluate the same 
 
# Working of Trigram Tagger 
# Write the code to load libraries and initialize the training and testing set  
   
# Tagging  
tag1 = TrigramTagger(train_data)  
   
# Evaluation  
tag1.evaluate(test_data) 
 
# Collectively using Unigram, Bigram and Trigram tagger. 
# Loading Libraries  
    
from nltk.tag import TrigramTagger  
from tag_util import backoff_tagger  
from nltk.corpus import treebank  
   
# initializing training and testing set      
train_data = treebank.tagged_sents()[:3000]  
test_data = treebank.tagged_sents()[3000:]  
   
backoff = DefaultTagger('NN')  
tag = backoff_tagger(train_sents,   
                     [UnigramTagger, BigramTagger, TrigramTagger],   
                     backoff = backoff)  
tag.evaluate(test_sents) 

 

 

Try: Implement the same code using backoff_tagger function to create instances of each tagger class. 

 

9.  Word Sense Disambiguation 

9.1 Lesk Algorithm 

Understand the concept of word sense disambiguation and implement the code to involve the Lesk 

algorithm and count the number of words about the word and in the dictionary definition of that sense 
for each sense of the word being disambiguated. 
 

Input: Dictionary of sentences 

 

Output: Words count in the neighborhood of the word, pick the one with the greatest number of items 

in this count. 
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Hint: 
%%capture  
import nltk  
from nltk.wsd import lesk  
from nltk.tokenize import word_tokenize  
nltk.download('all') 
 
def get_semantic(seq, key_word):  
     
      # Tokenization of the sequence  
    temp = word_tokenize(seq)  
       
    # Retrieving the definition   
    # of the tokens  
    temp = lesk(temp, key_word)  
    return temp.definition() 
 
# Sequence with the same word and different meanings 
keyword = 'book' 
seq1 = 'I love reading books on coding.' 
seq2 = 'The table was already booked by someone else.' 
   
print(get_semantic(seq1, keyword))  
print(get_semantic(seq2, keyword)) 
 
# Write the code to display output with two different sequences 
 
 

Try: Implement the code to apply Lesk’s algorithm using pywsd package for word-sense disambiguation 

by using WordNet implementation of Lesk. 

 

9.2 Word Sense Disambiguation  

Understand the concept of word sense disambiguation and implement the code to involve the Lesk 

algorithm and count the number of words about the word and in the dictionary definition of that sense 
for each sense of the word being disambiguated. 
 

Input: Dictionary of sentences 

 

Output: Words count in the neighborhood of the word, pick the one with the greatest number of items 

in this count. 

 

Hint: 
from nltk.wsd import lesk 
from nltk.tokenize import word_tokenize 
 
a1= lesk(word_tokenize('This device is used to jam the signal'),'jam') 
print(a1,a1.definition()) 
a2 = lesk(word_tokenize('I am stuck in a traffic jam'),'jam') 
print(a2,a2.definition()) 
 
# testing with some data 



33 
 

b1= lesk(word_tokenize('Apply spices to the chicken to season 
it'),'season') 
print(b1,b1.definition()) 
b2= lesk(word_tokenize('India receives a lot of rain in the rainy 
season'),'season') 
print(b2,b2.definition()) 
 
# Write the code to perform testing with some data  
 

Try: Develop the code to implement word sense disambiguation as a solution to the ambiguity that arises 

due to different meaning of words in different contexts. 

 

9.3 Same Word, Different Meaning 

In natural language processing, word sense disambiguation (WSD) is the problem of determining which 

"sense" (meaning) of a word is activated using the word in a particular context, a process which appears 

to be largely unconscious in people. WSD is a natural classification problem: Given a word and its possible 

senses, as defined by a dictionary, classify an occurrence of the word in context into one or more of its 

sense classes. The features of the context (such as neighboring words) provide evidence for classification. 

 

Input: Corpus of your choice 

 

Output: Print all the definitions of POS tags 

 

Hint: 

from nltk import wsd 
import pandas as pd 
import numpy as np 
import nltk 
from nltk.corpus import wordnet as wn 
from spacy.cli import download 
from spacy import load 
import warnings 
 
nltk.download('omw-1.4') 
nltk.download('wordnet') 
nltk.download('wordnet2022') 
nlp = load('en_core_web_sm') 
 
! cp -rf /usr/share/nltk_data/corpora/wordnet2022 
/usr/share/nltk_data/corpora/wordnet # temp fix for lookup error. 
 
# in the below example the word die has a different meaning in each 
sentence.  
# only by understanding the context the of the word the NLP can further 
improvise. 
 
X = 'The die is cast.' 
Y = 'Roll the die to get a 6.' 
Z = 'What is dead may never die. 
 
wn.synsets("die") 
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# check noun related details  
wn.synsets('die', pos=wn.NOUN) 
 
# Write the code to print all the definitions of nouns and verbs  
 

 

Try: Implement automatic POS finding and correct definition using lesk. Before that will check a little 

about POS tagging using spicy. 

 

9.4 Automatic POS Tagging + Lesk with spaCy 

In natural language processing, word sense disambiguation (WSD) is the problem of determining which 

"sense" (meaning) of a word is activated using the word in a particular context, a process which appears 

to be largely unconscious in people. WSD is a natural classification problem: Given a word and its possible 

senses, as defined by a dictionary, classify an occurrence of the word in context into one or more of its 

sense classes. The features of the context (such as neighboring words) provide evidence for classification. 

 

Input: Corpus of your choice 

Output: Print all the definitions of POS tags 

 

Hint: 

POS_MAP = { 
    'VERB': wn.VERB, 
    'NOUN': wn.NOUN, 
    'PROPN': wn.NOUN 
} 
 
def lesk(doc, word): 
    found = False 
    for token in doc: 
        if token.text == word: 
            word = token 
            found = True 
            break 
    if not found: 
        raise ValueError(f'Word \"{word}\" does not appear in the document: 
{doc.text}.') 
    pos = POS_MAP.get(word.pos_, False) 
    if not pos: 
        warnings.warn(f'POS tag for {word.text} not found in wordnet. Falling back 
to default Lesk behaviour.') 
    args = [c.text for c in doc], word.text 
    kwargs = dict(pos=pos) 
    return wsd.lesk(*args, **kwargs) 
doc = nlp('Roll the die to get a 6.') 
lesk(doc, 'die') 
 
# Continue the code with finding POS tag by default, this helping lesk to find the 
correct definition. 
 
# Check google as company. 
lesk(nlp('I work at google.'), 'google').definition() 
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# check google as a verb (search engine) 
lesk(nlp('I will google it.'), 'google').definition() 
 
# hope as a noun  
lesk(nlp('Her pep talk gave me hope'), 'hope').definition() 
 
# hope as a veb 
lesk(nlp('I hope we win!'), 'hope').definition() 

 

Try: Develop the code to implement word sense disambiguation with Lesk algorithm. 

 

9.5 POS – Text Processing 

Implement the process of POS tagging by understanding the grammatical structure of a sentence. 

Develop the code by understanding the process of translation and information extraction where each 

word is related to each other in the sentence. 

 

Input: en_core_web_sm dataset 

 

Output: Apple | PROPN | proper noun | NNP noun, proper singular 

is | AUX | auxiliary | VBZ verb, 3rd person singular present 

planning | VERB | verb | VBG verb, gerund or present participle 

to | PART | particle | TO infinitival "to" 

buy | VERB | verb | VB verb, base form 

Indian | ADJ | adjective | JJ adjective (English), other noun-modifier (Chinese) 

startup | NOUN | noun | NN noun, singular or mass 

for | ADP | adposition | IN conjunction, subordinating or preposition 

$ | SYM | symbol | $ symbol, currency 

1 | NUM | numeral | CD cardinal number 

billion | NUM | numeral | CD cardinal number 

 

Hint: 

# Import Libraries 
pip install spacy 
python -m spacy download en_core_web_sm 
 
import spacy 
 
# Load the dataset 
nlp = spacy.load("en_core_web_sm") 
 
# Write the code to perform POS tagging on the text 
 

 
Try: Implement the POS tagging in an NLP application of your choice and choose the best fits your needs.  
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10. Parts of Speech Tagging and Chunking 

10.1 Word Classification 

Understand how POS tagging process the words classification into their parts of speech and labelling 

them accordingly. Implement the code to understand how POS tagging is so important in understanding 

the meaning of a sentence or to extract the relationship and build a knowledge graph. 

 

Input: Set of Words 

Output:   
a) Use part of speech tagging to mark a word to its part of speech tag based on its context in the data. It 

is also used to extract relationships between words.   

b) On top of Part of Speech tagging. It groups word into “chunks”, mainly of noun phrases. Chunking is 

done using regular expressions. 

 

Hint: 

# Write the code to create a classifier 

 

# Import the text data to train the classifier 

 

# Define the tags for your classifier 

 

# Tag your data here 

 

# Test and improve the text classifier 

 

# Analyze the new data with the classifier 

 

 

Try:  Implement the code to help translate texts from one language to another by identifying the 

grammatical structure and relationships between words in the source language and mapping them to the 

target language. 

 

10.2 Named Entity Recognition 

 

Named Entity Recognition (NER) is an NLP technique to find and classify entities from textual data into 

predefined categories called named entities. This can include entities like an organization, an individual's 

name, location, a product, etc. Performing named entity recognition with a pre-trained model using 

Python. 

 

Input: em_core_web_sm dataset 

 

Output: 
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Hint: 

# Choose the NER library 

 

# Install the required libraries 

pip install spacy 

python -m spacy download en_core_web_sm 

 

# Loading a pretrained model 

import  spacy 

nlp = spacy.load(“en_core_web_sm”) 

 

# Define the named entity categories that we want to recognize 

new_categories = [“PERSON”, “ORG”, “GPE”, “PRODUCT”] 

 

# Tokenizing the text 

text = “Robert Downey Jr. is an American actor and producer. He is best known for 

his riles in films such as iron man, The Avengers, and Sherlock Holmes. Downey has 

won several awards for his acting, including two screen actors guild awards and a 

Golden Globe Award. He has also been nominated for an Academy Award.” 

doc = nlp(text) 

 

# Identifying and classification named entities 

entities = [ ] 

for ent in doc.ents: 

 if ent.label_ in ner_categories: 

  entities.append((ent.text, ent.label_)) 

# Displaying the named entities and their categories 

for entity, category in entities 

 print(f”{entity}: {category}”) 

# Write the code to visualizing the results (entities in the document) 

 

 

Try: Implement the code to explore the basics of NER and learn to use NER with pretrained models with 

python. 

 

10.3 Named Entity Recognition using Spacy 

 

Input: em_core_web_sm dataset 

 

Output:  

 
 

Hint: 
# Import spacy 
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import spacy 
from spacy import displacy 
 
ner = spacy.load("en_core_web_sm") 
 
# Collect the raw text 
raw_text = "The Indian Space Research Organisation or is the national space agency 
of India, headquartered in Bengaluru. It operates under Department of Space which is 
directly overseen by the Prime Minister of India while Chairman of ISRO acts as 
executive of DOS as well." 
 
text1= NER(raw_text) 
 
# Write the code to print the data on the named entity  
 

 
Try: Implement the code to try the same tasks with some tests containing more named entities. 

 

 
 

10.4 Byte Pair Encoding 

Byte Pair Encoding (BPE) is a widely used tokenization method among transformer-based models. BPE is 

a word segmentation algorithm that merges the most frequently occurring character or character 

sequences iteratively. Implement the code to apply BPE to OOV words. 

 

Input: Sample text of your choice 

 

Output: Frequency of each word in the corpus 

 
Hint: 

# Reading the corpus 
# importing the libraries 
import pandas as pd 
 
# reading .txt file 
text = pd.read_csv(“sample.txt”, header = None) 
 
# converting a dataframe into a single list 
corpus = [ ] 
for row in text.values: 
 tokens = row[0].split(“ “) 
 for token in tokens: 
  corpus.append(token) 
 
vocab = list(set(“ “.join(corpus))) 
vocab.remove(‘ ‘) 
 
# split the word into characters 
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corpus = [“ “.join(token) for token in corpus] 
 
# appending </w> 
corpus = [token+’</w>’ for token in corpus] 
print(corpus) 
 
import collections 
 
# Write the code to return the frequency of each word 
 
# Write the code to convert counter object to dictionary and print the same 
 

 
Try: Implement the code to compute the frequency of a pair of character or character 

sequences by accepting the corpus and return the pair with its frequency.  

 

10.5 BERT Named Entity Recognition (NEW) 

Input: BERT Uncased dataset 

 

Output: Predicted named entities and their labels 

 

Hint: 

import tensorflow as tf  
import tensorflow_hub as hub  
 
# Load a BERT model from TensorFlow Hub  
model = hub.load("https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1")  
 
# Define a sample text  
text = "Barack Obama was the 44th president of the United States."  
 
# Tokenise and input the text to the BERT model  
tokens = model.tokenization.tokenize_string(text)  
inputs = model.tokenization.convert_tokens_to_ids(tokens)  
 
# Use the BERT model to predict named entities  
ner_predictions = model.predict(inputs)  
 
# Write the code to iterate over the predicted named entities and print their 
labels  
 

 

Try: Use the concept of NER and implement the code to perform the entity recognition using FLAIR library. 

 

11.  Text Analysis 

11.1 Real-Time Twitter Sentiment Analysis 

Carefully listening to the voice of the customer on Twitter using sentiment analysis allows companies to 

understand their audience, keep on top of what’s being said about their brand – and their competitors – 
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and discover new trends in the industry. The goal of this exercise is to understand how you can 

use sentiment analysis tools to listen to your customers on Twitter. 

Input: Twitter dataset 

Output: Customer Sentiments 

Hint: 

# import the necessary dependencies 
import re 
import numpy as np 
import pandas as pd 
# plotting 
import seaborn as sns 
from wordcloud import WordCloud 
import matplotlib.pyplot as plt 
# nltk 
from nltk.stem import WordNetLemmatizer 
# sklearn 
from sklearn.svm import LinearSVC 
from sklearn.naive_bayes import BernoulliNB 
from sklearn.linear_model import LogisticRegression 
from sklearn.model_selection import train_test_split 
from sklearn.feature_extraction.text import TfidfVectorizer 
from sklearn.metrics import confusion_matrix, classification_report 
 
# Read and load the datasets 
# Importing the dataset 
DATASET_COLUMNS=['target','ids','date','flag','user','text'] 
DATASET_ENCODING = "ISO-8859-1" 
df = pd.read_csv('Project_Data.csv', encoding=DATASET_ENCODING, 
names=DATASET_COLUMNS) 
df.sample(5) 
 
# Exploratory Data Analysis 
df.head() 
 
df.columns 
print('length of data is', len(df)) 
 
df. Shape 
df.info() 
df.dtypes 
np.sum(df.isnull().any(axis=1)) 
 
print('Count of columns in the data is:  ', len(df.columns)) 
print('Count of rows in the data is:  ', len(df)) 
 
df['target'].unique() 
df['target'].nunique() 
 
# Data Visualization of Target Variables 
# Plotting the distribution for dataset. 
ax = df.groupby('target').count().plot(kind='bar', title='Distribution of 
data',legend=False) 
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ax.set_xticklabels(['Negative','Positive'], rotation=0) 
# Storing data in lists. 
text, sentiment = list(df['text']), list(df['target']) 
 
import seaborn as sns 
sns.countplot(x='target', data=df) 
 
# Data Preprocessing 
data=df[['text','target']] 
data['target'] = data['target'].replace(4,1) 
data['target'].unique() 
 
data_pos = data[data['target'] == 1] 
data_neg = data[data['target'] == 0] 
 
data_pos = data_pos.iloc[:int(20000)] 
data_neg = data_neg.iloc[:int(20000)] 
 
dataset = pd.concat([data_pos, data_neg]) 
 
dataset['text']=dataset['text'].str.lower() 
dataset['text'].tail() 
 
# Write the code to include the list of stopwords 
 
 
STOPWORDS = set(stopwordlist) 
def cleaning_stopwords(text): 
    return " ".join([word for word in str(text).split() if word not in STOPWORDS]) 
dataset['text'] = dataset['text'].apply(lambda text: cleaning_stopwords(text)) 
dataset['text'].head() 
 
import string 
english_punctuations = string.punctuation 
punctuations_list = english_punctuations 
def cleaning_punctuations(text): 
    translator = str.maketrans('', '', punctuations_list) 
    return text.translate(translator) 
dataset['text']= dataset['text'].apply(lambda x: cleaning_punctuations(x)) 
dataset['text'].tail() 
 
def cleaning_repeating_char(text): 
    return re.sub(r'(.)1+', r'1', text) 
dataset['text'] = dataset['text'].apply(lambda x: cleaning_repeating_char(x)) 
dataset['text'].tail() 
 
def cleaning_URLs(data): 
    return re.sub('((www.[^s]+)|(https?://[^s]+))',' ',data) 
dataset['text'] = dataset['text'].apply(lambda x: cleaning_URLs(x)) 
dataset['text'].tail() 
 
def cleaning_numbers(data): 
    return re.sub('[0-9]+', '', data) 
dataset['text'] = dataset['text'].apply(lambda x: cleaning_numbers(x)) 
dataset['text'].tail() 
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from nltk.tokenize import RegexpTokenizer 
tokenizer = RegexpTokenizer(r'w+') 
dataset['text'] = dataset['text'].apply(tokenizer.tokenize) 
dataset['text'].head() 
 
# Applying Stemming 
import nltk 
st = nltk.PorterStemmer() 
def stemming_on_text(data): 
    text = [st.stem(word) for word in data] 
    return data 
dataset['text']= dataset['text'].apply(lambda x: stemming_on_text(x)) 
dataset['text'].head() 
 
# Write the code to apply Lemmatization 
 

# Splitting the data into training and testing 
# Separating the 95% data for training data and 5% for testing data 
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.05, 
random_state =26105111) 
 
# Data Transformation using TF-IDF Vectorizer 
 
vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000) 
vectoriser.fit(X_train) 
print('No. of feature_words: ', len(vectoriser.get_feature_names())) 
 
X_train = vectoriser.transform(X_train) 
X_test  = vectoriser.transform(X_test) 
 
# Write the code to evaluate the model and predict the values for the test dataset 
 
# Write the code to compute and plot the Confusion matrix 
 

 
Try:  Implement the code to extend the above problem statement by building the model and plotting the 

results. 

 

12.  Markov Model Process 

12.1 Word Similarity 

Examine how Word Similarity is used to determine how semantically two words are close to each other. 
Find the similarity between the word vectors in the vector space using spaCy NLP library. 

Input: Sample set of words 

Output:  

a) Find word similarity: using context-sensitive tensors.  

b) Determine the type of an image in Python using imghdr. 

Hint: 
{ 
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 "cells": [ 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "## What is Reinforcement Learning?" 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "Consider you are teaching the dog to catch a ball, but you cannot teach the dog 
explicitly to\n", 
    "catch a ball, instead, you will just throw a ball, every time the dog catches a 
ball, you will\n", 
    "give a cookie. If it fails to catch a dog, you will not give a cookie. So the 
dog will figure out\n", 
    "what actions it does that made it receive a cookie and repeat that action." 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "Similarly in an RL environment, you will not teach the agent what to do or how 
to do,\n", 
    "instead, you will give feedback to the agent for each action it does. The 
feedback may be\n", 
    "positive (reward) or negative (punishment). The learning system which receives 
the\n", 
    "punishment will improve itself. Thus it is a trial and error process. The 
reinforcement\n", 
    "learning algorithm retains outputs that maximize the received reward over time. 
In the\n", 
    "above analogy, the dog represents the agent, giving a cookie to the dog on 
catching a ball is\n", 
    "a reward and not giving a cookie is punishment.\n", 
    "\n", 
    "There might be delayed rewards. You may not get a reward at each step. A reward 
may be\n", 
    "given only after the completion of the whole task. In some cases, you get a 
reward at each\n", 
    "step to find out that whether you are making any mistake.\n", 
    "\n", 
    "An RL agent can explore for different actions which might give a good reward or 
it can\n", 
    "(exploit) use the previous action which resulted in a good reward. If the RL 
agent explores\n", 
    "different actions, there is a great possibility to get a poor reward. If the RL 
agent exploits\n", 
    "past action, there is also a great possibility of missing out the best action 
which might give a\n", 
    "good reward. There is always a trade-off between exploration and exploitation. 
We cannot\n", 
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    "perform both exploration and exploitation at the same time. We will discuss 
exploration exploitation\n", 
    "dilemma detail in the upcoming chapters.\n", 
    "\n", 
    "Say, If you want to teach a robot to walk, without getting stuck by hitting at 
the mountain,\n", 
    "you will not explicitly teach the robot not to go in the direction of mountain," 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "![title](images/B09792_01_01.png)" 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "Instead, if the robot hits and get stuck on the mountain you will reduce 10 
points so that\n", 
    "robot will understand that hitting mountain will give it a negative reward so 
it will not go\n", 
    "in that direction again." 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "![title](images/B09792_01_02.png)" 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": {}, 
   "source": [ 
    "And you will give 20 points to the robot when it walks in the right direction 
without getting\n", 
    "stuck. So robot will understand which is the right path to rewards and try to 
maximize the\n", 
    "rewards by going in a right direction." 
   ] 
  }, 
  { 
   "cell_type": "markdown", 
   "metadata": { 
    "collapsed": true 
   }, 
   "source": [ 
    "![title](images/B09792_01_03.png)" 
   ] 
  } 
 ], 
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 "metadata": { 
  "kernelspec": { 
   "display_name": "Python [conda env:anaconda]", 
   "language": "python", 
   "name": "conda-env-anaconda-py" 
  }, 
  "language_info": { 
   "codemirror_mode": { 
    "name": "ipython", 
    "version": 2 
   }, 
   "file_extension": ".py", 
   "mimetype": "text/x-python", 
   "name": "python", 
   "nbconvert_exporter": "python", 
   "pygments_lexer": "ipython2", 
   "version": "2.7.11" 
  } 
 }, 
 "nbformat": 4, 
 "nbformat_minor": 2 
} 

 
Try: Implement the code to clean the text data and apply Markov chains for text generation. 

 

13.  POS Tagging 

13.1 Generating Knowledge Graph 

Learn how POS tagging works by describing words in their parts of speech and help you understand the 

meaning of sentences and develop a knowledge graph. 

Input: Some set of words 

Output: POS of each word 

Hint: 
import spacy 
nlp = spacy.load('en_core_web_sm') 
 
doc = nlp("The 22-year-old recently won ATP Challenger tournament.") 
 
for tok in doc: 
  print(tok.text, "...", tok.dep_) 
 
doc = nlp("Nagal won the first set.") 
for tok in doc: 
 print(tok.text, "...", tok.dep_) 
 
# import libraries 
 
# Read the CSV file containing the Wikipedia sentences: 
 
# Partitioned the code into multiple chunks for your convenience 
 



46 
 

# Extract these entity pairs for all the sentences in our data: 

 

Try:  a) Implement the code to identify words as nouns, verbs, adjectives, adverbs, etc.  

b) Use part of speech tagging to mark a word to its part of speech tag based on its context in 

the data. It is also used to extract relationships between words. 

c) On top of Part of Speech tagging. It groups word into “chunks”, mainly of noun phrases. 

Chunking is done using regular expressions. 

 

14.  Transformers 

14.1 Language Translation with Transformers 

Natural Language Processing (NLP) is a field at the convergence of artificial intelligence, and linguistics. 

The aim of this exercise is to make the computers understand real-world language or natural language 

so that they can perform tasks like Question Answering, Language Translation, and many more. 

Input: Text of any language (Multi30k dataset) 

Output: Text of the desired language. 

 

Hint: 
# Download the dataset and also tokenize a raw text 
import math 
import torchtext 
import torch 
import torch.nn as nn 
from torchtext.data.utils import get_tokenizer 
from collections import Counter 
from torchtext.vocab import Vocab 
from torchtext.utils import download_from_url, extract_archive 
from torch.nn.utils.rnn import pad_sequence 
from torch.utils.data import DataLoader 
from torch import Tensor 
from torch.nn import (TransformerEncoder, 
TransformerDecoder,TransformerEncoderLayer, TransformerDecoderLayer) 
import io 
import time 
 
url_base = 
'https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/' 
train_urls = ('train.de.gz', 'train.en.gz') 
val_urls = ('val.de.gz', 'val.en.gz') 
test_urls = ('test_2016_flickr.de.gz', 'test_2016_flickr.en.gz') 
 
train_filepaths = [extract_archive(download_from_url(url_base + url))[0] for url in 
train_urls] 
val_filepaths = [extract_archive(download_from_url(url_base + url))[0] for url in 
val_urls] 
test_filepaths = [extract_archive(download_from_url(url_base + url))[0] for url in 
test_urls] 
 
de_tokenizer = get_tokenizer('spacy', language='de_core_news_sm') 
en_tokenizer = get_tokenizer('spacy', language='en_core_web_sm') 
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def build_vocab(filepath, tokenizer): 
counter = Counter() 
with io.open(filepath, encoding="utf8") as f: 
for string_ in f: 
counter.update(tokenizer(string_)) 
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>']) 
 
de_vocab = build_vocab(train_filepaths[0], de_tokenizer) 
en_vocab = build_vocab(train_filepaths[1], en_tokenizer) 
 
def data_process(filepaths): 
raw_de_iter = iter(io.open(filepaths[0], encoding="utf8")) 
raw_en_iter = iter(io.open(filepaths[1], encoding="utf8")) 
data = [] 
for (raw_de, raw_en) in zip(raw_de_iter, raw_en_iter): 
de_tensor_ = torch.tensor([de_vocab[token] for token in 
de_tokenizer(raw_de.rstrip("n"))], 
dtype=torch.long) 
en_tensor_ = torch.tensor([en_vocab[token] for token in 
en_tokenizer(raw_en.rstrip("n"))], 
dtype=torch.long) 
data.append((de_tensor_, en_tensor_)) 
return data 
 
train_data = data_process(train_filepaths) 
val_data = data_process(val_filepaths) 
test_data = data_process(test_filepaths) 
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 
 
 
BATCH_SIZE = 128 
PAD_IDX = de_vocab['<pad>'] 
BOS_IDX = de_vocab['<bos>'] 
EOS_IDX = de_vocab['<eos>'] 
 
# Write the code to customize the loading order and memory pinning by using dataloader 
 
 
# Write the code to implement the transformer 
 
# Represent the token embedding and get the notions of word order. 
 
# Create the subsequent word mask and stop the target word  
 
# define the model parameters and instantiate the model. 
 
# Define two different functions, that is for train and evaluation. 
 
# Train and evaluate the model 
 

 

Try: Implement the code to perform text translation and compare it with google translator. 
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15.  Final Notes 

The only way to learn programming is program, program, and program on challenging problems. The 

problems in this tutorial are certainly NOT challenging. There are tens of thousands of challenging 

problems available – used in training for various programming contests. Check out these sites: 

• Sentiment Analysis on Movie Reviews: https://www.kaggle.com/c/sentiment-analysis-on-movie-

reviews 

• Quora Question Pairs: https://www.kaggle.com/c/quora-question-pairs 

• Toxic Comment Classification Challenge: https://www.kaggle.com/c/jigsaw-toxic-comment-

classification-challenge 

• Natural Language Processing with Disaster Tweets: https://www.kaggle.com/c/nlp-getting-started 

• Jigsaw Multilingual Toxic Comment Classification: https://www.kaggle.com/c/jigsaw-multilingual-

toxic-comment-classification 

• Google QUEST Q&A Labeling: https://www.kaggle.com/c/google-quest-challenge 

• Text Normalization Challenge: https://www.kaggle.com/c/text-normalization-challenge-english-

language 

• Natural Language Processing 2: https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-

classification 

Other Competitions: 

• U.S. Patent Phrase to Phrase Matching 

• Feedback Prize — Predicting Effective Arguments 

• NBME — Score Clinical Patient Notes 

• Feedback Prize — Evaluating Student Writing 

• Jigsaw Rate Severity of Toxic Comments 

• Jigsaw Multilingual Toxic Comment Classification 

• Jigsaw Unintended Bias in Toxicity Classification 

• Toxic Comment Classification Challenge 

• chaii — Hindi and Tamil Question Answering 

• CommonLit Readability Prize 

• Coleridge Initiative — Show US the Data 

• Tweet Sentiment Extraction 

• Google QUEST Q&A Labeling 

• TensorFlow 2.0 Question Answering 

• Gendered Pronoun Resolution 

• Quora Insincere Questions Classification 

• Avito Demand Prediction Challenge 

• Text Normalization Challenge — Russian Language 

• Text Normalization Challenge — English Language 

• Personalized Medicine: Redefining Cancer Treatment 

• Quora Question Pairs 

• Two Sigma Connect: Rental Listing Inquiries 

• The Allen AI Science Challenge 

• Microsoft Malware Classification Challenge (BIG 2015) 

• Tradeshift Text Classification 

• Large Scale Hierarchical Text Classification 

https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/nlp-getting-started
https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification
https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification
https://www.kaggle.com/c/google-quest-challenge
https://www.kaggle.com/c/text-normalization-challenge-english-language
https://www.kaggle.com/c/text-normalization-challenge-english-language
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching
https://www.kaggle.com/competitions/feedback-prize-effectiveness
https://www.kaggle.com/c/nbme-score-clinical-patient-notes
https://www.kaggle.com/c/feedback-prize-2021
https://www.kaggle.com/c/jigsaw-toxic-severity-rating
https://www.kaggle.com/competitions/jigsaw-multilingual-toxic-comment-classification/data
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/discussion/103280
https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge/overview
https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering
https://www.kaggle.com/c/commonlitreadabilityprize
https://www.kaggle.com/c/coleridgeinitiative-show-us-the-data
https://www.kaggle.com/c/tweet-sentiment-extraction
https://www.kaggle.com/c/google-quest-challenge
https://www.kaggle.com/c/tensorflow2-question-answering
https://www.kaggle.com/c/gendered-pronoun-resolution
https://www.kaggle.com/c/quora-insincere-questions-classification
https://www.kaggle.com/c/avito-demand-prediction
https://www.kaggle.com/c/text-normalization-challenge-russian-language
https://www.kaggle.com/c/text-normalization-challenge-english-language
https://www.kaggle.com/c/msk-redefining-cancer-treatment
https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries
https://www.kaggle.com/c/the-allen-ai-science-challenge
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/tradeshift-text-classification
https://www.kaggle.com/c/lshtc
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• StumbleUpon Evergreen Classification Challenge 

• Detecting Insults in Social Commentary 

• Predict Closed Questions on Stack Overflow 

• The Hewlett Foundation: Automated Essay Scoring 

 

Student must have any one of the following certifications: 

1. NPTEL – Natural Language Processing  

2.   NOC: Applied Natural Language Processing 

3.   Natural Language Processing with Deep Learning – Stanford Online 

 

  

V. REFERENCE BOOKS:  

1. Christopher D. Manning and Hinrich Schutze, “Foundations of Natural Language Processing”, The 

MIT Press Cambridge, Massachusetts London, England, 6th edition, 2003. 

2. Daniel Jurafsky and James H. Martin “Speech and Language Processing”, Prentice Hall, 3rd edition 

2009. 

VI. WEB REFERENCES:  

1. https://www.geeksforgeeks.org/natural-language-processing-overview/  

2. https://www.geeksforgeeks.org/python-word-similarity-using-spacy/?ref=rp  

3. https://pub.towardsai.net/natural-language-processing-nlp-with-python-tutorial-for-beginners-

1f54e610a1a0  

4. https://www.analyticsvidhya.com/blog/2021/02/basics-of-natural-language-processing-nlp-basics/  

5. https://towardsdatascience.com/free-hands-on-tutorials-to-get-started-in-natural-language-

processing6a378e24dbfc. 

 

VII. MATERIAL ONLINE:  

1. Course Template 

2. Lab Manual 

 

 

 

https://www.kaggle.com/c/stumbleupon
https://www.kaggle.com/c/detecting-insults-in-social-commentary
https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow
https://www.kaggle.com/c/asap-aes
https://www.geeksforgeeks.org/natural-language-processing-overview/
https://www.geeksforgeeks.org/python-word-similarity-using-spacy/?ref=rp
https://pub.towardsai.net/natural-language-processing-nlp-with-python-tutorial-for-beginners-1f54e610a1a0
https://pub.towardsai.net/natural-language-processing-nlp-with-python-tutorial-for-beginners-1f54e610a1a0
https://www.analyticsvidhya.com/blog/2021/02/basics-of-natural-language-processing-nlp-basics/

