Hall	Ticket	No
man	TICVEL	TNO

Question Paper Code: AEC002

THE PARE NO

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

B. Tech III Semester End Examinations (Supplementary) - January, 2019

Regulation: IARE – R16

DIGITAL SYSTEM DESIGN

Time: 3 Hours

(ECE)

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT} - \mathbf{I}$

1.	. (a) Discuss binary system, Octal system, Decimal system, Hexa Decimal system of representation		
	 (b) Given the two binary numbers X = 1010100 and Y = 1000011, perform the sub i) X - Y i) Y - X using 2's complement and 1's complement. 	[7M] traction [7M]	
2.	 (a) Convert the following binary number to Gray code i) 11000110 ii) 00011001 iii) 11110000 	[7M]	
	(b) Perform the following addition using Excess-3 code i) 0011 0101 0110 ₂ + 0101 0111 1001 ₂ ii) 0101 0100 1000 ₂ + 0001 0010 0010 ₂ iii) 0010 0100 0111 ₂ + 0001 0001 0001 ₂	[7M]	
	$\mathbf{UNIT} - \mathbf{II}$		
3.	(a) Find the complement of the following expressions: i) $xy' + x'y$ ii) $(AB' + C)D' + E$	[7M]	
	 (b) Convert the following expressions into sum of products: i) (AB + C)(B + C'D) ii) x' + x(x + y)(y + z') 	[7M]	
4.	(a) Define three input NAND gate and NOR gate with truth table.	[7M]	
	(b) Find the minimized product-of-sums expression for the following Boolean Funct	ion [7M]	

$\mathbf{UNIT} - \mathbf{III}$

- 5. (a) A majority function is generated in a combinational circuit when the output is equal to 1 if the input variables have more 1's than 0's. The output is 0 otherwise. Design a 3 input majority function. [7M]
 - (b) Show that a full-subtractor can be constructed with two half-subtractors and an OR gate. [7M]
- 6. (a) Differentiate a parallel adder from serial adder. Explain a parallel adder/ subtractor using 2s complement system with the help of a logic diagram. [7M]
 - (b) Design a combinational circuit with four inputs and four outputs. The output generates the 2's complement of the input binary number. [7M]

$\mathbf{UNIT}-\mathbf{IV}$

- 7. (a) Construct a D flip-flop using T flip-flop with the help of characteristic equations. [7M]
 (b) Design a synchronous binary counter using T flip flops to count the following sequence: [7M]
 000, 001, 010, 011, 100, 101, 110, 111
- 8. (a) Design a synchronous BCD counter with T flip-flops.
 - (b) Consider a JK' flip-flop i.e., JK flip-flop with an inverter between the external input K' and the internal input K $[7{\rm M}]$
 - i) Obtain the characteristic equation.
 - ii) Obtain the excitation table.

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Explain the following with an example.
 - i. State diagram
 - ii. State table
 - iii. State equation
 - (b) Convert the following Mealy machine into corresponding Moore Machine as per given in Table 1.

[7M]

[7M]

[7M]

m 11	-1
Table	
10010	-

Present state	Next state, Z	
	X=0	X=1
A	D, 0	В, 1
В	A, 1	D, 0
С	C, 1	C, 0
D	В, 0	Α, 1

(b) Design a 1011 sequence detector using T flip-flop with overlap.

 $-\circ\circ\bigcirc\circ\circ-$

[7M]