WIRELESS COMMUNICATIONS AND NETWORKS

	Category	Hours / Week		Credits	Maximum Marks			
AECC25	Elective	L	Т	Р	С	CIA	SEE	Total
		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Pı	Practical Classes: Nil Total Classes: 45				45	
Prerequisites: Analog an	d Digital Communications	s						
communication system suc	ES:	llite com	municat	ion, TV	and radio tra	ansmissior	18.	
The Students will try to	o learn: equency reuse, handoff, mu	ltipath ch	nannels	and mul	tiple access t	echniques	used in	
wireless communic		-						

After successful completion of the course, students should be able to:

- CO 1 **Demonstrate** the functioning of a cellular system for implementing technical challenges. Understand
- CO 2 Summarize the propagation mechanisms and radio wavepropagation to know the behavior Understand of radio waves..
- CO 3 Apply the channel path loss models for the reduction in powerdensity (attenuation) of Apply an electromagnetic wave.
- CO 4 **Identify** the multiple access schemes and techniques for providing multiple users on a Apply single channel.
- CO 5 Analyze the process of equalization and diversity schemes carriedout in mobile devices Analyze for reduced distortion of received signals.
- CO 6 Classify the types of wireless local area networks and networking standards for Understand implementing the network of computing devices.

IV. COURSE SYLLABUS:

MODULE-I: THE CELLULAR CONCEPT SYSTEM DESIGN FUNDAMENTALS (10)

Introduction, frequency reuse, channel assignment strategies, handoff strategies; Prioritizing handoffs, practical handoff considerations, interference and system capacity; Co-channel interference and system capacity, channel planning for wireless systems, adjacent channel interference, power control for reducing interference, trunking and grade of service, improving coverage & capacity in cellular systems; Cell splitting, sectoring.

MODULE-II: MOBILE RADIO PROPAGATION-LARGE-SCALE PATH LOSS (09)

Large-Scale Path Loss: Introduction to radio wave propagation, free space propagation model, relating powerto electric field, the three basic propagation mechanisms; Reflection: Reflection from dielectrics, Brewster angle, reflection from prefect conductors, ground reflection (Two-Ray) mode; Diffraction Fresnel zone geometry, knife- edge diffraction model, multiple knife-edge diffraction, scattering, outdoor propagation models; Longley-Ryce model, Okumura Model, Hata Model, PCS extension to hata Model, Walfisch and Bertoni model, wideband PCS microcell model, indoor propagation models-partition losses (Same Floor), partition losses between floors, log- distance path loss model, ericsson multiple breakpoint model, attenuation factor model, signal penetration into buildings, ray tracing and site specific modeling.

MODULE-III: MOBILE RADIO PROPAGATION- SMALL -SCALE PATH LOSS (08)

Small-scale fading and multipath: Small scale multipath propagation; Factors influencing small scale fading, Doppler shift, impulse response model of a multipath channel; Relationship between bandwidth and received power, small; Scale multipath measurements; Direct RF pulse system, spread spectrum sliding correlator channel sounding, frequency domain channels sounding, parameters of mobile multipath channels; Time dispersion parameters.

Coherence Bandwidth, Doppler spread and coherence time, types of small - Scale fading; Fading effects due to multipath time delay spread, flat fading, frequency selective fading, fading effects due to Doppler Spread -Fast fading, slow fading, statistical models for multipath fading channels; Clarke model for flat fading, spectral shape due to Doppler spread in Clarke model, simulation of Clarke and Gans Fading model, levelcrossing and fading statistics, two-ray Rayleigh fading model.

MODULE-IV: EQUALIZATION AND DIVERSITY (08)

Introduction, fundamentals of equalization, training a generic adaptive equalizer, equalizers in a communication receiver, linear equalizers, non-linear equalization; Decision feedback equalization (DFE), maximum likelihood sequence estimation (MLSE) equalizer, algorithms for adaptive equalization; Zero forcing algorithm, least mean square algorithm, recursive least squares algorithm; Diversity techniques; Derivation of selection diversity improvement, derivation of maximal ratio combining improvement, practical space diversity consideration; Selection diversity, feedback or scanning diversity, maximal ratio combining, equal gain combining, polarization diversity, frequency diversity, time diversity, RAKE receiver.

MODULE-V: WIRELESS NETWORKS (10)

Introduction to wireless networks, advantages and disadvantages of wireless local area networks, WLAN topologies, WLAN standard IEEE 802.11, IEEE 802.11 medium access control, comparison of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, wireless PANs, Hipper LAN, WLL.

V. TEXT BOOKS:

- 1. Theodore .S. Rapport, "Wireless Communications", Pearson Education, 2nd Edition, 2010.
- 2. Upen Dalal, "Wireless communication", Oxford University press, 2010.
- 3. Kaveh Pahlvan, Prashant Krishnamurthy, "Principle of Wireless Networks", A United Approach, Pearson Education, 2004.
- 4. Andrea Goldsmith, "Wireless Communications", Cambridge University Press, 2005.

VI. REFERENCE BOOKS:

- P.Nicopolitidis, M.S. Obaidat, G.I.Papadimitria, A.S. Pomportsis, "Wireless Networks" John Wiley &sons, 1st Edition, 2003.
- 2. Vijay K Garg,"Wireless Communications and Networks", Morgan Kaufmann Publishers an Imprint of Elsevier, USA 2009 (Indian Reprint).
- 3. Mark Ciampa Jorge Olenewa, "Wireless Communication and Networking", IE, 2009.
- 4. X.Wang, H.V.Poor, "Wireless Communication System", Pearson 2nd Education, 2004.
- 5. Jochen Schiller, "Mobile Communication", Pearson Education, 2nd Edition, 2003.

VII. WEB REFERENCES:

- 1. http://keshi.ubiwna.org/2017IoTCOMM/Wireless_Communications_&_Networking_Stallings_2nd.
- 2. https://www.google.com/wirelesscommunicationnetwork.
- 3. https://www3.nd.edu/~mhaenggi/ee598q/books/stallings_jagadish.pdf

VIII. E-TEXT BOOKS:

- 1. https://www.oreilly.com/library/view/wireless-communications-principles/0130422320/
- 2. https://groups.google.com/forum/#!topic/kluecm2010-2014/7Q5gRhqh51g