

# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

## ELECTRICAL AND ELECTRONICS ENGINEERING

## **COURSE DESCRIPTOR**

| Course Title      | IDEATION                                                                                                                                           | IDEATION AND PRODUCT DEVELOPMENT       |         |            |         |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|------------|---------|--|
| Course Code       | AEC201                                                                                                                                             | AEC201                                 |         |            |         |  |
| Programme         | B.Tech                                                                                                                                             |                                        |         |            |         |  |
| Semester          | VI                                                                                                                                                 | VI CSE   IT   ECE   EEE   CE   ME   AE |         |            |         |  |
| Course Type       | Skill                                                                                                                                              |                                        |         |            |         |  |
| Regulation        | IARE - R16                                                                                                                                         |                                        |         |            |         |  |
|                   | Theory Practical                                                                                                                                   |                                        |         |            | cal     |  |
| Course Structure  | Lectures                                                                                                                                           | Tutorials                              | Credits | Laboratory | Credits |  |
|                   | -                                                                                                                                                  | -                                      | -       | 2          | 1       |  |
| Chief Coordinator | Dr. G Manisha, Associate Professor, ECE                                                                                                            |                                        |         |            |         |  |
| Course Faculty    | Dr. G Manisha , Associate Professor, ECE Dr. P Munaswamy , Professor, ECE Dr. M V Krishna Rao , Professor, ECE Dr. V Sivanagaraju , Professor, ECE |                                        |         |            |         |  |

## I. COURSE OVERVIEW:

This course deals with developing innovative products in all fields of Engineering and Sciences. This course also emphasizes on social and societal responsibilities of the present day youth to strive for the betterment of the society. This course also deals with effects of the knowledge management process motivated by reward systems on innovative product development performance.

## II. COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites                    | Credits |
|-------|-------------|----------|----------------------------------|---------|
| UG    | AHS106      | V        | Research and Content Development | 1       |

## III. MARKS DISTRIBUTION:

| Subject                          | SEE Examination | CIA Examination | Total Marks |
|----------------------------------|-----------------|-----------------|-------------|
| Ideation and Product Development | 70 Marks        | 30 Marks        | 100         |

## IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| × | Chalk & Talk           | × | Quiz     | × | Assignments  | × | MOOCs  |
|---|------------------------|---|----------|---|--------------|---|--------|
| ~ | LCD / PPT              | ~ | Seminars | ~ | Mini Project | ~ | Videos |
| × | Open Ended Experiments |   |          |   |              |   |        |

### V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

**Semester End Examination (SEE):** The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

| 20 % | To test the preparedness for the experiment.                           |
|------|------------------------------------------------------------------------|
| 20 % | To test the performance in the laboratory.                             |
| 20 % | To test the calculations and graphs related to the concern experiment. |
| 20 % | To test the results and the error analysis of the experiment.          |
| 20 % | To test the subject knowledge through viva – voce.                     |

### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

| Component          | Laboratory                |                               |             |
|--------------------|---------------------------|-------------------------------|-------------|
| Type of Assessment | Day to Day<br>Performance | Final Internal Lab Assessment | Total Marks |
| CIA Marks          | 20                        | 10                            | 30          |

# **Continuous Internal Examination (CIE):**

One CIE exams shall be conducted at the end of the 16<sup>th</sup> week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

| Preparation | Performance | Calculations and<br>Graph | Results and<br>Error Analysis | Viva | Total |
|-------------|-------------|---------------------------|-------------------------------|------|-------|
| 2           | 2           | 2                         | 2                             | 2    | 10    |

## VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

|       | Program Outcomes (POs)                                                                                                                                                                                                                                                                            | Strength | Proficiency assessed by                |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|
| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          | 3        | Lectures,<br>Assignments,<br>Exercises |
| PO 2  | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences                                                           | 2        | Seminar                                |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                         | 2        | Design Exercises                       |
| PO 9  | <b>Individual and team work:</b> Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary Settings.                                                                                                                                            | 1        | Micro projects.                        |
| PO 10 | Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. | 1        | Seminars, Paper<br>Presentations.      |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.                                                                                                          | 2        | Development of<br>Mini Projects        |

3 = High; 2 = Medium; 1 = Low

## VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes (PSOs)                                                                                                                                                                                                                                                                               | Strength | Proficiency assessed by     |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------|
| PSO 1 | <b>Problem Solving</b> : Exploit the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.                                                                                                           |          | Lectures and<br>Assignments |
| PSO 2 | <b>Professional Skills:</b> Identify the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally. | -        | -                           |

|       | Program Specific Outcomes (PSOs)                                                                                                                                                                           | Strength | Proficiency assessed by |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|
| PSO 3 | Modern Tools in Electrical Engineering: Comprehend the technologies like PLC, PMC, process controllers, transducers and HMI and design, install, test, maintain power systems and industrial applications. |          | Guest lectures          |

3 = High; 2 = Medium; 1 = Low

# VIII. COURSE OBJECTIVES:

| The course should enable the students to: |                                                                                           |  |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| I                                         | To Develop next generation Entrepreneurs and Creative Leaders to resolve live challenges. |  |  |  |
| II                                        | To Understand about the future needs of industries                                        |  |  |  |
| III                                       | To Transform innovative ideas into successful businesses.                                 |  |  |  |
| IV                                        | To Use a range of creative thinking tools to develop Out of the Box Ideas.                |  |  |  |
| V                                         | To develop Breakthrough Innovators and Dynamic Thinkers.                                  |  |  |  |

# IX. COURSE OUTCOMES (COs):

| The cours | The course should enable the students to:                                                        |  |  |  |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| CO1       | Understand the basic concepts of implementing novel techniques in developing innovative products |  |  |  |  |  |  |
| CO2       | Analyze the need with respect to current market and recent trends                                |  |  |  |  |  |  |
| CO3       | Analyze cost effectiveness of products                                                           |  |  |  |  |  |  |
| CO4       | Develop a prototype of product                                                                   |  |  |  |  |  |  |
| CO5       | Commercialize the product                                                                        |  |  |  |  |  |  |

# X. COURSE LEARNING OUTCOMES (CLOs):

| CLO Code  | CLO's | At the end of the course, the student will        | PO's        | Strength of |
|-----------|-------|---------------------------------------------------|-------------|-------------|
|           |       | have the ability to:                              | Mapped      | Mapping     |
| AEC201.01 | CLO 1 | Deliver high quality functional product           | PO 1, PO 2  | 3           |
|           |       | prototypes of commercial quality (bold and        |             |             |
|           |       | doing instead of just talking, how to prototype,  |             |             |
|           |       | importance of prototyping and ideation).          |             |             |
| AEC201.02 | CLO 2 | Develop innovative solutions to real-world        | PO 1, PO 2  | 3           |
|           |       | problems.                                         |             |             |
|           |       |                                                   |             |             |
| AEC201.03 | CLO 3 | Learn project management and planning -           | PO 1, PO 2  | 3           |
|           |       | understanding, importance of clear delegation of  | PO 9        |             |
|           |       | tasks and responsibilities.                       |             |             |
| AEC201.04 | CLO 4 | Importance of good communication (ways and        | PO 2, PO 5  | 2           |
|           |       | medias of communication, interacting with         | PO 9, PO 12 |             |
|           |       | different people with different backgrounds).     |             |             |
| AEC201.05 | CLO 5 | Work in in multi-disciplinary and/or              | PO 5, PO 10 | 2           |
|           |       | geographically distributed teams working          |             |             |
|           |       | remotely in National / International environment. |             |             |

| CLO Code  | CLO's | At the end of the course, the student will have the ability to: | PO's<br>Mapped | Strength of<br>Mapping |
|-----------|-------|-----------------------------------------------------------------|----------------|------------------------|
| AEC201.06 | CLO 6 | Conduct patent searches and analyze prior intellectual property | PO 2, PO 12    | 2                      |

**3= High; 2 = Medium; 1 = Low** 

# XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course   |      | Pı   | rogram Oı | itcomes ai | and Program Specific Outcomes |      |       |       |  |  |  |
|----------|------|------|-----------|------------|-------------------------------|------|-------|-------|--|--|--|
| Outcomes | PO 1 | PO 2 | PO 5      | PO 9       | PO 10                         | PO12 | PSO 1 | PSO 3 |  |  |  |
| CO 1     | 3    | 2    |           |            |                               |      | 3     |       |  |  |  |
| CO 2     | 3    | 2    | 2         | 2          |                               |      | 3     |       |  |  |  |
| CO 3     |      | 2    | 2         | 1          |                               | 1    | 2     | 2     |  |  |  |
| CO 4     |      |      | 2         |            | 2                             |      |       | 2     |  |  |  |
| CO 5     |      | 2    |           |            |                               | 2    |       | 2     |  |  |  |

<sup>3 =</sup> High; 2 = Medium; 1 = Low

# XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course<br>Learning |     | Pı  | rograr | n Outo | comes | mes and Program Specific Outcomes |            |     |     |      |      | Program Specific<br>Outcomes (PSOs) |      |      |      |
|--------------------|-----|-----|--------|--------|-------|-----------------------------------|------------|-----|-----|------|------|-------------------------------------|------|------|------|
| Outcomes<br>(CLOs) | PO1 | PO2 | PO3    | PO4    | PO5   | PO6                               | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12                                | PSO1 | PSO2 | PSO3 |
| CLO 1              | 3   | 2   |        |        |       |                                   |            |     |     |      |      |                                     | 3    |      |      |
| CLO 2              | 3   | 2   |        |        |       |                                   |            |     |     |      |      |                                     | 3    |      |      |
| CLO 3              | 2   | 2   |        |        |       |                                   |            |     | 2   |      |      |                                     | 2    |      |      |
| CLO 4              |     | 2   |        |        | 2     |                                   |            |     | 2   |      |      | 1                                   |      |      | 2    |
| CLO 5              |     |     |        |        | 2     |                                   |            |     |     | 2    |      |                                     |      |      | 2    |
| CLO 6              |     | 2   |        |        |       |                                   |            |     |     |      |      | 2                                   |      |      | 2    |

 $<sup>3 = \</sup>text{High}$ ; 2 = Medium; 1 = Low

## XIII. ASSESSMENT METHODOLOGIES - DIRECT

| CIE Exams     | PO1,PO2,   | SEE     | PO1,PO2,   | Assignments  | PO1,PO2,   | Seminars   | PO1,PO2,   |
|---------------|------------|---------|------------|--------------|------------|------------|------------|
|               | PO5,PO9,   | Exams   | PO5,PO9,   |              | PO5,PO9,   |            | PO5,PO9,   |
|               | PO10,PO12, |         | PO10,PO12, |              | PO10,PO12, |            | PO10,PO12, |
|               | PSO1, PSO3 |         | PSO1, PSO3 |              | PSO1, PSO3 |            | PSO1, PSO3 |
| Laboratory    | PO1,PO2,   | Student | PO1,PO2,   | Mini Project | PO1,PO2,   | Term Paper | _          |
| Practices     | PO5,PO9,   | Viva    | PO5,PO9,   |              | PO5,PO9,   |            |            |
|               | PO10,PO12, |         | PO10,PO12, |              | PO10,PO12, |            |            |
|               | PSO1, PSO3 |         | PSO1, PSO3 |              | PSO1, PSO3 |            |            |
| Certification | -          |         |            |              |            |            |            |

# XIV. ASSESSMENT METHODOLOGIES - INDIRECT

| • | Early Semester Feedback                | > | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

# XV. SYLLABUS

| WEEK 1       | SUCCESSFUL TEAM FORMATION AND MANAGEMENT              |  |  |  |  |  |  |
|--------------|-------------------------------------------------------|--|--|--|--|--|--|
| SUCCESSFUL   | TEAM FORMATION AND MANAGEMENT                         |  |  |  |  |  |  |
| WEEK 2       | INTRODUCTION TO USER-CENTRED DESIGN                   |  |  |  |  |  |  |
| INTRODUCTI   | INTRODUCTION TO USER-CENTRED DESIGN                   |  |  |  |  |  |  |
| WEEK 3       | IDEATION AND USE OF PERSONAS AND POVs                 |  |  |  |  |  |  |
| IDEATION AN  | ND USE OF PERSONAS AND POVs                           |  |  |  |  |  |  |
| WEEK 4       | NEED FINDING                                          |  |  |  |  |  |  |
| NEED FINDIN  | IG                                                    |  |  |  |  |  |  |
| WEEK 5       | EMBEDDED MICROCONTROLLERS FOR CONSUMER PRODUCTS       |  |  |  |  |  |  |
| EMBEDDED N   | MICROCONTROLLERS FOR CONSUMER PRODUCTS                |  |  |  |  |  |  |
| WEEK 6       | HUMAN FACTORS IN ENGINEERING DESIGN                   |  |  |  |  |  |  |
| HUMAN FAC    | TORS IN ENGINEERING DESIGN                            |  |  |  |  |  |  |
| WEEK 7       | CRITICAL EXPERIENCE AND CRITICAL FUNCTION PROTOTYPING |  |  |  |  |  |  |
| CRITICAL EX  | EXPERIENCE AND CRITICAL FUNCTION PROTOTYPING          |  |  |  |  |  |  |
| WEEK 8       | DARK HORSE AND 'FUNKY' PROTOTYPING                    |  |  |  |  |  |  |
| DARK HORSI   | E AND 'FUNKY' PROTOTYPING                             |  |  |  |  |  |  |
| WEEK 9       | RAPID PROTOTYPING AND MANUFACTURING                   |  |  |  |  |  |  |
| RAPID PROT   | OTYPING AND MANUFACTURING                             |  |  |  |  |  |  |
| WEEK 10      | DESIGN FOR MANUFACTURE                                |  |  |  |  |  |  |
| DESIGN FOR   | MANUFACTURE                                           |  |  |  |  |  |  |
| WEEK 11      | USER TESTING                                          |  |  |  |  |  |  |
| USER TESTING |                                                       |  |  |  |  |  |  |
| WEEK 12      | USE OF VIDEO/ELECTRONIC MEDIA FOR COMMUNICATION       |  |  |  |  |  |  |
| USE OF VIDE  | O/ELECTRONIC MEDIA FOR COMMUNICATION                  |  |  |  |  |  |  |
| WEEK 13      | START-UPS AND ENTREPRENEURSHIP                        |  |  |  |  |  |  |
| 1            |                                                       |  |  |  |  |  |  |

### START-UPS AND ENTREPRENEURSHIP

WEEK 14

INTELLECTUAL PROPERTY

### INTELLECTUAL PROPERTY

#### **Reference Books:**

- 1. Product Design: Techniques in Reverse engineering & New Product development. K Otto & K Wood. Prentice Hall, 2001. ISBN 0-13-0212271-7 TCD Shelf Mark. HL-236-568.
- 2. Invention by design: how engineers get from thought to thing, Petroski H. Cambridge, Mass., London, Harvard University Press, 1996. ISBN 0674463676. TCD Shelf Mark. HL-201-280.
- 3. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation, Tim Brown, Harper Business, 2009, ISBN 978-0061766084.
- 4. Creative Confidence: Unleashing the Creative Potential Within Us All, Tom & David Kelley, Crown Business, 2013, ISBN 978-0385349369.

### XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Lecture No | Topics to be covered                                  | Course<br>Learning<br>Outcomes<br>(CLOs) | Reference |
|------------|-------------------------------------------------------|------------------------------------------|-----------|
| 1-3        | Successful team formation and management              | CLO 1,<br>CLO 2                          | 1-3       |
| 4-8        | Introduction to user-centred design                   | CLO 3                                    | 4-8       |
| 9-11       | Ideation and use of personas and POVs                 | CLO 4                                    | 9-11      |
| 11-13      | Need finding                                          | CLO 3                                    | 11-13     |
| 14-15      | Embedded Microcontrollers for consumer products       | CLO 3                                    | 14-15     |
| 16-21      | Human factors in engineering design                   | CLO 4                                    | 16-21     |
| 21-25      | Critical Experience and Critical Function Prototyping | CLO 5                                    | 21-25     |
| 26-30      | Dark Horse and 'Funky' prototyping                    | CLO 6                                    | 26-30     |
| 31-35      | Rapid prototyping and manufacturing                   | CLO 2                                    | 31-35     |
| 36-40      | Design for manufacture                                | CLO 3                                    | 36-40     |
| 41-44      | User testing                                          | CLO 4                                    | 41-44     |
| 45-49      | Use of video/electronic media for communication       | CLO 5                                    | 45-49     |
| 50-51      | Start-ups and entrepreneurship                        | CLO 6                                    | 50-51     |
| 52-53      | Intellectual Property                                 | CLO 5                                    | 52-53     |

# XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S NO | DESCRIPTION             | PROPOSED<br>ACTIONS              | RELEVANCE<br>WITH POs | RELEVANCE<br>WITH PSOs |
|------|-------------------------|----------------------------------|-----------------------|------------------------|
| 1    | Design Thinking Process | Case Studies /<br>YouTube Videos | PO 2, PO 9            | PSO 1                  |

Prepared by

Dr. G Manisha, Associate Professor

HOD, EEE