
231 | P a g e

PYTHON PROGRAMMING LABORATORY

I Semester: Common from all branches

Course Code Category Hours / Week Credits Maximum Marks

ACSC02 Foundation
L T P C CIA SEE Total

0 0 3 1.5 30 70 100

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes:36

 Prerequisite: There are no prerequisites to take this course.

I. COURSE OVERVIEW:

This course introduces students to writing computer programs. This course presents the principles of structured

programming using the Python language, one of the most increasingly preferred languages for programming today.

Because of its ease of use, it is ideal as a first programming language and runs on both the PC and Macintosh

platforms. However, the knowledge gained in the course can be applied later to other languages such as C and Java.

The course uses iPython Notebook to afford a more interactive experience. Topics include fundamentals of

computer programming in Python, object-oriented programming and graphical user interfaces.

II. COURSE OBJECTIVES:

The students will try to learn:

I. Acquire programming skills in core Python.

II. Acquire Object-oriented programming skills in Python.

III. Develop the skill of designing graphical-user interfaces (GUI) in Python.

IV. Develop the ability to write database applications in Python.

V. Acquire Python programming skills to move into specific branches - Internet of Things (IoT), Data Science,

Machine Learning (ML), Artificial Intelligence (AI) etc.

III. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1 Demonstrate the basic concepts of python programming with the help of data types,

operators and expressions, console input/output

Understand

CO 2 Make use of control statements for altering the sequential execution of programs in

solving problems.

Apply

CO 3 Demonstrate operations on built-in container data types (list, tuple, set, dictionary) and

strings.

Understand

CO 4 Make use of operations and applications on strings with the help of built in functions Apply

CO 5 Solve the problems by using modular programming concepts through functions. Apply

CO 6 Identify object-oriented programming constructs for developing large, modular and

reusable real-time programs

Apply

 IV. SYLLABUS:

Week – 1: OPERATORS

a. Read a list of numbers and write a program to check whether a particular element is present or not using

membership operators.

b. Read your name and age and write a program to display the year in which you will turn 100 years old.

c. Read radius and height of a cone and write a program to find the volume of a cone.

d. Write a program to compute distance between two points taking input from the user (Hint: use Pythagorean

theorem)

Week – 2: CONTROL STRUCTURES

a. Read your email id and write a program to display the no of vowels, consonants, digits and white spaces in it

using if…elif…else statement.

b. Write a program to create and display a dictionary by storing the antonyms of words. Find the antonym of a

particular word given by the user from the dictionary using while loop.

c. Write a Program to find the sum of a Series 1/1! + 2/2! + 3/3! + 4/4! +…….+ n/n!. (Input :n = 5, Output :

232 | P a g e

2.70833)

d. In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors

is greater than the number itself. Write a program to find out, if the given number is abundant. (Input: 12, Sum of

divisors of 12 = 1 + 2 + 3 + 4 + 6 = 16, sum of divisors 16 > original number 12)

Week – 3: LIST

a. Read a list of numbers and print the numbers divisible by x but not by y (Assume x = 4 and y = 5).

b. Read a list of numbers and print the sum of odd integers and even integers from the list.(Ex: [23, 10, 15, 14, 63],

odd numbers sum = 101, even numbers sum = 24)

c. Read a list of numbers and print numbers present in odd index position. (Ex: [10, 25, 30, 47, 56, 84, 96], The

numbers in odd index position: 25 47 84).

d. Read a list of numbers and remove the duplicate numbers from it. (Ex: Enter a list with duplicate elements: 10 20

40 10 50 30 20 10 80, The unique list is: [10, 20, 30, 40, 50, 80])

Week – 4: TUPLE

a. Given a list of tuples. Write a program to find tuples which have all elements divisible by K from a list of tuples.

test_list = [(6, 24, 12), (60, 12, 6), (12, 18, 21)], K = 6, Output : [(6, 24, 12), (60, 12, 6)]

b. Given a list of tuples. Write a program to filter all uppercase characters tuples from given list of tuples. (Input:

test_list = [(“GFG”, “IS”, “BEST”), (“GFg”, “AVERAGE”), (“GfG”,), (“Gfg”, “CS”)], Output : [(„GFG‟, „IS‟,

„BEST‟)]).

c. Given a tuple and a list as input, write a program to count the occurrences of all items of the list in the tuple.

(Input : tuple = ('a', 'a', 'c', 'b', 'd'), list = ['a', 'b'], Output : 3)

Week – 5: SET

a. Write a program to generate and print a dictionary that contains a number (between 1 and n) in the form (x,

x*x).

b. Write a program to perform union, intersection and difference using Set A and Set B.

c. Write a program to count number of vowels using sets in given string (Input : “Hello World”, Output: No. of

vowels : 3)

d. Write a program to form concatenated string by taking uncommon characters from two strings using set concept

(Input : S1 = "aacdb", S2 = "gafd", Output : "cbgf").

Week – 6: DICTIONARY

a. Write a program to do the following operations:

i. Create a empty dictionary with dict() method

ii. Add elements one at a time

iii. Update existing key‟s value

iv. Access an element using a key and also get() method

v. Deleting a key value using del() method

b. Write a program to create a dictionary and apply the following methods:

i. pop() method

ii. popitem() method

iii. clear() method

c. Given a dictionary, write a program to find the sum of all items in the dictionary.

d. Write a program to merge two dictionaries using update() method.

Week – 7: STRINGS

a. Given a string, write a program to check if the string is symmetrical and palindrome or not. A string is said to

be symmetrical if both the halves of the string are the same and a string is said to be a palindrome string if one

half of the string is the reverse of the other half or if a string appears same when read forward or backward.

b. Write a program to read a string and count the number of vowel letters and print all letters except 'e' and 's'.

c. Write a program to read a line of text and remove the initial word from given text. (Hint: Use split() method,

Input : India is my country. Output : is my country)

d. Write a program to read a string and count how many times each letter appears. (Histogram).

Week – 8: USER DEFINED FUNCTIONS

233 | P a g e

a. A generator is a function that produces a sequence of results instead of a single value. Write a generator

function for Fibonacci numbers up to n.

b. Write a function merge_dict(dict1, dict2) to merge two Python dictionaries.

c. Write a fact() function to compute the factorial of a given positive number.

d. Given a list of n elements, write a linear_search() function to search a given element x in a list.

Week – 9: BUILT-IN FUNCTIONS

a. Write a program to demonstrate the working of built-in statistical functions mean(), mode(), median() by

importing statistics library.

b. Write a program to demonstrate the working of built-in trignometric functions sin(), cos(), tan(), hypot(),

degrees(), radians() by importing math module.

c. Write a program to demonstrate the working of built-in Logarithmic and Power functions exp(), log(), log2(),

log10(), pow() by importing math module.

d. Write a program to demonstrate the working of built-in numeric functions ceil(), floor(), fabs(), factorial(), gcd()

by importing math module.

Week – 10: CLASS AND OBJECTS

a. Write a program to create a BankAccount class. Your class should support the following methods for

i) Deposit

ii) Withdraw

iii) GetBalanace

iv) PinChange

b. Create a SavingsAccount class that behaves just like a BankAccount, but also has an interest rate and a method

that increases the balance by the appropriate amount of interest (Hint:use Inheritance).

c. Write a program to create an employee class and store the employee name, id, age, and salary using the

constructor. Display the employee details by invoking employee_info() method and also using dictionary

(__dict__).

d. Access modifiers in Python are used to modify the default scope of variables. Write a program to demonstrate

the 3 types of access modifiers: public, private and protected.

Week – 11: MISCELLANEOUS PROGRAMS

a. Write a program to find the maximum and minimum K elements in Tuple using slicing and sorted() method

(Input: test_tup = (3, 7, 1, 18, 9), k = 2, Output: (3, 1, 9, 18))

b. Write a program to find the size of a tuple using getsizeof() method from sys module and built-in __sizeof__()

method.

c. Write a program to check if a substring is present in a given string or not.

d. Write a program to find the length of a string using various methods:

i. Using len() method

ii. Using for loop and in operator

iii. Using while loop and slicing

Week – 12: ADDITIONAL PROGRAMS - FILE HANDLING

1. Write a program to read a filename from the user, open the file (say firstFile.txt) and then perform

the following operations:

i. Count the sentences in the file.

ii. Count the words in the file.

iii. Count the characters in the file.

2. Create a new file (Hello.txt) and copy the text to other file called target.txt. The target.txt file should store only

lower case alphabets and display the number of lines copied.

3. Write a Python program to store N student‟s records containing name, roll number and branch. Print the given

branch student‟s details only.

III. REFERENCE BOOKS:

1. Michael H Goldwasser, David Letscher, “Object Oriented Programming in Python”, Prentice Hall, 1
st
 Edition,

2007.

2. Yashavant Kanetkar, Aditya Kanetkar, “Let us Python”, BPB publication, 1
st
 Edition, 2019.

3. Ashok Kamthane, Amit Kamthane, “Programming and Problem Solving with Python”, McGraw Hill Education

(India) Private Limited, 2018.

234 | P a g e

4. Taneja Sheetal, Kumar Naveen, “Python Programming – A modular approach”, Pearson, 2017.

5. R Nageswara Rao, “Core Python Programming”, Dreamtech press, 2017 Edition.

IV. WEB REFERENCES:

1. https://realpython.com/python3-object-oriented-programming/

2. https://python.swaroopch.com/oop.html

3. https://python-textbok.readthedocs.io/en/1.0/Object_Oriented_Programming.html

4. https://www.programiz.com/python-programming/

5. https://www.geeksforgeeks.org/python-programming-language/

http://www.programiz.com/python-programming/

